A Retrospective Study: Are the Multi-Dips in the THz Spectrum during Laser Filamentation Caused by THz–Plasma Interactions?
Abstract
:1. Introduction
2. Multiple Dips in the THz Spectrum
3. Water Vapor Absorption of THz Waves
4. Artificial Error of Spectral Dips
5. Resonance between THz and Surface Plasmon Waves
6. Discussion
- (1)
- In this work, we focused on the THz spectrum in order to study the origin of its multiple dips. For this reason, we obtained each THz spectrum via the Fourier transform of a single THz time-domain pulse (from the literature or our work), whose time scale is in the order of picoseconds (ps), much shorter than the plasma lifetime of nanoseconds (ns). Therefore, investigating a single THz pulse or spectrum, and meanwhile taking into account the evolution of the plasma filament, fall beyond the scope of this paper. Actually, during the period of THz pulse generation, the plasma filament can often be considered static without evolution. This approach is frequently adopted in the literature, such as in Ref. [29], which assumes a cylindrical and uniform plasma-density filament for THz emission. On the other hand, we analyzed the THz signals from different plasma filaments under various experimental conditions from different publications, as shown in Table 1 above. These parameters themselves represent a quasi-evolution of the plasma filaments. Therefore, we might consider the studied THz waves in this work as non-static, since they are emitted from many different (dynamic) plasma filaments.
- (2)
- In this work, we did not consider GHz waves to be generations [30,31,32]. Even if they could interact with the plasma and produce GHz-scale spectral dips, these waves would not appear in the THz spectra we are investigating. This is because the typical spectral resolution of THz experiments is around 20 GHz, corresponding to a time-domain window width of 50 ps. (Frequently, it is more than 20 GHz due to the limited time-domain window width. Here, we do not consider the artificial zero padding at the end of the time-domain signal in order to enhance the spectral resolution after a Fourier transform.) This would result in only five data points within the range of 0–100 GHz (0–0.1 THz) in the THz spectrum. Hence, such a low spectral resolution is insufficient to resolve any GHz dips. In contrast, the THz dips we analyzed are much higher than the GHz range, and can be clearly observed on the THz spectrum (Figure 2).
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; He, Y.; Liu, L.; Tian, Z.; Zhang, X.C.; Dai, J. Plasma-based terahertz wave photonics in gas and liquid phases. Photonics Insights 2023, 2, R06. [Google Scholar] [CrossRef]
- Leitenstorfer, A.; Moskalenko, A.S.; Kampfrath, T.; Kono, J.; Castro-Camus, E.; Peng, K.; Qureshi, N.; Turchinovich, D.; Tanaka, K.; Markelz, A.G.; et al. The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2023, 56, 223001. [Google Scholar] [CrossRef]
- Koulouklidis, A.D.; Gollner, C.; Shumakova, V.; Fedorov, V.Y.; Pugžlys, A.; Baltuška, A.; Tzortzakis, S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 2020, 11, 292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photonics 2017, 11, 16. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Chen, M.; Zhang, Z.; Yu, J.; Sheng, Z.; Zhang, J. Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air. Phys. Rev. Lett. 2016, 117, 243901. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, V.A.; Kosareva, O.G.; Panov, N.A.; Shipilo, D.E.; Solyankin, P.M.; Esaulkov, M.N.; Gonzalez de Alaiza Martinez, P.; Shkurinov, A.P.; Makarov, V.A.; Berge, L.; et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 2016, 116, 063902. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, W.M. Far-field model of two-color-laser-driven terahertz radiation including field-element interference and plasma response. Phys. Rev. A 2023, 108, 043503. [Google Scholar] [CrossRef]
- Wang, X.K.; Ye, J.S.; Sun, W.F.; Han, W.; Hou, L.; Zhang, Y. Terahertz near-field microscopy based on an air-plasma dynamic aperture. Light Sci. Appl. 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiang, Z.; Xu, X.; Zhao, J.; Liu, J.; Wang, R.; Zhang, Z.; Lü, Z.; Zhang, D.; Chang, C.; et al. Localized-plasma-assisted rotational transitions in the terahertz region. Phys. Rev. A 2021, 103, 033109. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, Y.; Guo, Q.; Meng, C.; Lu, Z.; Wang, X.; Zhao, J.; Meng, C.; Zhang, D.; Yuan, J.; et al. Filament characterization via resonance absorption of terahertz wave. Phys. Plasmas 2017, 24, 103303. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Q.; Hui, Y.; Chen, Y.; Zhu, F.; Jin, Z.; Shkurinov, A.P.; Peng, Y.; Zhu, Y.; Zhuang, S.; et al. Traveling-wave antenna model for terahertz radiation from laser-plasma interactions. SciPost Phys. Core 2022, 5, 046. [Google Scholar] [CrossRef]
- Li, N.; Bai, Y.; Miao, T.; Liu, P.; Li, R.; Xu, Z. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet. Opt. Express 2016, 24, 23009–23017. [Google Scholar] [CrossRef]
- Hamster, H.; Sullivan, A.; Gordon, S.; White, W.; Falcone, R.W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 1993, 71, 2725. [Google Scholar] [CrossRef]
- Thiele, I.; Zhou, B.; Nguyen, A.; Smetanina, E.; Nuter, R.; Kaltenecker, K.J.; Martínez, P.G.D.A.; Déchard, J.; Bergé, L.; Jepsen, P.U.; et al. Terahertz emission from laser-driven gas plasma: A plasmonic point of view. Optica 2018, 5, 1617. [Google Scholar] [CrossRef]
- Zhao, J.; Chu, W.; Guo, L.; Wang, Z.; Yang, J.; Liu, W.; Cheng, Y.; Xu, Z. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air. Sci. Rep. 2014, 4, 3880. [Google Scholar] [CrossRef]
- Zhao, J.; Chu, W.; Wang, Z.; Peng, Y.; Gong, C.; Lin, L.; Zhu, Y.; Liu, W.; Cheng, Y.; Zhuang, S.; et al. Strong spatial confinement of terahertz wave inside femtosecond laser filament. ACS Photonics 2016, 3, 2338–2343. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, W.; Li, S.; Lu, D.; Zhang, Y.; Peng, Y.; Zhu, Y.; Zhuang, S. Clue to a thorough understanding of terahertz pulse generation by femtosecond laser filamentation. Photonics Res. 2018, 6, 296–306. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, F.; Han, Y.; Wang, Q.; Lao, L.; Li, X.; Peng, Y.; Zhu, Y. Light-guiding-light-based temporal integration of broadband terahertz pulses in air. APL Photonics 2023, 8, 106107. [Google Scholar] [CrossRef]
- Qu, X.; Xu, X.; Lou, J.; Gao, M.; Feng, Y.; Zhang, Z.; Huang, Y. Why do terahertz waves generated from long two-color filament always peak at around 1 THz? Infrared Millim.-Wave Terahertz Technol. X 2023, 12776, 1277603. [Google Scholar]
- Kim, K.Y.; Glownia, J.H.; Taylor, A.J.; Rodriguez, G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 2007, 15, 4577–4584. [Google Scholar] [CrossRef]
- Liu, J.; Dai, J.; Chin, S.L.; Zhang, X.C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photonics 2010, 4, 627–631. [Google Scholar] [CrossRef]
- Liu, K.; Koulouklidis, A.D.; Papazoglou, D.G.; Tzortzakis, S.; Zhang, X.C. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams. Optica 2016, 3, 605–608. [Google Scholar] [CrossRef]
- Rasekh, P.; Safari, A.; Yildirim, M.; Bhardwaj, R.; Ménard, J.M.; Dolgaleva, K.; Boyd, R.W. Terahertz nonlinear spectroscopy of water vapor. ACS Photonics 2021, 8, 1683–1688. [Google Scholar] [CrossRef]
- Xu, Z.; Mou, S.; Tomarchio, L.; D’Arco, A.; Guo, K.; Petrarca, M.; Lupi, S. Phase-matching effect on the second harmonic and terahertz generations in β-barium borate. Opt. Laser Technol. 2023, 167, 109764. [Google Scholar] [CrossRef]
- Tirole, R.; Vezzoli, S.; Galiffi, E.; Robertson, I.; Maurice, D.; Tilmann, B.; Maier, S.A.; Pendry, J.B.; Sapienza, R. Double-slit time diffraction at optical frequencies. Nat. Phys. 2023, 19, 999–1002. [Google Scholar] [CrossRef]
- Shalaby, M.; Hauri, C.P. Air nonlinear dynamics initiated by ultra-intense lambda-cubic terahertz pulses. Appl. Phys. Lett. 2015, 106, 18. [Google Scholar] [CrossRef]
- Guo, X.; Bertling, K.; Donose, B.C.; Brünig, M.; Cernescu, A.; Govyadinov, A.A.; Rakić, A.D. Terahertz nanoscopy: Advances, challenges, and the road ahead. Appl. Phys. Rev. 2024, 11, 2. [Google Scholar] [CrossRef]
- Knyazev, B.A.; Choporova, Y.Y.; Mitkov, M.S.; Pavelyev, V.S.; Volodkin, B.O. Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum. Phys. Rev. Lett. 2015, 115, 163901. [Google Scholar] [CrossRef]
- You, Y.S.; Oh, T.I.; Kim, K.Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. Lett. 2012, 109, 183902. [Google Scholar] [CrossRef]
- Englesbe, A.; Elle, J.; Schwartz, R.; Garrett, T.; Woodbury, D.; Jang, D.; Kim, K.-Y.; Milchberg, H.; Reid, R.; Lucero, A.; et al. Ultrabroadband microwave radiation from near-and mid-infrared laser-produced plasmas in air. Phys. Rev. A 2021, 104, 013107. [Google Scholar] [CrossRef]
- Amico, C.D.; Houard, A.; Akturk, S.; Liu, Y.; Le Bloas, J.; Franco, M.; Prade, B.; Couairon, A.; Tikhonchuk, V.T.; Mysyrowicz, A. Forward THz radiation emission by femtosecond filamentation in gases: Theory and experiment. New J. Phys. 2008, 10, 013015. [Google Scholar] [CrossRef]
- Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 2004, 69, 066415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.; Li, X.; Lao, L.; Zhao, J. A Retrospective Study: Are the Multi-Dips in the THz Spectrum during Laser Filamentation Caused by THz–Plasma Interactions? Photonics 2024, 11, 705. https://doi.org/10.3390/photonics11080705
Yu T, Li X, Lao L, Zhao J. A Retrospective Study: Are the Multi-Dips in the THz Spectrum during Laser Filamentation Caused by THz–Plasma Interactions? Photonics. 2024; 11(8):705. https://doi.org/10.3390/photonics11080705
Chicago/Turabian StyleYu, Tiancheng, Xiaofeng Li, Li Lao, and Jiayu Zhao. 2024. "A Retrospective Study: Are the Multi-Dips in the THz Spectrum during Laser Filamentation Caused by THz–Plasma Interactions?" Photonics 11, no. 8: 705. https://doi.org/10.3390/photonics11080705
APA StyleYu, T., Li, X., Lao, L., & Zhao, J. (2024). A Retrospective Study: Are the Multi-Dips in the THz Spectrum during Laser Filamentation Caused by THz–Plasma Interactions? Photonics, 11(8), 705. https://doi.org/10.3390/photonics11080705