Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,145)

Search Parameters:
Keywords = site productivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2057 KB  
Review
Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions
by Surtipal Sharma, Ruchi Bharti, Monika Verma, Renu Sharma, Adília Januário Charmier and Manas Sutradhar
Catalysts 2025, 15(10), 970; https://doi.org/10.3390/catal15100970 (registering DOI) - 11 Oct 2025
Abstract
The growing demand for sustainable and efficient synthetic methodologies has brought nanocatalysis to the forefront of modern organic chemistry, particularly in the construction of heterocyclic compounds through multicomponent reactions (MCRs). Among various nanocatalysts, calcium oxide nanoparticles (CaO NPs) have gained significant attention because [...] Read more.
The growing demand for sustainable and efficient synthetic methodologies has brought nanocatalysis to the forefront of modern organic chemistry, particularly in the construction of heterocyclic compounds through multicomponent reactions (MCRs). Among various nanocatalysts, calcium oxide nanoparticles (CaO NPs) have gained significant attention because of their strong basicity, thermal stability, low toxicity, and cost-effectiveness. This review provides a comprehensive account of the recent strategies using CaO NPs as heterogeneous catalysts for the green synthesis of nitrogen- and oxygen-containing heterocycles through MCRs. Key reactions such as Biginelli, Hantzsch, and pyran annulations are discussed in detail, with emphasis on atom economy, reaction conditions, product yields, and catalyst reusability. In many instances, CaO NPs have enabled solvent-free or aqueous protocols with high efficiency and reduced reaction times, often under mild conditions. Mechanistic aspects are analyzed to highlight the catalytic role of surface basic sites in facilitating condensation and cyclization steps. The performance of CaO NPs is also compared with other oxide nanocatalysts, showcasing their benefits from green metrics evaluation like E-factor and turnover frequency. Despite significant progress, challenges remain in areas such as asymmetric catalysis, industrial scalability, and catalytic stability under continuous use. To address these gaps, future directions involving doped CaO nanomaterials, hybrid composites, and mechanochemical approaches are proposed. This review aims to provide a focused and critical perspective on CaO NP-catalyzed MCRs, offering insights that may guide further innovations in sustainable heterocyclic synthesis. Full article
17 pages, 4552 KB  
Article
Antiviral Efficacy of Lignan Derivatives (-)-Asarinin and Sesamin Against Foot-and-Mouth Disease Virus by Targeting RNA-Dependent RNA Polymerase (3Dpol)
by Ploypailin Semkum, Natjira Mana, Varanya Lueangaramkul, Nantawan Phetcharat, Porntippa Lekcharoensuk and Sirin Theerawatanasirikul
Vet. Sci. 2025, 12(10), 971; https://doi.org/10.3390/vetsci12100971 - 10 Oct 2025
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral infection affecting livestock. Although inactivated vaccines are commonly used, their effectiveness is limited by an immunity gap. Therefore, complementary antiviral strategies are required for effective control and prevention. Lignans, plant-derived compounds, have shown promising antiviral [...] Read more.
Foot-and-mouth disease (FMD) is a highly contagious viral infection affecting livestock. Although inactivated vaccines are commonly used, their effectiveness is limited by an immunity gap. Therefore, complementary antiviral strategies are required for effective control and prevention. Lignans, plant-derived compounds, have shown promising antiviral properties, yet their potential against foot-and-mouth disease virus (FMDV) remains underexplored. This study employed virtual screening to identify lignan compounds targeting viral RNA-dependent RNA polymerase (3Dpol). Six lignan compounds were selected for cytotoxicity and antiviral activity evaluation including pre-viral entry, post-viral entry, and protective effect assays. Antiviral activity assay showed that (-)-asarinin and sesamin exhibit potent inhibition effects in the post-viral entry with EC50 of 15.11 μM and 52.98 μM, respectively, using immunoperoxidase monolayer assay. Both compounds exhibited dose-dependent reduction in viral replication with significant suppression of negative-strand RNA production. Lignans’ ability to target FMDV 3Dpol was further confirmed using a cell-based FMDV minigenome assay. Among the tested lignans, (-)-asarinin demonstrated remarkable inhibition of GFP expression (IC50 value at 10.37 μM), while sesamin required a higher concentration for similar effects. In silico prediction revealed that these lignans preferentially bind to FMDV 3Dpol active site. These findings are the first to establish (-)-asarinin and sesamin as promising antiviral candidates against FMDV. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
20 pages, 3698 KB  
Article
Identification, Characterization, and Pathogenicity of Fungal and Bacterial Pathogens of Walnut (Juglans regia L.) in Kazakhstan
by Elmira Ismagulova, Sergey Oleichenko, Moldir Sarshayeva, Saule Korabayeva, Gulnaz Nizamdinova, Dilyara Gritsenko, Gulnur Suleimanova, Zagipa Sapakhova, Huseyin Basim and Gulshariya Kairova
Horticulturae 2025, 11(10), 1217; https://doi.org/10.3390/horticulturae11101217 - 10 Oct 2025
Abstract
Walnut (Juglans regia L.) is a significant nut crop in the southern regions of Kazakhstan; however, its productivity is substantially limited by fungal and bacterial diseases. Therefore, a phytopathological investigation was conducted in 2023–2024 in the Almaty and Turkestan regions, including field [...] Read more.
Walnut (Juglans regia L.) is a significant nut crop in the southern regions of Kazakhstan; however, its productivity is substantially limited by fungal and bacterial diseases. Therefore, a phytopathological investigation was conducted in 2023–2024 in the Almaty and Turkestan regions, including field monitoring, pathogen isolation, molecular identification, and pathogenicity testing. Field monitoring revealed that symptoms of brown spot, walnut canker, walnut blight, bacterial blight, and crown gall were widespread. The overall disease incidence ranged from 8% to 30%, while the disease severity index varied from 15% to 70% across the surveyed sites. Pure cultures of pathogens were isolated from 69 samples, and their morphology was characterized. Molecular identification through sequencing of universal genetic loci (the internal transcribed spacer for fungi and 16S ribosomal RNA for bacteria) revealed the presence of the fungal species Alternaria alternata and Fusarium incarnatum, as well as the bacterial species Pantoea agglomerans and Xanthomonas arboricola pv. juglandis. Pathogenicity testing confirmed the virulence of the identified pathogens, which induced characteristic symptoms of brown spot, walnut canker, and walnut blight, consistent with those observed in the field. These findings have considerable practical significance for improving phytosanitary monitoring and protection systems in walnut plantations, thereby facilitating disease outbreak prediction and the development of effective quarantine measures. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

19 pages, 6762 KB  
Article
Sponge Landscapes: Flood Adaptation Landscape Type Framework for Resilient Agriculture
by Elisa Palazzo
Land 2025, 14(10), 2023; https://doi.org/10.3390/land14102023 - 10 Oct 2025
Abstract
In the context of increasing climate variability and flood risk, this study explores how long-standing agricultural practices in the Hunter Valley, New South Wales, Australia, have fostered flood resilience through the integration of local agro-environmental knowledge and geomorphologic conditions. Employing a morpho-typological framework, [...] Read more.
In the context of increasing climate variability and flood risk, this study explores how long-standing agricultural practices in the Hunter Valley, New South Wales, Australia, have fostered flood resilience through the integration of local agro-environmental knowledge and geomorphologic conditions. Employing a morpho-typological framework, the research identifies three flood adaptation landscape types (FALTs)—rolling hills, foot slopes, and flood plains—each reflecting distinct interactions between landform, soil, biodiversity, hydrology, and viticultural management. Through geospatial analysis, field surveys, and interviews with local farmers, the study reveals how adaptive strategies—ranging from flood avoidance to attenuation and acceptance—have evolved in response to site-specific hydrological and ecologic dynamics. These strategies demonstrate a form of ‘sponge landscape’ design, where agricultural systems are co-shaped with natural processes to enhance systemic resilience and long-term productivity. The findings underscore the value of preserving biocultural legacies and suggest that spatially explicit, context-based approaches to flood adaptation can inform sustainable landscape planning and climate resilience strategies in other rural regions. The FALT framework offers a replicable methodology for identifying flood adaptation patterns across diverse agricultural systems in Australia, supporting proactive land use planning and nature-based solutions. This research contributes to the discourse on climate adaptation by bridging traditional environmental knowledge with contemporary planning frameworks, offering practical insights for policy, landscape management, and rural development. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

18 pages, 1164 KB  
Article
Potential for Improving the Environmental Sustainability of Natural Aggregates Production (Slovenian Case Study)
by Janez Turk, Anja Kodrič, Rok Cajzek and Tjaša Zupančič Hartner
Appl. Sci. 2025, 15(19), 10856; https://doi.org/10.3390/app151910856 - 9 Oct 2025
Abstract
The environmental performance of natural aggregates for concrete and road construction, extracted from a dolomite quarry, was investigated. Environmental hotspots were identified, and potential optimization measures to further reduce the environmental footprint were proposed. The natural aggregates extracted from the dolomite quarry have [...] Read more.
The environmental performance of natural aggregates for concrete and road construction, extracted from a dolomite quarry, was investigated. Environmental hotspots were identified, and potential optimization measures to further reduce the environmental footprint were proposed. The natural aggregates extracted from the dolomite quarry have relatively low GWP and a low environmental footprint in general. The GWP of 1 tonne of natural aggregates used in concrete production is 1.13 kg CO2 equiv., while for 1 tonne of aggregates used in road construction, it is 0.97 kg CO2 equiv. The dolomite rock in the quarry in question is tectonically fractured, such that very intensive extraction is not required, taking into account the blasting of the rock and further processing. The use of non-road mobile machinery is already optimized. Additional reductions in environmental impact could be achieved by powering the screening process exclusively with electricity from renewable sources, such as a photovoltaic system. In this context, integrating on-site battery storage systems might present a promising solution for addressing the seasonal mismatch between solar energy generation and processing demands. Full article
Show Figures

Figure 1

22 pages, 4802 KB  
Article
Comparative Analyses Reveal Potential Genetic Variations in Hypoxia- and Mitochondria-Related Genes Among Six Strains of Common Carp Cyprinus carpio
by Mohamed H. Abo-Raya, Jing Ke, Jun Wang and Chenghui Wang
Fishes 2025, 10(10), 509; https://doi.org/10.3390/fishes10100509 - 9 Oct 2025
Abstract
The ability of common carp to withstand both short-term and long-term oxygen deprivation has been well documented; however, the potential genetic mechanisms behind common carp’s hypoxia response remain unclear. Therefore, to understand the possible genetic foundation of their response to hypoxia, comparative genomic [...] Read more.
The ability of common carp to withstand both short-term and long-term oxygen deprivation has been well documented; however, the potential genetic mechanisms behind common carp’s hypoxia response remain unclear. Therefore, to understand the possible genetic foundation of their response to hypoxia, comparative genomic analyses were conducted among six common carp varieties: Color, Songpu, European, Yellow, Mirror, and Hebao common carps. We identified 118 single-copy orthologous positively selected genes (PSGs) (dN/dS > 1) in all common carps under study, with GO functions directly related to the cellular responses to hypoxia in Color and European common carp PSGs, such as oxygen transport activity, oxygen binding activity, respiratory burst activity, and superoxide anion production. The Bayes Empirical Bayes (BEB) technique identified possible amino acid substitutions in mitochondrial and hypoxic genes under positive selection. Exonic and intronic structural variations (SVs) were discovered in the CYGB2 hypoxia-related gene of Color and European common carps, as well as in several mitochondrial genes, including MRPL20, MRPL32, NSUN3, GUF1, TMEM17B, PDE12, ACAD6, and COX10 of Color, European, Songpu, Yellow, and Hebao common carps. Moreover, Color common carp and Songpu common carp were found to share the greatest percentage of collinear genes (49.8%), with seven Songpu common carp chromosomes (chr A2, chr A9, chr A13, chr B13, chr B15, chr B2, and chr B12) showing distinct translocation events with the corresponding chromosomes of Color common carp. Additionally, we found 570 translocation sites that contained 3572 translocation-related genes in Color common carp, some of which are directly relevant to mitochondrial and hypoxic GO functions and KEGG pathways. Our results offer strong genome-wide evidence of the possible evolutionary response of Cyprinus carpio to hypoxia, providing important insights into the potential molecular mechanisms that explain their survival in hypoxic environments and guiding future research into carp hypoxia tolerance. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Graphical abstract

31 pages, 6918 KB  
Article
Three-Dimensional Visualization of Product Manufacturing Information in a Web Browser Based on STEP AP242 and WebGL
by Yazhou Chen, Hongxing Wang, Lin Wang, Songqin Xu, Longxing Liao, Jingyu Mo and Xiaochuan Lin
Appl. Sci. 2025, 15(19), 10847; https://doi.org/10.3390/app151910847 - 9 Oct 2025
Abstract
Commercial computer-aided design (CAD) software is often expensive. This paper examines the use of product manufacturing information (PMI) web visualization to address the challenges faced by production site personnel and external partners collaborating on product development. These individuals need to be able to [...] Read more.
Commercial computer-aided design (CAD) software is often expensive. This paper examines the use of product manufacturing information (PMI) web visualization to address the challenges faced by production site personnel and external partners collaborating on product development. These individuals need to be able to view or query PMI in model-based definition models without having to install professional CAD software. A detailed analysis of the relationships between PMI entity attributes in standard for the exchange of product model data (STEP) AP242 files was conducted. An algorithm for the automatic parsing and mapping of PMI semantics to a web browser is presented. Using linear sizes as an example, this paper introduces a prototype system with the following features: PMI web visualization; automatic linkage of PMI to associated geometry; browser-native rendering without the need for dedicated applications; and integration of graphical presentation and semantic representation. The effectiveness and feasibility of the prototype system are validated through case studies. However, the system has limitations when handling large assemblies with compound tolerances, curved dimension placements, and overlapping annotations, which presents areas for future research. Full article
Show Figures

Figure 1

24 pages, 889 KB  
Systematic Review
From BIM to UAVs: A Systematic Review of Digital Solutions for Productivity Challenges in Construction
by Victor Francisco Saraiva Landim, João Poças Martins and Diego Calvetti
Appl. Sci. 2025, 15(19), 10843; https://doi.org/10.3390/app151910843 - 9 Oct 2025
Abstract
The construction industry faces persistent productivity challenges despite the widespread adoption of advanced digital technologies. This systematic review examines how digital technologies contribute to improving on-site labor productivity within the Architecture, Engineering, Construction, and Operations (AECOs) sector. Following the PRISMA methodology, 431 records [...] Read more.
The construction industry faces persistent productivity challenges despite the widespread adoption of advanced digital technologies. This systematic review examines how digital technologies contribute to improving on-site labor productivity within the Architecture, Engineering, Construction, and Operations (AECOs) sector. Following the PRISMA methodology, 431 records were initially identified, with 28 high-quality articles ultimately selected for analysis through rigorous screening and snowballing techniques. The reviewed technologies include Building Information Modeling (BIM), photogrammetry, LiDAR, augmented reality (AR), global navigation satellite systems (GNSSs), radio frequency identification (RFID), and unmanned aerial vehicles (UAVs), which were categorized into three key areas: factors affecting productivity, modeling and evaluation, and productivity improvement methods. Findings highlight that these technologies collectively enhance resource allocation, reduce labor costs, and improve project scheduling through better coordination. Whilst digital technologies demonstrate substantial impact on construction productivity, further research is needed to quantify long-term benefits and address scalability challenges across different project contexts and organizational structures. Ultimately, the review concludes that digital technologies play a crucial role in enhancing construction productivity, highlighting the need for further research to assess long-term advantages and scalability across diverse construction environments. These technological advancements are essential for modernizing the industry and supporting sustainable growth in the digital transition era. Full article
Show Figures

Figure 1

18 pages, 1138 KB  
Review
Determination of Inorganic Elements in Paper Food Packaging Using Conventional Techniques and in Various Matrices Using Microwave Plasma Atomic Emission Spectrometry (MP-AES): A Review
by Maxime Chivaley, Samia Bassim, Vicmary Vargas, Didier Lartigue, Brice Bouyssiere and Florence Pannier
Analytica 2025, 6(4), 41; https://doi.org/10.3390/analytica6040041 - 9 Oct 2025
Viewed by 30
Abstract
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be [...] Read more.
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be a polluting industry and a consumer of a large amount of energy but remains an essential heavy industry globally. Paper production, based largely on the kraft process, is mainly intended for the food packaging sector and, thus, is associated with contamination risks. The lack of standardized regulations and the different analytical techniques used make information on the subject complex, particularly for inorganic elements where little information is available in the literature. Most research in this field is based on sample preparation using mineralization via acid digestion to obtain a liquid and homogeneous matrix, mainly with a HNO3/H2O2 mixture. The most commonly used techniques are Atomic Absorption Spectrometry (AAS), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), each with its advantages and disadvantages, which complicates the use of these tech-niques for routine analyses on an industrial site. In the same field of inorganic compound analysis, Microwave Plasma Atomic Emission Spectrometry (MP-AES) has become a real alternative to techniques such as AAS or ICP-AES. This technique has been used in several studies in the food and environmental fields. This publication aims to examine, for the first time, the state of the art regarding the analysis of inorganic elements in food packaging and different matrices using MP-AES. The entire manufacturing process is studied to identify possible sources of inorganic contaminants. Various analytical techniques used in the field are also presented, as well as research conducted with MP-AES to highlight the potential benefits of this technique in the field. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Figure 1

43 pages, 1412 KB  
Review
Surface Modification of Screen-Printed Carbon Electrodes
by Naila Haroon and Keith J. Stine
Coatings 2025, 15(10), 1182; https://doi.org/10.3390/coatings15101182 - 9 Oct 2025
Viewed by 190
Abstract
SPCEs are crucial for electrochemical sensing because of their portability, low cost, disposability, and ease of mass production. This study details their manufacture, surface modifications, electrochemical characterization, and use in chemical and biosensing. SPCEs integrate working, reference, and counter electrodes on PVC or [...] Read more.
SPCEs are crucial for electrochemical sensing because of their portability, low cost, disposability, and ease of mass production. This study details their manufacture, surface modifications, electrochemical characterization, and use in chemical and biosensing. SPCEs integrate working, reference, and counter electrodes on PVC or polyester substrates for compact sensor design. Surface modifications, such as plasma treatment (O2, Ar), nanomaterial addition (AuNPs, GO, CNTs), polymer coatings, and MIPs, enhance performance. These changes improve sensitivity, selectivity, stability, and electron transport. Electrochemical methods such as CV, DPV, SWV, and EIS detect analytes, including biomolecules (glucose, dopamine, and pathogens) and heavy metals (Pb2+, As3+). Their applications include healthcare diagnostics, environmental monitoring, and food safety. Modified SPCEs enable rapid on-site analysis and offer strong potential to transform our understanding of the physical world. Full article
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Hydrogen Peroxide and Neutrophil Chemotaxis in a Mouse Model of Bacterial Infection
by Hassan O. J. Morad, Larissa Garcia-Pinto, Georgia Clayton, Foad Davoodbeglou, Arturo Monzon and Peter A. McNaughton
Immuno 2025, 5(4), 47; https://doi.org/10.3390/immuno5040047 - 8 Oct 2025
Viewed by 228
Abstract
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce [...] Read more.
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce organ damage and death. In this study, we use an animal model of bacterial infection originating in the peritoneum to show that hydrogen peroxide (H2O2, a potent neutrophil chemoattractant) is initially released in high concentrations both in the peritoneum and in multiple ‘off-target’ organs (lungs, liver and kidneys). The initial high H2O2 release inhibits neutrophil chemotaxis, but after 24 h concentrations of H2O2 reduce and can promote neutrophil migration to organs, where they release pro-inflammatory cytokines and chemokines along with NETs. The antimalarial compound artesunate potently inhibits neutrophil migration to off-target organs. It also abolishes cytokine, chemokine, and NET production, suggesting that artesunate may be a valuable novel therapy for preventing off-target organ inflammation associated with severe bacterial infections. Finally, the potency of H2O2 as a chemoattractant is shown by in vitro experiments in which, faced with competing gradients of H2O2 and other chemoattractants, neutrophils preferentially migrate towards H2O2. Full article
(This article belongs to the Section Innate Immunity and Inflammation)
Show Figures

Figure 1

17 pages, 6432 KB  
Article
An AI-Enabled System for Automated Plant Detection and Site-Specific Fertilizer Application for Cotton Crops
by Arjun Chouriya, Peeyush Soni, Abhilash K. Chandel and Ajay Kumar Patel
Automation 2025, 6(4), 53; https://doi.org/10.3390/automation6040053 - 8 Oct 2025
Viewed by 208
Abstract
Typical fertilizer applicators are often restricted in performance due to non-uniformity in distribution, required labor and time intensiveness, high discharge rate, chemical input wastage, and fostering weed proliferation. To address this gap in production agriculture, an automated variable-rate fertilizer applicator was developed for [...] Read more.
Typical fertilizer applicators are often restricted in performance due to non-uniformity in distribution, required labor and time intensiveness, high discharge rate, chemical input wastage, and fostering weed proliferation. To address this gap in production agriculture, an automated variable-rate fertilizer applicator was developed for the cotton crop that is based on deep learning-initiated electronic control unit (ECU). The applicator comprises (a) plant recognition unit (PRU) to capture and predict presence (or absence) of cotton plants using the YOLOv7 recognition model deployed on-board Raspberry Pi microprocessor (Wale, UK), and relay decision to a microcontroller; (b) an ECU to control stepper motor of fertilizer metering unit as per received cotton-detection signal from the PRU; and (c) fertilizer metering unit that delivers precisely metered granular fertilizer to the targeted cotton plant when corresponding stepper motor is triggered by the microcontroller. The trials were conducted in the laboratory on a custom testbed using artificial cotton plants, with the camera positioned 0.21 m ahead of the discharge tube and 16 cm above the plants. The system was evaluated at forward speeds ranging from 0.2 to 1.0 km/h under lighting levels of 3000, 5000, and 7000 lux to simulate varying illumination conditions in the field. Precision, recall, F1-score, and mAP of the plant recognition model were determined as 1.00 at 0.669 confidence, 0.97 at 0.000 confidence, 0.87 at 0.151 confidence, and 0.906 at 0.5 confidence, respectively. The mean absolute percent error (MAPE) of 6.15% and 9.1%, and mean absolute deviation (MAD) of 0.81 g/plant and 1.20 g/plant, on application of urea and Diammonium Phosphate (DAP), were observed, respectively. The statistical analysis showed no significant effect of the forward speed of the conveying system on fertilizer application rate (p > 0.05), thereby offering a uniform application throughout, independent of the forward speed. The developed fertilizer applicator enhances precision in site-specific applications, minimizes fertilizer wastage, and reduces labor requirements. Eventually, this fertilizer applicator placed the fertilizer near targeted plants as per the recommended dosage. Full article
Show Figures

Figure 1

21 pages, 3762 KB  
Article
Rapid Detection of Foodborne Pathogenic Bacteria in Beef Using Surface-Enhanced Raman Spectroscopy
by Huixin Zuo, Yingying Sun, Mingming Huang, Yuqi Liu, Yimin Zhang and Yanwei Mao
Foods 2025, 14(19), 3434; https://doi.org/10.3390/foods14193434 - 7 Oct 2025
Viewed by 229
Abstract
Foodborne pathogenic bacteria in meat pose a serious threat to human health. Traditional detection methods for these bacteria are often time-consuming and labor-intensive. In this study, we applied surface-enhanced Raman scattering (SERS) combined with portable Raman spectroscopy as a rapid and convenient detection [...] Read more.
Foodborne pathogenic bacteria in meat pose a serious threat to human health. Traditional detection methods for these bacteria are often time-consuming and labor-intensive. In this study, we applied surface-enhanced Raman scattering (SERS) combined with portable Raman spectroscopy as a rapid and convenient detection technique. SERS is a sensitive and fast method that enhances light scattering on rough metal surfaces. Silver nanoparticles (AgNPs) were used as SERS substrates to identify and analyze four pathogenic bacteria, including Escherichia coli (E. coli) O157:H7, Salmonella typhimurium (S. typhimurium), Staphylococcus aureus (S. aureus), and Listeria monocytogenes (L. monocytogenes), in beef. We optimized the detection conditions of AgNPs and established the limit of detection (LOD) for these four pathogenic bacteria in both pure culture and beef samples. The LODs were as low as 4–23 CFU/mL in beef samples, indicating high detection sensitivity. Linear discriminant analysis (LDA) was used to analyze the SERS spectra, yielding an accuracy of 91.7–97.3%. This study not only provides a rapid and portable detection method for pathogenic bacteria in beef but also overcomes the limitations of traditional methods that are often time-consuming and not suitable for on-site detection. However, the current study is limited to the detection of the four specific pathogenic bacteria, and further research is needed to expand the range of detectable pathogens and to improve the robustness of the detection models for more complex meat samples. Overall, this research demonstrates the potential of SERS combined with portable Raman spectroscopy as a powerful tool for the rapid detection of pathogenic bacteria in meat products, which could significantly enhance food safety monitoring and control. Full article
Show Figures

Figure 1

31 pages, 19756 KB  
Article
Impact of Climate Change and Other Disasters on Coastal Cultural Heritage: An Example from Greece
by Chryssy Potsiou, Sofia Basiouka, Styliani Verykokou, Denis Istrati, Sofia Soile, Marcos Julien Alexopoulos and Charalabos Ioannidis
Land 2025, 14(10), 2007; https://doi.org/10.3390/land14102007 - 7 Oct 2025
Viewed by 300
Abstract
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. [...] Read more.
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. The role of land administration systems, geospatial documentation of coastal cultural heritage sites, and the adoption of innovative techniques that combine various methodologies is crucial for timely action. The coastal management infrastructure in Greece is presented, outlining the key public authorities and national legislation, as well as the land administration and geospatial ecosystems and the various available geospatial ecosystems. We profile the Hellenic Cadastre and the Hellenic Archaeological Cadastre along with open geospatial resources, and introduce TRIQUETRA Decision Support System (DSS), produced through the EU’s Horizon project, and a Digital Twin methodology for hazard identification, quantification, and mitigation. Particular emphasis is given to the role of Digital Twin technology, which acts as a continuously updated virtual replica of coastal cultural heritage sites, integrating heterogeneous geospatial datasets such as cadastral information, photogrammetric 3D models, climate projections, and hazard simulations, allowing for stakeholders to test future scenarios of sea level rise, flooding, and erosion, offering an advanced tool for resilience planning. The approach is validated at the coastal archaeological site of Aegina Kolona, where a UAV-based SfM-MVS survey produced using high-resolution photogrammetric outputs, including a dense point cloud exceeding 60 million points, a 5 cm resolution Digital Surface Model, high-resolution orthomosaics with a ground sampling distance of 1 cm and 2.5 cm, and a textured 3D model using more than 6000 nadir and oblique images. These products provided a geospatial infrastructure for flood risk assessment under extreme rainfall events, following a multi-scale hydrologic–hydraulic modelling framework. Island-scale simulations using a 5 m Digital Elevation Model (DEM) were coupled with site-scale modelling based on the high-resolution UAV-derived DEM, allowing for the nested evaluation of water flow, inundation extents, and velocity patterns. This approach revealed spatially variable flood impacts on individual structures, highlighted the sensitivity of the results to watershed delineation and model resolution, and identified critical intervention windows for temporary protection measures. We conclude that integrating land administration systems, open geospatial data, and Digital Twin technology provides a practical pathway to proactive and efficient management, increasing resilience for coastal heritage against climate change threats. Full article
(This article belongs to the Special Issue Land Modifications and Impacts on Coastal Areas, Second Edition)
Show Figures

Figure 1

27 pages, 2557 KB  
Article
Understanding and Quantifying the Impact of Adverse Weather on Construction Productivity
by Martina Šopić, Andro Vranković and Ivan Marović
Appl. Sci. 2025, 15(19), 10759; https://doi.org/10.3390/app151910759 - 6 Oct 2025
Viewed by 246
Abstract
Adverse weather events have a negative impact on the productivity of construction site activities. Understanding these effects is essential for developing realistic construction schedules. The influence of weather is shaped by both environmental factors (climate, geography, topography) and construction-related aspects such as technologies, [...] Read more.
Adverse weather events have a negative impact on the productivity of construction site activities. Understanding these effects is essential for developing realistic construction schedules. The influence of weather is shaped by both environmental factors (climate, geography, topography) and construction-related aspects such as technologies, materials, equipment, and site exposure. This paper proposes a model to quantify the influence of adverse weather by estimating monthly intervals of expected days with reduced construction productivity, based on data regarding specific weather events, including precipitation, wind, extreme temperatures, snow cover, fog, and high humidity. Data analysis employs the inclusion–exclusion principle, a combinatorial technique, alongside confidence interval estimation, a standard statistical approach. The model was applied in three Croatian cities to demonstrate its practicality and accuracy. Contractors with extensive on-site experience reviewed the results, providing insights into weather-sensitive activities and organizational practices. Full article
Show Figures

Figure 1

Back to TopTop