error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = site-specific albumin conjugation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3591 KB  
Article
Novel HSA-PMEMA Nanomicelles Prepared via Site-Specific In Situ Polymerization-Induced Self-Assembly for Improved Intracellular Delivery of Paclitaxel
by Yang Chen, Shuang Liang, Binglin Chen, Fei Jiao, Xuliang Deng and Xinyu Liu
Pharmaceutics 2025, 17(3), 316; https://doi.org/10.3390/pharmaceutics17030316 - 1 Mar 2025
Viewed by 1634
Abstract
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the [...] Read more.
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the surface of these micelles may possess potential immunogenicity, posing risks in clinical applications. To address this issue, nanomicelles based on human serum albumin (HSA)–hydrophobic polymer conjugates constructed via site-specific in situ polymerization-induced self-assembly (SI-PISA) are considered a promising alternative. The HSA shell not only ensures good biocompatibility but also enhances cellular uptake because of endogenous albumin trafficking pathways. Moreover, compared to traditional methods of creating protein–hydrophobic polymer conjugates, SI-PISA demonstrates higher reaction efficiency and better preservation of protein functionality. Methods: We synthesized HSA-PMEMA nanomicelles via SI-PISA using HSA and methoxyethyl methacrylate (MEMA)—a novel hydrophobic monomer with a well-defined and stable chemical structure. The protein activity and the PTX intracellular delivery efficiency of HSA-PMEMA nanomicelles were evaluated. Results: The CD spectra of HSA and HSA-PMEMA exhibited similar shapes, and the relative esterase-like activity of HSA-PMEMA was 94% that of unmodified HSA. Flow cytometry results showed that Cy7 fluorescence intensity in cells treated with HSA-PMEMA-Cy7 was approximately 1.35 times that in cells treated with HSA-Cy7; meanwhile, HPLC results indicated that, under the same conditions, the PTX loading per unit protein mass on HSA-PMEMA was approximately 1.43 times that of HSA. These collectively contributed to a 1.78-fold overall PTX intracellular delivery efficiency of HSA-PMEMA compared to that of HSA. Conclusions: In comparison with HSA, HSA-PMEMA nanomicelles exhibit improved cellular uptake and higher loading efficiency for PTX, effectively promoting the intracellular delivery of PTX. Tremendous potential lies in these micelles for developing safer and more efficient next-generation PTX formulations for tumor treatment. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

13 pages, 2319 KB  
Article
Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor
by Yujing Li, Wenjuan Xu, Jingjing Liu, Erjing Zhang, Hejie Li, Yan Zhang, Jing Zhang, Chunsheng Li and Xiaoguang Zhang
Chemosensors 2023, 11(12), 578; https://doi.org/10.3390/chemosensors11120578 - 17 Dec 2023
Cited by 4 | Viewed by 2850
Abstract
Fipronil (FIP), a broad-spectrum phenylpyrazole insecticide, is highly toxic and threatens human health and ecological balance. Developing convenient, rapid, portable analytical technology for on-site and high-frequency testing of FIP is essential to reduce its damage. Herein, a monoclonal antibody (Clone F-3F6) against FIP, [...] Read more.
Fipronil (FIP), a broad-spectrum phenylpyrazole insecticide, is highly toxic and threatens human health and ecological balance. Developing convenient, rapid, portable analytical technology for on-site and high-frequency testing of FIP is essential to reduce its damage. Herein, a monoclonal antibody (Clone F-3F6) against FIP, with high affinity and specificity, was produced using a novel immunogen, FIP-BSA, which was simply and directly synthesized by conjugating FIP with bovine serum albumin (BSA). Among the previously reported antibodies, F-3F6 acts more specifically against FIP. The FIP metabolites fipronil desulfinyl, fipronil sulfide, and fipronil sulfone showed lower cross-reactivity, and other pesticides were not recognized. To achieve high-frequency and on-site measurements of FIP, an evanescent wave fluorescence biosensor was built by integrating evanescent wave fluorescence technology, a functionalized fiber bioprobe, and a fluorescence-labeled F-3F6 antibody. The detection limit of FIP was 0.032 μg/L. The detection results of real milk and water samples showed that all the coefficients of variation were less than 10%, and the recovery ranged from 90 to 120%. The high reusability and stability of functionalized fiber bioprobe enables the accurate, cost-effective, high-frequency, and facile quantitative detection of FIP. This highly specific and reliable evanescent wave fluorescence biosensor will be well suited to the sensitive and high-frequency on-site analysis of only FIP in food. Full article
Show Figures

Figure 1

18 pages, 2478 KB  
Article
Development and Comparative Evaluation of Two Highly Sensitive Immunosensor Platforms for Trace Determination of Copper Ions in Drinking Water Using a Monoclonal Antibody Specific to Copper-EDTA Complex
by Ibrahim A. Darwish, Zongzhi Wang and Ryhan J. Darling
Molecules 2023, 28(20), 7017; https://doi.org/10.3390/molecules28207017 - 10 Oct 2023
Cited by 2 | Viewed by 2038
Abstract
This study describes the development of two highly sensitive immunosensor platforms for the trace determination of copper ions, Cu(II), in drinking water. These platforms were a microwell-based enzyme-linked immunosorbent assay (ELISA) and a kinetic exclusion assay (KinExA) with a KinExATM 3200 immunosensor. [...] Read more.
This study describes the development of two highly sensitive immunosensor platforms for the trace determination of copper ions, Cu(II), in drinking water. These platforms were a microwell-based enzyme-linked immunosorbent assay (ELISA) and a kinetic exclusion assay (KinExA) with a KinExATM 3200 immunosensor. Both ELISA and KinExA were developed utilizing the same antibody and coating reagent. The antibody was a mouse monoclonal antibody, designated as 8D66, that specifically recognized Cu(II)-ethylenediamine tetraacetic acid complex (Cu(II)-EDTA) but did not recognize Cu(II)-free EDTA. The 8D66 monoclonal antibody was generated by the fusion of spleen cells of an immunized BALB/c mouse with SP2/0-Ag14 myeloma cells. The immunogen was a protein conjugate of Cu(II)-EDTA with keyhole limpet hemocyanin protein. The coating reagent was Cu(II)-EDTA covalently linked to bovine serum albumin protein (Cu(II)-EDTA-BSA). Both assays involved the competitive binding reaction between Cu(II)-EDTA complexes, formed in the sample solution, and Cu(II)-EDTA-BSA conjugate which has been immobilized onto ELISA plates (in ELISA) or polymethylmethacrylate beads (in KinExA) for a limited quantity of binding sites of the 8D66 antibody. In ELISA, color signals were generated by a peroxidase-labeled secondary antibody and 3,3′,5,5′-tetramethylbenzidine substrate. In KinExA, a fluorescein isothiocyanate-labeled secondary antibody was used to generate KinExAgram (trend-line fluorescence responses vs. time). The conditions of both ELISA and KinExA were investigated, and the optimum procedures were established. Both ELISA and KinExA were validated, and all validation parameters were acceptable. Many different metal ions that are commonly encountered in drinking water did not interfere with the Cu(II) analysis by both ELISA and KinExA. Both assays were applied to the determination of Cu(II) in drinking water with satisfactory accuracy and precision. Both assays were compared favorably with inductively coupled plasma atomic emission spectroscopy in terms of their abilities to accurately and precisely determine Cu(II) in drinking water samples. A comparative evaluation of ELISA and KinExA revealed that KinExA had a higher sensitivity and better precision than ELISA, whereas both assays had comparable accuracy. Both ELISA and KinExA were superior to the existing atomic spectrometric methods for Cu(II) in terms of sensitivity, convenience, and analysis throughputs. The proposed ELISA and KinExA are anticipated to effectively contribute to assessing Cu(II) concentrations and control the exposure of humans to its potential toxicities. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

10 pages, 2786 KB  
Article
Artificial Base-Directed In Vivo Formulation of Aptamer–Drug Conjugates with Albumin for Long Circulation and Targeted Delivery
by Yang Sun, Xinyao Geng, Yue Ma, Yu Qin, Shangjiu Hu, Yuquan Xie and Ruowen Wang
Pharmaceutics 2022, 14(12), 2781; https://doi.org/10.3390/pharmaceutics14122781 - 13 Dec 2022
Cited by 10 | Viewed by 3202
Abstract
Aptamer–drug conjugates (ApDCs) are potential targeted pharmaceutics, but their clinical applications are hampered by fast clearance in blood. Herein we report the construction of ApDCs modified with artificial base F and the study of biological activities. Two types of F-base-modified ApDCs were prepared, [...] Read more.
Aptamer–drug conjugates (ApDCs) are potential targeted pharmaceutics, but their clinical applications are hampered by fast clearance in blood. Herein we report the construction of ApDCs modified with artificial base F and the study of biological activities. Two types of F-base-modified ApDCs were prepared, Sgc8-paclitaxel by conjugation and Sgc8-gemcitabine, by automated solid-phase synthesis. In vitro experiments showed that F-base-modified ApDCs retain the specificity of the aptamer to target cells and the biological stability is improved. In vivo studies demonstrated that the circulatory time is increased by up to 55 h or longer, as the incorporated F base leads to a stable ApDC-albumin complex as the formulation for targeted delivery. Moreover, conjugated drug molecules were released efficiently and the drug (paclitaxel) concentration in the tumor site was improved. The results demonstrate that an F-base-directed ApDC-albumin complex is a potential platform for drug delivery and targeted cancer therapy. Full article
Show Figures

Figure 1

11 pages, 2031 KB  
Article
Development of Generic Immuno-Magnetic Bead-Based Enzyme-Linked Immunoassay for Ustiloxins in Rice Coupled with Enrichment
by Yi Huang, Xiaoqian Tang, Lu Zheng, Junbin Huang, Qi Zhang and Hao Liu
Toxins 2021, 13(12), 907; https://doi.org/10.3390/toxins13120907 - 17 Dec 2021
Cited by 14 | Viewed by 3741
Abstract
Ustiloxins are a group of mycotoxins produced by rice false smut pathogen. Previous studies have shown that the false smut balls contain six types of ustiloxins, and these toxins are toxic to living organisms. Thus, immunoassay for on-site monitoring of ustiloxins in rice [...] Read more.
Ustiloxins are a group of mycotoxins produced by rice false smut pathogen. Previous studies have shown that the false smut balls contain six types of ustiloxins, and these toxins are toxic to living organisms. Thus, immunoassay for on-site monitoring of ustiloxins in rice is urgently required. The current immunoassays are only for detecting single ustiloxin, and they cannot meet the demand for synchronous and rapid detection of the group toxins. Therefore, this study designed and synthesized a generic antigen with ustiloxin G as material based on the common structure of the mycotoxins. Ustiloxin G was conjugated to two carrier proteins including bovine serum albumin (BSA) and ovalbvmin (OVA) by carbon diimide method. The mice were immunized with ustiloxin-G-BSA to generate the antibody serum, which was further purified to obtain the generic antibody against ustiloxins. The conjugated ustiloxin G-OVA and generic antibodies were used for establishing the enzyme-linked immunosorbent assay (ELISA) for ustiloxin detection and optimizing experiment conditions. The characterization of the antibody showed that the semi-inhibitory concentrations (IC50) of ustiloxin A, B, and G were 0.53, 0.34, and 0.06 µg/mL, respectively, and that their corresponding cross-reactivities were 11.9%, 18.4%, and 100%, respectively. To increase ELISA detection efficiency, generic antibody was combined with magnetic beads to obtain sensitive and class-specific immune-magnetic beads. Based on these immuno-magnetic beads, a high-efficiency enzyme-linked immunoassay method was developed for ustiloxin detection, whose sensitivity to ustiloxin A, B, and G was improved to 0.15 µg/mL, 0.14 µg/mL, and 0.04 µg/mL, respectively. The method accuracy was evaluated by spiking ustiloxin G as standard, and the spiked samples were tested by the immune-magnetic bead-based ELISA. The result showed the ustiloxin G recoveries ranged from 101.9% to 116.4% and were accepted by a standard HPLC method, indicating that our developed method would be promising for on-site monitoring of ustiloxins in rice. Full article
(This article belongs to the Special Issue Research on Pathogenic Fungi and Mycotoxins in China)
Show Figures

Figure 1

13 pages, 4273 KB  
Article
Chemical Modification of Cysteine with 3-Arylpropriolonitrile Improves the In Vivo Stability of Albumin-Conjugated Urate Oxidase Therapeutic Protein
by Byungseop Yang and Inchan Kwon
Biomedicines 2021, 9(10), 1334; https://doi.org/10.3390/biomedicines9101334 - 27 Sep 2021
Cited by 4 | Viewed by 3055
Abstract
3-arylpropiolonitriles (APN) are promising alternatives to maleimide for chemo-selective thiol conjugation, because the reaction product has a remarkably hydrolytic stability compared with that of thiol-maleimide reactions in vitro. However, whether cysteine modification with APN enhances stability in vivo compared to thiol-maleimide reactions remains [...] Read more.
3-arylpropiolonitriles (APN) are promising alternatives to maleimide for chemo-selective thiol conjugation, because the reaction product has a remarkably hydrolytic stability compared with that of thiol-maleimide reactions in vitro. However, whether cysteine modification with APN enhances stability in vivo compared to thiol-maleimide reactions remains unclear, probably due to the too short in vivo serum half-life of a protein to observe significant cleavage of thiol-maleimide/-APN reaction products. The conjugation of human serum albumin (HSA) to a therapeutic protein reportedly prolongs the in vivo serum half-life. To evaluate the in vivo stability of the thiol-APN reaction product, we prepared HSA-conjugated Arthrobacter globiformis urate oxidase (AgUox), a therapeutic protein for gout treatment. Site-specific HSA conjugation to AgUox was achieved by combining site-specific incorporation of tetrazine containing an amino acid (frTet) into AgUox and a crosslinker containing trans-cyclooctene and either thiol-maleimide (AgUox-MAL-HSA) or -APN chemistry (AgUox-APN-HSA). Substantial cleavage of the thioester of AgUox-MAL-HSA was observed in vitro, whereas no cleavage of the thiol-APN product of AgUox-APN-HSA was observed. Furthermore, the in vivo serum half-life of AgUox-APN-HSA in the late phase was significantly longer than that of AgUox-MAL-HSA. Overall, these results demonstrate that the thiol-APN chemistry enhanced the in vivo stability of the HSA-conjugated therapeutic protein. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

11 pages, 2868 KB  
Article
Thermostable and Long-Circulating Albumin-Conjugated Arthrobacter globiformis Urate Oxidase
by Byungseop Yang and Inchan Kwon
Pharmaceutics 2021, 13(8), 1298; https://doi.org/10.3390/pharmaceutics13081298 - 19 Aug 2021
Cited by 9 | Viewed by 3617
Abstract
Urate oxidase derived from Aspergillus flavus has been investigated as a treatment for tumor lysis syndrome, hyperuricemia, and gout. However, its long-term use is limited owing to potential immunogenicity, low thermostability, and short circulation time in vivo. Recently, urate oxidase isolated from Arthrobacter [...] Read more.
Urate oxidase derived from Aspergillus flavus has been investigated as a treatment for tumor lysis syndrome, hyperuricemia, and gout. However, its long-term use is limited owing to potential immunogenicity, low thermostability, and short circulation time in vivo. Recently, urate oxidase isolated from Arthrobacter globiformis (AgUox) has been reported to be thermostable and less immunogenic than the Aspergillus-derived urate oxidase. Conjugation of human serum albumin (HSA) to therapeutic proteins has become a promising strategy to prolong circulation time in vivo. To develop a thermostable and long-circulating urate oxidase, we investigated the site-specific conjugation of HSA to AgUox based on site-specific incorporation of a clickable non-natural amino acid (frTet) and an inverse electron demand Diels–Alder reaction. We selected 14 sites for frTet incorporation using the ROSETTA design, a computational stability prediction program, among which AgUox containing frTet at position 196 (Ag12) exhibited enzymatic activity and thermostability comparable to those of wild-type AgUox. Furthermore, Ag12 exhibited a high HSA conjugation yield without compromising the enzymatic activity, generating well-defined HSA-conjugated AgUox (Ag12-HSA). In mice, the serum half-life of Ag12-HSA was approximately 29 h, which was roughly 17-fold longer than that of wild-type AgUox. Altogether, this novel formulated AgUox may hold enhanced therapeutic efficacy for several diseases. Full article
(This article belongs to the Special Issue Albumin-Based Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 6786 KB  
Article
Comparative Preclinical Evaluation of HER2-Targeting ABD-Fused Affibody® Molecules 177Lu-ABY-271 and 177Lu-ABY-027: Impact of DOTA Position on ABD Domain
by Yongsheng Liu, Anzhelika Vorobyeva, Tianqi Xu, Anna Orlova, Annika Loftenius, Theresa Bengtsson, Per Jonasson, Vladimir Tolmachev and Fredrik Y. Frejd
Pharmaceutics 2021, 13(6), 839; https://doi.org/10.3390/pharmaceutics13060839 - 7 Jun 2021
Cited by 14 | Viewed by 5080
Abstract
Radiolabeled Affibody-based targeting agent 177Lu-ABY-027, a fusion of an anti-HER2 Affibody molecule with albumin binding domain (ABD) site-specifically labeled at the C-terminus, has demonstrated a promising biodistribution profile in mice; binding of the construct to albumin prevents glomerular filtration and significantly reduces [...] Read more.
Radiolabeled Affibody-based targeting agent 177Lu-ABY-027, a fusion of an anti-HER2 Affibody molecule with albumin binding domain (ABD) site-specifically labeled at the C-terminus, has demonstrated a promising biodistribution profile in mice; binding of the construct to albumin prevents glomerular filtration and significantly reduces renal uptake. In this study, we tested the hypothesis that site-specific positioning of the chelator at helix 1 of ABD, at a maximum distance from the albumin binding site, would further increase the strength of binding to albumin and decrease the renal uptake. The new construct, ABY-271 with DOTA conjugated at the back of ABD, has been labelled with 177Lu. Targeting properties of 177Lu-ABY-271 and 177Lu-ABY-027 were compared directly. 177Lu-ABY-271 specifically accumulated in SKOV-3 xenografts in mice. The tumor uptake of 177Lu-ABY-271 exceeded uptake in any other organ 24 h and later after injection. However, the renal uptake of 177Lu-ABY-271 was two-fold higher than the uptake of 177Lu-ABY-027. Thus, the placement of chelator on helix 1 of ABD does not provide desirable reduction of renal uptake. To conclude, minimal modification of the design of Affibody molecules has a strong effect on biodistribution, which cannot be predicted a priori. This necessitates extensive structure-properties relationship studies to find an optimal design of Affibody-based targeting agents for therapy. Full article
(This article belongs to the Special Issue Targeted Radionuclide Therapy)
Show Figures

Graphical abstract

16 pages, 3339 KB  
Article
Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin
by Manuela Curcio, Luis Diaz-Gomez, Giuseppe Cirillo, Fiore Pasquale Nicoletta, Antonella Leggio and Francesca Iemma
Pharmaceutics 2021, 13(3), 304; https://doi.org/10.3390/pharmaceutics13030304 - 26 Feb 2021
Cited by 44 | Viewed by 4448
Abstract
Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles based on natural polymers represent valuable tools to achieve this aim. The ability to respond to environmental signals from the pathological site (e.g., altered redox potential), together with [...] Read more.
Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles based on natural polymers represent valuable tools to achieve this aim. The ability to respond to environmental signals from the pathological site (e.g., altered redox potential), together with the specific interaction with membrane receptors overexpressed on cancer cells membrane (e.g., CD44 receptors), represent the main features of actively targeted nanoparticles. In this work, redox-responsive micelle-like nanoparticles were prepared by self-assembling of a hyaluronic acid–human serum albumin conjugate containing cystamine moieties acting as a functional spacer. The conjugation procedure consisted of a reductive amination step of hyaluronic acid followed by condensation with albumin. After self-assembling, nanoparticles with a mean size of 70 nm and able to be destabilized in reducing media were obtained. Doxorubicin-loaded nanoparticles modulated drug release rate in response to different redox conditions. Finally, the viability and uptake experiments on healthy (BALB-3T3) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a drug vector in cancer therapy. Full article
(This article belongs to the Special Issue Self-Assembling Smart Nanoparticles for Drug Delivery)
Show Figures

Figure 1

14 pages, 2685 KB  
Article
Effect of C-terminus Conjugation via Different Conjugation Chemistries on In Vivo Activity of Albumin-Conjugated Recombinant GLP-1
by Junyong Park, Mijeong Bak, Kiyoon Min, Hyun-Woo Kim, Jeong-Haeng Cho, Giyoong Tae and Inchan Kwon
Pharmaceutics 2021, 13(2), 263; https://doi.org/10.3390/pharmaceutics13020263 - 15 Feb 2021
Cited by 2 | Viewed by 4095
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide hormone with tremendous therapeutic potential for treating type 2 diabetes mellitus. However, the short half-life of its native form is a significant drawback. We previously prolonged the plasma half-life of GLP-1 via site-specific conjugation of human serum [...] Read more.
Glucagon-like peptide-1 (GLP-1) is a peptide hormone with tremendous therapeutic potential for treating type 2 diabetes mellitus. However, the short half-life of its native form is a significant drawback. We previously prolonged the plasma half-life of GLP-1 via site-specific conjugation of human serum albumin (HSA) at position 16 of recombinant GLP-1 using site-specific incorporation of p-azido-phenylalanine (AzF) and strain-promoted azide-alkyne cycloaddition (SPAAC). However, the resulting conjugate GLP1_8G16AzF-HSA showed only moderate in vivo glucose-lowering activity, probably due to perturbed interactions with GLP-1 receptor (GLP-1R) caused by the albumin-linker. To identify albumin-conjugated GLP-1 variants with enhanced in vivo glucose-lowering activity, we investigated the conjugation of HSA to a C-terminal region of GLP-1 to reduce steric hindrance by the albumin-linker using two different conjugation chemistries. GLP-1 variants GLP1_8G37AzF-HSA and GLP1_8G37C-HSA were prepared using SPAAC and Michael addition, respectively. GLP1_8G37C-HSA exhibited a higher glucose-lowering activity in vivo than GLP1_8G16AzF-HSA, while GLP1_8G37AzF-HSA did not. Another GLP-1 variant, GLP1_8A37C-HSA, had a glycine to alanine mutation at position 8 and albumin at its C-terminus and exhibited in vivo glucose-lowering activity comparable to that of GLP1_8G37C-HSA, despite a moderately shorter plasma half-life. These results showed that site-specific HSA conjugation to the C-terminus of GLP-1 via Michael addition could be used to generate GLP-1 variants with enhanced glucose-lowering activity and prolonged plasma half-life in vivo. Full article
(This article belongs to the Special Issue Albumin-Based Drug Delivery Systems)
Show Figures

Graphical abstract

17 pages, 2359 KB  
Article
Recombinant Peptide Production Platform Coupled with Site-Specific Albumin Conjugation Enables a Convenient Production of Long-Acting Therapeutic Peptide
by Mijeong Bak, Junyong Park, Kiyoon Min, Jinhwan Cho, Jihyoun Seong, Young S. Hahn, Giyoong Tae and Inchan Kwon
Pharmaceutics 2020, 12(4), 364; https://doi.org/10.3390/pharmaceutics12040364 - 16 Apr 2020
Cited by 20 | Viewed by 7390
Abstract
The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a [...] Read more.
The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a platform for the production of a recombinant therapeutic peptide with an extended serum half-life involving the site-specific conjugation of human serum albumin (HSA). HSA has an exceptionally long serum half-life and can be used to extend the serum half-lives of therapeutic proteins and peptides. We used glucagon-like-peptide 1 (GLP-1) as a model peptide in the present study. A “clickable” non-natural amino acid—p-azido-l-phenylalanine (AzF)—was incorporated into three specific sites (V16, Y19, and F28) of a GLP-1 variant, followed by conjugation with HSA through strain-promoted azide–alkyne cycloaddition. All three HSA-conjugated GLP-1 variants (GLP1_16HSA, GLP1_19HSA, and GLP1_28HSA) exhibited comparable serum half-lives in vivo. However, the three GLP1_HSA variants had different in vitro biological activities and in vivo glucose-lowering effects, demonstrating the importance of site-specific HSA conjugation. The platform described herein could be used to develop other therapeutic peptides with extended serum half-lives. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Graphical abstract

14 pages, 5071 KB  
Article
Structure and Dynamics of a Site-Specific Labeled Fc Fragment with Altered Effector Functions
by D. Travis Gallagher, Chris McCullough, Robert G. Brinson, Joomi Ahn, John P. Marino and Nazzareno Dimasi
Pharmaceutics 2019, 11(10), 546; https://doi.org/10.3390/pharmaceutics11100546 - 21 Oct 2019
Cited by 7 | Viewed by 4867
Abstract
Antibody-drug conjugates (ADCs) are a class of biotherapeutic drugs designed as targeted therapies for the treatment of cancer. Among the challenges in generating an effective ADC is the choice of an effective conjugation site on the IgG. One common method to prepare site-specific [...] Read more.
Antibody-drug conjugates (ADCs) are a class of biotherapeutic drugs designed as targeted therapies for the treatment of cancer. Among the challenges in generating an effective ADC is the choice of an effective conjugation site on the IgG. One common method to prepare site-specific ADCs is to engineer solvent-accessible cysteine residues into antibodies. Here, we used X-ray diffraction and hydrogen-deuterium exchange mass spectroscopy to analyze the structure and dynamics of such a construct where a cysteine has been inserted after Ser 239 (Fc-239i) in the antibody heavy chain sequence. The crystal structure of this Fc-C239i variant at 0.23 nm resolution shows that the inserted cysteine structurally replaces Ser 239 and that this causes a domino-like backward shift of the local polypeptide, pushing Pro 238 out into the hinge. Proline is unable to substitute conformationally for the wild-type glycine at this position, providing a structural reason for the previously observed abolition of both FcγR binding and antibody-dependent cellular cytotoxicity. Energy estimates for the both the FcγR interface (7 kcal/mol) and for the differential conformation of proline (20 kcal/mol) are consistent with the observed disruption of FcγR binding, providing a quantifiable case where strain at a single residue appears to disrupt a key biological function. Conversely, the structure of Fc-C239i is relatively unchanged at the intersection of the CH2 and CH3 domains; the site known to be involved in binding of the neonatal Fc receptor (FcRn), and an alignment of the Fc-C239i structure with an Fc structure in a ternary Fc:FcRn:HSA (human serum albumin) complex implies that these favorable contacts would be maintained. Hydrogen deuterium exchange mass spectroscopy (HDX-MS) data further suggest a significant increase in conformational mobility for the Fc-C239i protein relative to Fc that is evident even far from the insertion site but still largely confined to the CH2 domain. Together, the findings provide a detailed structural and dynamic basis for previously observed changes in ADC functional binding to FcγR, which may guide further development of ADC designs. Full article
(This article belongs to the Special Issue Recombinant Therapeutic Proteins for Drug Delivery)
Show Figures

Graphical abstract

19 pages, 10348 KB  
Article
Incorporation of a Hydrophilic Spacer Reduces Hepatic Uptake of HER2-Targeting Affibody–DM1 Drug Conjugates
by Haozhong Ding, Mohamed Altai, Sara S. Rinne, Anzhelika Vorobyeva, Vladimir Tolmachev, Torbjörn Gräslund and Anna Orlova
Cancers 2019, 11(8), 1168; https://doi.org/10.3390/cancers11081168 - 14 Aug 2019
Cited by 20 | Viewed by 4891
Abstract
Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been [...] Read more.
Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been validated. Biodistribution studies in mice revealed an elevated hepatic uptake of the AffiDC, but histopathological examination of livers showed no major signs of toxicity. However, previous clinical experience with antibody drug conjugates have revealed a moderate- to high-grade hepatotoxicity in treated patients, which merits efforts to also minimize hepatic uptake of the AffiDCs. In this study, the aim was to reduce the hepatic uptake of AffiDCs and optimize their in vivo targeting properties. We have investigated if incorporation of hydrophilic glutamate-based spacers adjacent to MC-DM1 in the AffiDC, (ZHER2:2891)2–ABD–MC-DM1, would counteract the hydrophobic nature of MC-DM1 and, hence, reduce hepatic uptake. Two new AffiDCs including either a triglutamate–spacer–, (ZHER2:2891)2–ABD–E3–MC-DM1, or a hexaglutamate–spacer–, (ZHER2:2891)2–ABD–E6–MC-DM1 next to the site of MC-DM1 conjugation were designed. We radiolabeled the hydrophilized AffiDCs and compared them, both in vitro and in vivo, with the previously investigated (ZHER2:2891)2–ABD–MC-DM1 drug conjugate containing no glutamate spacer. All three AffiDCs demonstrated specific binding to HER2 and comparable in vitro cytotoxicity. A comparative biodistribution study of the three radiolabeled AffiDCs showed that the addition of glutamates reduced drug accumulation in the liver while preserving the tumor uptake. These results confirmed the relation between DM1 hydrophobicity and liver accumulation. We believe that the drug development approach described here may also be useful for other affinity protein-based drug conjugates to further improve their in vivo properties and facilitate their clinical translatability. Full article
Show Figures

Figure 1

17 pages, 5634 KB  
Article
Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells
by Luigi Lerra, Annafranca Farfalla, Beatriz Sanz, Giuseppe Cirillo, Orazio Vittorio, Florida Voli, Marion Le Grand, Manuela Curcio, Fiore Pasquale Nicoletta, Anna Dubrovska, Silke Hampel, Francesca Iemma and Gerardo F. Goya
Pharmaceutics 2019, 11(1), 3; https://doi.org/10.3390/pharmaceutics11010003 - 22 Dec 2018
Cited by 39 | Viewed by 5711
Abstract
With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The [...] Read more.
With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site. Full article
Show Figures

Graphical abstract

17 pages, 2757 KB  
Article
Rapid Detection of Chloramphenicol Residues in Aquatic Products Using Colloidal Gold Immunochromatographic Assay
by Chennan Zhou, Xueyin Zhang, Xinxin Huang, Xishan Guo, Qiang Cai and Songming Zhu
Sensors 2014, 14(11), 21872-21888; https://doi.org/10.3390/s141121872 - 18 Nov 2014
Cited by 39 | Viewed by 11204
Abstract
A colloidal gold immunochromatographic assay (GICA) was developed for rapid detection of chloramphenicol (CAP) residues in aquatic products. A nitrocellulose (NC) membrane was used as the carrier, and the polyclonal CAP antibody was used as the marker protein. The average diameter of as-prepared [...] Read more.
A colloidal gold immunochromatographic assay (GICA) was developed for rapid detection of chloramphenicol (CAP) residues in aquatic products. A nitrocellulose (NC) membrane was used as the carrier, and the polyclonal CAP antibody was used as the marker protein. The average diameter of as-prepared colloidal gold nanoparticles (AuNPs) was about 20 nm. The optimal pH value of colloidal gold solutions and the amount of the antibody of CAP were 8.0 and 7.2 μg/mL, respectively. The CAP antibody was immobilized onto the conjugate pad after purification. The CAP conjugate and goat anti-rabbit IgG (secondary antibody) were coated onto the NC membrane. Next, the non-specific sites were blocked with 1% bovine serum albumin. The minimum detectable concentration of CAP in standard solution is 0.5 ng/mL, with good reproducibility. For the real samples from crucian carps injected with a single-dose of CAP in the dorsal muscles, the minimum detectable concentration of CAP residues was 0.5 µg/kg. The chromatographic analysis time was less than 10 min, and the strip had a long storage lifetime of more than 90 days at different temperatures. The strips provide a means for rapid detection of CAP residues in aquatic products. Full article
(This article belongs to the Special Issue Immunosensors 2014)
Show Figures

Back to TopTop