Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = single-difference ambiguity resolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14822 KiB  
Article
Partial Ambiguity Resolution Strategy for Single-Frequency GNSS RTK/INS Tightly Coupled Integration in Urban Environments
by Dashuai Chai, Xiqi Wang, Yipeng Ning and Wengang Sang
Electronics 2025, 14(13), 2712; https://doi.org/10.3390/electronics14132712 - 4 Jul 2025
Viewed by 173
Abstract
Single-frequency global navigation satellite system/inertial navigation system (GNSS/INS) integration has wide application prospects in urban environments; however, correct integer ambiguity is the major challenge because of GNSS-blocked environments. In this paper, a sequential strategy of partial ambiguity resolution (PAR) of GNSS/INS for tightly [...] Read more.
Single-frequency global navigation satellite system/inertial navigation system (GNSS/INS) integration has wide application prospects in urban environments; however, correct integer ambiguity is the major challenge because of GNSS-blocked environments. In this paper, a sequential strategy of partial ambiguity resolution (PAR) of GNSS/INS for tightly coupled integration based on the robust posteriori residual, elevation angle, and azimuth in the body frame using INS aids is presented. First, the satellite is eliminated if the maximum absolute value of the robust posteriori residuals exceeds the set threshold. Otherwise, the satellites with a minimum elevation angle of less than or equal to 35° are successively eliminated. If satellites have elevation angles greater than 35°, these satellites are divided into different quadrants based on their azimuths calculated in body frame. The satellite with the maximum azimuth in each quadrant is selected as the candidate satellite, the candidate satellites are eliminated one by one, and the remaining satellites are used to calculate the position dilution of the precision (PDOP). Finally, the candidate satellite with the lowest PDOP is eliminated. Two sets of vehicle-borne data with a low-cost GNSS/INS integrated system are used to analyze the performance of the proposed algorithm. These experiments demonstrate that the proposed algorithm has the highest ambiguity fixing rates among all the designed PAR methods, and the fixing rates for these two sets of data are 99.40% and 98.74%, respectively. Additionally, among all the methods compared in this paper, the proposed algorithm demonstrates the best positioning performance in GNSS-blocked environments. Full article
Show Figures

Figure 1

19 pages, 7639 KiB  
Article
Triple Filtering of Terrain Conductivity Data for Precise Tracing of Underground Utilities
by Mohamed Rashed, Abdulaziz Alqarawy, Nassir Al-Amri, Riyadh Halawani, Milad Masoud and Maged El Osta
Geosciences 2025, 15(5), 179; https://doi.org/10.3390/geosciences15050179 - 15 May 2025
Viewed by 280
Abstract
Terrain conductivity meters (TCMs) are efficient devices for different sorts of subsurface investigations, including detecting and tracing buried utilities, such as metallic pipes and cables. However, data collected using TCMs are usually ambiguous and hard to interpret. This ambiguity originates from the complex [...] Read more.
Terrain conductivity meters (TCMs) are efficient devices for different sorts of subsurface investigations, including detecting and tracing buried utilities, such as metallic pipes and cables. However, data collected using TCMs are usually ambiguous and hard to interpret. This ambiguity originates from the complex shape of apparent conductivity anomalies, the influence of irrelevant conductive bodies, and the interference of random noise with the collected data. To overcome this ambiguity and produce more interpretable apparent conductivity maps, a three-step filtering routine is proposed and tested using different real datasets. The filtering routine begins with applying a Savitzky–Golay (SG) filter to reduce the effect of random noise. This is followed by a modified rolling ball (MRB) filter to convert the complex M-shape of the anomaly into a single trough pointing to the underground utility. Finally, a virtual resolution enhancement (VRE) filter is applied to enhance the pinpointing apex of the trough. The application of the proposed filtering routine to apparent conductivity data collected using different terrain conductivity meters over different utilities in different urban environments shows a significant improvement of the data and an effective ability to reveal masked underground utilities. The proposed triple filtering routine can be a starting point for a new generation of TCMs with a built-in operation mode for instantaneous delineation and characterization of underground utilities in real time. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

25 pages, 5598 KiB  
Article
Quad-Frequency Wide-Lane, Narrow-Lane and Hatch–Melbourne–Wübbena Combinations: The Beidou Case
by Daniele Borio, Melania Susi and Kinga Wȩzka
Electronics 2025, 14(9), 1805; https://doi.org/10.3390/electronics14091805 - 28 Apr 2025
Viewed by 393
Abstract
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band [...] Read more.
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band components, obtaining a high-accuracy pseudorange. The HMW and the wide-lane combinations thus play a key role in constructing meta-signal measurements. The theory of GNSS meta-signals was recently extended to the case with a number of components equal to a power of two. This theory can be used to generalize HMW and wide-lane combinations to the quad-frequency case. This is carried out through a Hadamard matrix of order four, which defines a narrow-lane and three wide-lane combinations. This paper characterizes meta-signal-inspired quad-frequency HMW and wide-lane measurements combinations using Beidou Navigation Satellite System (BDS) observations. Two professional Septentrio PolarRx5S multi-frequency, multi-constellation receivers were set up in a zero-baseline configuration and used to collect observables from all the BDS open frequencies. These measurements are used to characterize different quad-frequency HMW and wide-lane carrier combinations. Some of the combinations analyzed have large equivalent wavelengths and have the potential to enable single-epoch ambiguity resolution in scenarios where short convergence times are required. Full article
(This article belongs to the Special Issue Precision Positioning and Navigation Communication Systems)
Show Figures

Graphical abstract

23 pages, 4023 KiB  
Article
Single-Character-Based Embedding Feature Aggregation Using Cross-Attention for Scene Text Super-Resolution
by Meng Wang, Qianqian Li and Haipeng Liu
Sensors 2025, 25(7), 2228; https://doi.org/10.3390/s25072228 - 2 Apr 2025
Viewed by 612
Abstract
In textual vision scenarios, super-resolution aims to enhance textual quality and readability to facilitate downstream tasks. However, the ambiguity of character regions in complex backgrounds remains challenging to mitigate, particularly the interference between tightly connected characters. In this paper, we propose single-character-based embedding [...] Read more.
In textual vision scenarios, super-resolution aims to enhance textual quality and readability to facilitate downstream tasks. However, the ambiguity of character regions in complex backgrounds remains challenging to mitigate, particularly the interference between tightly connected characters. In this paper, we propose single-character-based embedding feature aggregation using cross-attention for scene text super-resolution (SCE-STISR) to solve this problem. Firstly, a dynamic feature extraction mechanism is employed to adaptively capture shallow features by dynamically adjusting multi-scale feature weights based on spatial representations. During text–image interactions, a dual-level cross-attention mechanism is introduced to comprehensively aggregate the cropped single-character features with textual prior, also aligning semantic sequences and visual features. Finally, an adaptive normalized color correction operation is applied to mitigate color distortion caused by background interference. In TextZoom benchmarking, the text recognition accuracies of different recognizers are 53.6%, 60.9%, and 64.5%, which are improved by 0.9–1.4% over the baseline TATT, achieving an optimal SSIM value of 0.7951 and a PSNR of 21.84. Additionally, our approach improves accuracy by 0.2–2.2% over existing baselines on five text recognition datasets, validating the effectiveness of the model. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

26 pages, 8427 KiB  
Article
Solving Integer Ambiguity Based on an Improved Ant Lion Algorithm
by Wuzheng Guo, Yuanfa Ji, Xiyan Sun and Xizi Jia
Sensors 2025, 25(4), 1212; https://doi.org/10.3390/s25041212 - 17 Feb 2025
Viewed by 663
Abstract
In GNSS, a double-difference carrier phase observation model is typically employed, and high-accuracy position coordinates can be obtained by resolving the integer ambiguity within the model through algorithmic processing. To address the challenge of a double-difference integer ambiguity resolution, an enhanced Simulated Annealing [...] Read more.
In GNSS, a double-difference carrier phase observation model is typically employed, and high-accuracy position coordinates can be obtained by resolving the integer ambiguity within the model through algorithmic processing. To address the challenge of a double-difference integer ambiguity resolution, an enhanced Simulated Annealing Ant Lion Optimizer (SAALO) is proposed. This algorithm is designed to efficiently resolve integer ambiguities. First, the performance of the SAALO algorithm was evaluated by comparing its solving speed and success rate with those of the Ant Lion Optimization Algorithm (ALO), the LAMBDA algorithm and the MLAMBDA algorithm. The results demonstrate that the SAALO algorithm achieved a solution success rate that was 0.0496 s and 0.01 s faster than the LAMBDA and M-LAMBDA algorithms, respectively. Second, to further validate the high-dimensional ambiguity resolution capability of the SAALO algorithm, integer ambiguity resolution tests were conducted in both 6-dimensional and 12-dimensional scenarios. The results indicate that the SAALO algorithm achieves a success rate exceeding 98%, confirming its robust performance in high-dimensional problem-solving. Finally, the practical application of the SAALO algorithm was tested in short- and medium-baseline scenarios using a single-frequency GPS system. With a baseline length of 42.7 km, the SAALO algorithm exhibited a slightly faster average solution time compared to the LAMBDA algorithm, while its solution success rate was 5.2% higher. These findings underscore the effectiveness and reliability of the SAALO algorithm in real-world GNSS applications. Full article
(This article belongs to the Special Issue Signal Processing for Satellite Navigation and Wireless Localization)
Show Figures

Figure 1

19 pages, 3890 KiB  
Article
Long-Baseline Real-Time Kinematic Positioning: Utilizing Kalman Filtering and Partial Ambiguity Resolution with Dual-Frequency Signals from BDS, GPS, and Galileo
by Deying Yu, Houpu Li, Zhiguo Wang, Shuguang Wu, Yi Liu, Kaizhong Ju and Chen Zhu
Aerospace 2024, 11(12), 970; https://doi.org/10.3390/aerospace11120970 - 26 Nov 2024
Viewed by 1343
Abstract
This study addresses the challenges associated with single-system long-baseline real-time kinematic (RTK) navigation, including limited positioning accuracy, inconsistent signal reception, and significant residual atmospheric errors following double-difference corrections. This study explores the effectiveness of long-baseline RTK navigation using an integrated system of the [...] Read more.
This study addresses the challenges associated with single-system long-baseline real-time kinematic (RTK) navigation, including limited positioning accuracy, inconsistent signal reception, and significant residual atmospheric errors following double-difference corrections. This study explores the effectiveness of long-baseline RTK navigation using an integrated system of the BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Galileo Satellite Navigation System (Galileo). A long-baseline RTK approach that incorporates Kalman filtering and partial ambiguity resolution is applied. Initially, error models are used to correct ionospheric and tropospheric delays. The zenith tropospheric and inclined ionospheric delays and additional atmospheric error components are then regarded as unknown parameters. These parameters are estimated together with the position and ambiguity parameters via Kalman filtering. A two-step method based on a success rate threshold is employed to resolve partial ambiguity. Data from five long-baseline IGS monitoring stations and real-time measurements from a ship were employed for the dual-frequency RTK positioning experiments. The findings indicate that integrating additional GNSSs beyond the BDS considerably enhances both the navigation precision and the rate of ambiguity resolution. At the IGS stations, the integration of the BDS, GPS, and Galileo achieved navigation precisions of 2.0 cm in the North, 5.1 cm in the East, and 5.3 cm in the Up direction while maintaining a fixed resolution exceeding 94.34%. With a fixed resolution of Up to 99.93%, the integration of BDS and GPS provides horizontal and vertical precision within centimeters in maritime contexts. Therefore, the proposed approach achieves precise positioning capabilities for the rover while significantly increasing the rate of successful ambiguity resolution in long-range scenarios, thereby enhancing its practical use and exhibiting substantial application potential. Full article
Show Figures

Figure 1

24 pages, 13331 KiB  
Article
Decimeter-Level Accuracy for Smartphone Real-Time Kinematic Positioning Implementing a Robust Kalman Filter Approach and Inertial Navigation System Infusion in Complex Urban Environments
by Amir Hossein Pourmina, Mohamad Mahdi Alizadeh and Harald Schuh
Sensors 2024, 24(18), 5907; https://doi.org/10.3390/s24185907 - 11 Sep 2024
Viewed by 4713
Abstract
New smartphones provide real-time access to GNSS pseudorange, Doppler, or carrier-phase measurement data at 1 Hz. Simultaneously, they can receive corrections broadcast by GNSS reference stations to perform real-time kinematic (RTK) positioning. This study aims at the real-time positioning capabilities of smartphones using [...] Read more.
New smartphones provide real-time access to GNSS pseudorange, Doppler, or carrier-phase measurement data at 1 Hz. Simultaneously, they can receive corrections broadcast by GNSS reference stations to perform real-time kinematic (RTK) positioning. This study aims at the real-time positioning capabilities of smartphones using raw GNSS measurements as a conventional method and proposes an improvement to the positioning through the integration of Inertial Navigation System (INS) measurements. A U-Blox GNSS receiver, model ZED-F9R, was used as a benchmark for comparison. We propose an enhanced ambiguity resolution algorithm that integrates the traditional LAMBDA method with an adaptive thresholding mechanism based on real-time quality metrics. The RTK/INS fusion method integrates RTK and INS measurements using an extended Kalman filter (EKF), where the state vector x includes the position, velocity, orientation, and their respective biases. The innovation here is the inclusion of a real-time weighting scheme that adjusts the contribution of the RTK and INS measurements based on their current estimated accuracy. Also, we use the tightly coupled (TC) RTK/INS fusion framework. By leveraging INS data, the system can maintain accurate positioning even when the GNSS data are unreliable, allowing for the detection and exclusion of abnormal GNSS measurements. However, in complex urban areas such as Qazvin City in Iran, the fusion method achieved positioning accuracies of approximately 0.380 m and 0.415 m for the Xiaomi Mi 8 and Samsung Galaxy S21 Ultra smartphones, respectively. The subsequent detailed analysis across different urban streets emphasized the significance of choosing the right positioning method based on the environmental conditions. In most cases, RTK positioning outperformed Single-Point Positioning (SPP), offering decimeter-level precision, while the fusion method bridged the gap between the two, showcasing improved stability accuracy. The comparative performance between the Samsung Galaxy S21 Ultra and Xiaomi Mi 8 revealed minor differences, likely attributed to variations in the hardware design and software algorithms. The fusion method emerged as a valuable alternative when the RTK signals were unavailable or impractical. This demonstrates the potential of integrating RTK and INS measurements for enhanced real-time smartphone positioning, particularly in challenging urban environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

19 pages, 7149 KiB  
Article
Continuous High-Precision Positioning in Smartphones by FGO-Based Fusion of GNSS–PPK and PDR
by Amjad Hussain Magsi, Luis Enrique Díez and Stefan Knauth
Micromachines 2024, 15(9), 1141; https://doi.org/10.3390/mi15091141 - 11 Sep 2024
Cited by 3 | Viewed by 4370
Abstract
The availability of raw Global Navigation Satellites System (GNSS) measurements in Android smartphones fosters advancements in high-precision positioning for mass-market devices. However, challenges like inconsistent pseudo-range and carrier phase observations, limited dual-frequency data integrity, and unidentified hardware biases on the receiver side prevent [...] Read more.
The availability of raw Global Navigation Satellites System (GNSS) measurements in Android smartphones fosters advancements in high-precision positioning for mass-market devices. However, challenges like inconsistent pseudo-range and carrier phase observations, limited dual-frequency data integrity, and unidentified hardware biases on the receiver side prevent the ambiguity resolution of smartphone GNSS. Consequently, relying solely on GNSS for high-precision positioning may result in frequent cycle slips in complex conditions such as deep urban canyons, underpasses, forests, and indoor areas due to non-line-of-sight (NLOS) and multipath conditions. Inertial/GNSS fusion is the traditional common solution to tackle these challenges because of their complementary capabilities. For pedestrians and smartphones with low-cost inertial sensors, the usual architecture is Pedestrian Dead Reckoning (PDR)+ GNSS. In addition to this, different GNSS processing techniques like Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) have also been integrated with INS. However, integration with PDR has been limited and only with Kalman Filter (KF) and its variants being the main fusion techniques. Recently, Factor Graph Optimization (FGO) has started to be used as a fusion technique due to its superior accuracy. To the best of our knowledge, on the one hand, no work has tested the fusion of GNSS Post-Processed Kinematics (PPK) and PDR on smartphones. And, on the other hand, the works that have evaluated the fusion of GNSS and PDR employing FGO have always performed it using the GNSS Single-Point Positioning (SPP) technique. Therefore, this work aims to combine the use of the GNSS PPK technique and the FGO fusion technique to evaluate the improvement in accuracy that can be obtained on a smartphone compared with the usual GNSS SPP and KF fusion strategies. We improved the Google Pixel 4 smartphone GNSS using Post-Processed Kinematics (PPK) with the open-source RTKLIB 2.4.3 software, then fused it with PDR via KF and FGO for comparison in offline mode. Our findings indicate that FGO-based PDR+GNSS–PPK improves accuracy by 22.5% compared with FGO-based PDR+GNSS–SPP, which shows smartphones obtain high-precision positioning with the implementation of GNSS–PPK via FGO. Full article
Show Figures

Figure 1

10 pages, 2320 KiB  
Article
A Retrospective Study: Are the Multi-Dips in the THz Spectrum during Laser Filamentation Caused by THz–Plasma Interactions?
by Tiancheng Yu, Xiaofeng Li, Li Lao and Jiayu Zhao
Photonics 2024, 11(8), 705; https://doi.org/10.3390/photonics11080705 - 29 Jul 2024
Viewed by 1241
Abstract
During the process of terahertz (THz) wave generation via femtosecond laser filamentation in air, as well as through the mixing of THz waves with externally injected plasma filaments, THz waves engage in interactions with the plasma. A characteristic feature of this interaction is [...] Read more.
During the process of terahertz (THz) wave generation via femtosecond laser filamentation in air, as well as through the mixing of THz waves with externally injected plasma filaments, THz waves engage in interactions with the plasma. A characteristic feature of this interaction is the modulation of the THz radiation spectrum by the plasma, which includes the generation of THz spectral dips. This information is essential for understanding the underlying mechanisms of THz–plasma interactions or for inferring plasma parameters. However, a current debate exists on the number of THz spectral dips observed after the interaction, with different opinions of single versus multiple dips, thus leaving the interaction mechanisms still ambiguous. In this work, we retrospectively analyzed the experimental appearance of multiple dips in the THz spectrum and found that the current observations of such dips are predominantly a result of the water vapor absorption with a low spectral resolution. Additionally, we observed that altering the acquisition width of the temporal THz signal also influenced the dips’ number. Hence, in future research, simultaneous attention should be paid to the following two aspects of THz–plasma interactions: (1) It is necessary to ensure a sufficiently wide time-domain window to accurately represent the spectral dip characteristics. (2) The spectral dips should be carefully distinguished from the water absorption lines before being further studied. On the other hand, for the case of a single dip in the THz spectrum, we also put forward a new viewpoint of the resonance between surface plasmon waves and THz waves, which should also be taken into consideration in future studies. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

20 pages, 11797 KiB  
Article
Multi-Scenario Variable-State Robust Fusion Algorithm for Ranging Analysis Framework
by Kaiting Xie, Zhaoguo Zhang and Faan Wang
Agriculture 2024, 14(4), 516; https://doi.org/10.3390/agriculture14040516 - 23 Mar 2024
Cited by 2 | Viewed by 1392
Abstract
Integrating modern information technology with traditional agriculture has made agricultural machinery navigation essential in PA (precision agriculture). However, agricultural equipment faces challenges such as low positioning accuracy and poor algorithm adaptability due to the complex farmland environment and various operational requirements. In this [...] Read more.
Integrating modern information technology with traditional agriculture has made agricultural machinery navigation essential in PA (precision agriculture). However, agricultural equipment faces challenges such as low positioning accuracy and poor algorithm adaptability due to the complex farmland environment and various operational requirements. In this research, we proposed a generalized ranging theoretical framework with multi-scenario variable-state fusion to improve the GNSS (Global Navigation Satellite System) observation exchange performance among agricultural vehicles, and accurately measure IVRs (inter-vehicular ranges). We evaluated the effectiveness of three types of GNSS observations, including PPP-SD (precise single point positioning using single difference), PPP-TCAR (precise single point positioning using double difference based on three-carrier ambiguity resolution), and PPP-LAMBDA (precise single point positioning using double difference based on least-squares ambiguity decorrelation adjustment). Moreover, we compared the accuracy of IVRs measurements. Our framework was validated through field experiments in different scenarios. It provides insights into the appropriate use of different positioning algorithms based on the application scenario, application objects, and motion states. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

21 pages, 15824 KiB  
Article
Remote Sensing Observations of a Coastal Water Environment Based on Neural Network and Spatiotemporal Fusion Technology: A Case Study of Hangzhou Bay
by Rugang Tang, Xiaodao Wei, Chao Chen, Rong Jiang and Fang Shen
Remote Sens. 2024, 16(5), 800; https://doi.org/10.3390/rs16050800 - 25 Feb 2024
Cited by 3 | Viewed by 2041
Abstract
The coastal environment is characterized by high, multi-scale dynamics and the corresponding observations from a single remote sensing sensor are still facing challenges in achieving both high temporal and spatial resolution. This study proposed a spatiotemporal fusion model for coastal environments, which could [...] Read more.
The coastal environment is characterized by high, multi-scale dynamics and the corresponding observations from a single remote sensing sensor are still facing challenges in achieving both high temporal and spatial resolution. This study proposed a spatiotemporal fusion model for coastal environments, which could fully enhance the efficiency of remote sensing data use and overcome the shortcomings of traditional spatiotemporal models that are insensitive to small-scale disturbances. The Enhanced Deep Super-Resolution Network (EDSR) was used to reconstruct spatial features in the lower spatial resolution GOCI-II data. The spatial features obtained instead of GOCI-II data were fed into the spatiotemporal fusion model, which enabled the fusion data to achieve an hour-by-hour observation of the water color and morphology information changes at 30 m resolution, including the changes in the spatial and temporal distributions of suspended particulate matter (SPM), the characterization of the vortex street caused by the bridge piers, the inundation process of the tidal flats, and coastline changes. In addition, this study analyzed the various factors affecting fusion accuracy, including spectral difference, errors in both temporal difference and location distance, and the structure of the EDSR model on the fusion accuracy. It is demonstrated that the location distance error and the spectral difference have the most significant impact on the fusion data, which may lead to the introduction of some ambiguous or erroneous spatial features. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

12 pages, 1414 KiB  
Article
Collaborative Semantic Annotation Tooling (CoAT) to Improve Efficiency and Plug-and-Play Semantic Interoperability in the Secondary Use of Medical Data: Concept, Implementation, and First Cross-Institutional Experiences
by Thomas Wiktorin, Daniel Grigutsch, Felix Erdfelder, Andrew J. Heidel, Frank Bloos, Danny Ammon, Matthias Löbe and Sven Zenker
Appl. Sci. 2024, 14(2), 820; https://doi.org/10.3390/app14020820 - 18 Jan 2024
Viewed by 1339
Abstract
The cross-institutional secondary use of medical data benefits from structured semantic annotation, which ideally enables the matching and merging of semantically related data items from different sources and sites. While numerous medical terminologies and ontologies, as well as some tooling, exist to support [...] Read more.
The cross-institutional secondary use of medical data benefits from structured semantic annotation, which ideally enables the matching and merging of semantically related data items from different sources and sites. While numerous medical terminologies and ontologies, as well as some tooling, exist to support such annotation, cross-institutional data usage based on independently annotated datasets is challenging for multiple reasons: the annotation process is resource intensive and requires a combination of medical and technical expertise since it often requires judgment calls to resolve ambiguities resulting from the non-uniqueness of potential mappings to various levels of ontological hierarchies and relational and representational systems. The divergent resolution of such ambiguities can inhibit joint cross-institutional data usage based on semantic annotation since data items with related content from different sites will not be identifiable based on their respective annotations if different choices were made without further steps such as ontological inference, which is still an active area of research. We hypothesize that a collaborative approach to the semantic annotation of medical data can contribute to more resource-efficient and high-quality annotation by utilizing prior annotational choices of others to inform the annotation process, thus both speeding up the annotation itself and fostering a consensus approach to resolving annotational ambiguities by enabling annotators to discover and follow pre-existing annotational choices. Therefore, we performed a requirements analysis for such a collaborative approach, defined an annotation workflow based on the requirement analysis results, and implemented this workflow in a prototypical Collaborative Annotation Tool (CoAT). We then evaluated its usability and present first inter-institutional experiences with this novel approach to promote practically relevant interoperability driven by use of standardized ontologies. In both single-site usability evaluation and the first inter-institutional application, the CoAT showed potential to improve both annotation efficiency and quality by seamlessly integrating collaboratively generated annotation information into the annotation workflow, warranting further development and evaluation of the proposed innovative approach. Full article
(This article belongs to the Special Issue Data Science for Medical Informatics 2nd Edition)
Show Figures

Figure 1

23 pages, 32090 KiB  
Article
An Analysis of Satellite Multichannel Differential Code Bias for BeiDou SPP and PPP
by Guangxing Wang, Yue Zhu, Qing An, Huizhen Wang and Xing Su
Remote Sens. 2023, 15(18), 4470; https://doi.org/10.3390/rs15184470 - 12 Sep 2023
Cited by 1 | Viewed by 1809
Abstract
Differential code bias (DCB) of satellite is an error that cannot be ignored in precise positioning, timing, ionospheric modeling, satellite clock correction, and ambiguity resolution. The completion of the third generation of BeiDou Navigation Satellite System (BDS-3) has extended DCB to multichannel code [...] Read more.
Differential code bias (DCB) of satellite is an error that cannot be ignored in precise positioning, timing, ionospheric modeling, satellite clock correction, and ambiguity resolution. The completion of the third generation of BeiDou Navigation Satellite System (BDS-3) has extended DCB to multichannel code bias observations and observable-specific signal bias (OSB). In this paper, the DCB and OSB products provided by the Chinese Academy of Sciences (CAS) are analyzed and compared. The DCB parameters for the BDS satellites are applied in both single- and dual-frequency single point positioning (SPP), and the results are intensively investigated. Based on the satellite DCB parameters of the BDS, the performance of precise point positioning (PPP) with different frequency combinations is also analyzed in terms of positioning accuracy and convergence time. The standard deviations (STDs) of DCBs at each signal pair fluctuate from 0.2 ns to 1.5 ns. The DCBs of BDS-2 are slightly more stable than those of BDS-3. The mean values and STDs of C2I and C7I OSBs for BDS-2 are at the same level and are numerically smaller than their counterparts for the C6I OSBs. The mean OSBs for each signal of the BDS-3, excluding C2I, fluctuate between 12.35 ns and 12.94 ns, and the STD fluctuates between 2.11 ns and 3.10 ns. The DCBs and OSBs of the BDS-3 of the IGSO satellites are more stable than those of the MEO satellites. The corrections for TGD and DCB are able to improve the accuracy of single-frequency SPP by 44.09% and 44.07%, respectively, and improve the accuracy of dual-frequency SPP by 6.44% and 12.85%, respectively. The most significant improvements from DCB correction are seen in single-frequency positioning with B1I and dual-frequency positioning with B2a+B3I. DCB correction can improve the horizontal and three-dimensional positioning accuracy of the dual-frequency PPP of different ionosphere-free combinations by 13.53% and 13.84% on average, respectively, although the convergence is slowed. Full article
Show Figures

Figure 1

24 pages, 18150 KiB  
Article
An Efficient BDS-3 Long-Range Undifferenced Network RTK Positioning Algorithm
by Huizhong Zhu, Jie Zhang, Jun Li and Aigong Xu
Remote Sens. 2023, 15(16), 4060; https://doi.org/10.3390/rs15164060 - 17 Aug 2023
Viewed by 1644
Abstract
In 2020, the BeiDou-3 global navigation satellite system (BDS-3) was officially completed and put into service. Currently, network real-time kinematic (RTK) technology is considered the main means through which to improve the positioning accuracy of the BeiDou navigation satellite system (BDS). This paper [...] Read more.
In 2020, the BeiDou-3 global navigation satellite system (BDS-3) was officially completed and put into service. Currently, network real-time kinematic (RTK) technology is considered the main means through which to improve the positioning accuracy of the BeiDou navigation satellite system (BDS). This paper proposes a long-range undifferenced network RTK (URTK) algorithm, based on multi-frequency observation data of the BDS. First, the multi-frequency phase integer ambiguity resolution (AR) model considering atmospheric error parameters is designed, and the multi-frequency phase integer ambiguity of the long-range BDS reference station is determined. Then, the undifferenced integer ambiguity of each reference station is obtained, using linear variation based on the accurately determined phase integer ambiguity between reference stations, and the undifferenced observation error of each reference station is calculated. Considering the weakening spatial correlation of the observation errors between long-range stations, undifferenced classification error corrections of a reference station network are separated, according to different error characteristics. Finally, the inverse distance weighting method is employed to calculate the classification undifferenced error correction of the rover station. The rover station corrects the observation error through applying the undifferenced error correction to achieve high-precision positioning. The measured data of a long-range continuous operation reference station (CORS) network are selected for an experiment. The results show that the proposed algorithm can quickly and accurately realize the resolution of the BDS integer ambiguity of a reference station network and establish an undifferenced area error correction model in order to achieve accurate classification of undifferenced error correction values for a rover station. In China, the BDS-3 is superior to the global positioning system (GPS) in terms of the satellite number, position dilution of precision (PDOP) value, AR success rate, stability, and convergence time. The results show that the AR success rate, stability, and convergence time increase with the operational frequency, and the BDS-3 can achieve centimeter-level positioning of single-system rover stations without relying on the GPS. Full article
Show Figures

Graphical abstract

21 pages, 10813 KiB  
Article
High-Resolution and Wide-Swath 3D Imaging for Urban Areas Based on Distributed Spaceborne SAR
by Yaqian Yang, Fubo Zhang, Ye Tian, Longyong Chen, Robert Wang and Yirong Wu
Remote Sens. 2023, 15(16), 3938; https://doi.org/10.3390/rs15163938 - 9 Aug 2023
Cited by 6 | Viewed by 2257
Abstract
Tomographic synthetic aperture radar (TomoSAR) obtains elevation resolution by adding multiple baselines successively in the direction perpendicular to the line of sight, thereby realizing three-dimensional (3D) reconstruction of complex scenes and significantly promoting the development of the 3D application field. However, a large [...] Read more.
Tomographic synthetic aperture radar (TomoSAR) obtains elevation resolution by adding multiple baselines successively in the direction perpendicular to the line of sight, thereby realizing three-dimensional (3D) reconstruction of complex scenes and significantly promoting the development of the 3D application field. However, a large data redundancy and long mapping time in traditional 3D imaging lead to a large data transmission burden, low efficiency, and high costs. To solve the above problems, this paper proposes a distributed SAR high-resolution and wide-swath (HRWS) 3D imaging technology scheme. The proposed scheme overcomes the size limitation of traditional single-satellite antennas through the multi-channel arrangement of multiple satellites in the elevation direction to achieve HRWS imaging; meanwhile, the distributed SAR system is integrated with tomographic processing technology to realize 3D imaging of difficult areas by using the elevation directional resolution of TomoSAR systems. HRWS 3D SAR increases the baseline length and channel number by transmission in turn, which leads to excessive pulse repetition frequency and causes echoes of different pulse signals to overlap in the same receiving cycle, resulting in range ambiguity and thus seriously affecting the quality of the 3D reconstruction. To solve this problem, this paper proposes a range ambiguity resolution algorithm based on multi-beam forming and verifies it on the measured data from airborne array SAR. Compared with the traditional TomoSAR, the distributed HRWS 3D SAR scheme proposed in this paper can obtain a greater mapping bandwidth with the same resolution in a single flight, thereby enhancing the time correlation, reducing data redundancy, and greatly improving mapping efficiency. Full article
(This article belongs to the Special Issue Advances in SAR: Sensors, Methodologies, and Applications II)
Show Figures

Figure 1

Back to TopTop