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Abstract: Integrating modern information technology with traditional agriculture has made agricul-
tural machinery navigation essential in PA (precision agriculture). However, agricultural equipment
faces challenges such as low positioning accuracy and poor algorithm adaptability due to the com-
plex farmland environment and various operational requirements. In this research, we proposed
a generalized ranging theoretical framework with multi-scenario variable-state fusion to improve the
GNSS (Global Navigation Satellite System) observation exchange performance among agricultural
vehicles, and accurately measure IVRs (inter-vehicular ranges). We evaluated the effectiveness of
three types of GNSS observations, including PPP-SD (precise single point positioning using single
difference), PPP-TCAR (precise single point positioning using double difference based on three-
carrier ambiguity resolution), and PPP-LAMBDA (precise single point positioning using double
difference based on least-squares ambiguity decorrelation adjustment). Moreover, we compared
the accuracy of IVRs measurements. Our framework was validated through field experiments in
different scenarios. It provides insights into the appropriate use of different positioning algorithms
based on the application scenario, application objects, and motion states.

Keywords: precision agriculture; GNSS; theoretical framework; precise single point positioning;
inter-vehicular ranges

1. Introduction

The diverse and indispensable applications of the GNSS have made significant con-
tributions to the cross-industry development and operation of modern society [1-3]. It
offers precise positioning and navigation services for air, sea, land transportation, and
military operations. With the integration of modern information and traditional agriculture,
the GNSS has become the most critical technology for PA [4-6]. However, the sensitivity of
the GNSS signals to obstacles like buildings, trees, and mountains results in low accuracy.
Furthermore, adverse weather conditions and solar activity can interfere with the GNSS
signals, leading to inaccurate positioning or signal disruptions. These constraints restrict
the reliability and accuracy of the GNSS in agricultural sciences [7-9]. To address these
challenges, further research is necessary, including the development of enhanced position-
ing algorithms, improved receiver design, and the implementation of assisted positioning
technologies to enhance accuracy and reliability [10-12].

Therefore, scholars have made significant efforts to address the aforementioned issues.
Firstly, to enhance the accuracy and reliability of the positioning system, scholars have
integrated GNSS information with other sensors to compensate for the limitations of
the GNSS signals when they are obstructed or interfered with. This fusion approach enables
the ability of more precise and stable position information while enhancing adaptability to
dynamic environments [13-15]. Taking into account the propagation delay of GNSS signals,
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Rohani et al. [13] proposed a Bayesian method for multi-vehicle collaborative positioning
based on GNSS data and inter-vehicle distance measurements. By integrating GNSS
information with information TOAs (time-of-arrivals), this method was successfully applied
in workshop collaborative positioning, effectively reducing positioning uncertainty. To
further improve positioning accuracy, Naseri and Koivunen et al. [14] introduced a hybrid
positioning algorithm based on message passing that considers the azimuth of information
transmission and integrates GNSS information with TOAs and DOA (directions-of-arrival).
The enhanced algorithm was employed in vehicle distance measurements, realizing a 50%
reduction in positioning error in simulation scenarios. However, in non-land scenarios
like navigation, measurement information tends to be inaccurate due to the wave shadow
effect. Consequently, Wu et al. [15] proposed a cooperative positioning algorithm based
on an enhanced particle filter that integrates RSSI (received signal strength indicator) and
GNSS information. This algorithm aims to mitigate the measurement error caused by
the wave shadow effect in the observation model. Meanwhile, manufacturers are actively
working on receiver design improvements to enhance the GNSS receiver sensitivity and anti-
interference capabilities. Nevertheless, the wide-spread application of these technologies
is limited due to the higher costs associated with multi-sensor fusion technology and
equipment replacement in agriculture sciences [16-18].

Based on these considerations, numerous scholars have conducted technical research
to enhance positioning algorithms and improve the accuracy of the positioning system.
They have achieved this by developing new signal processing methods, optimizing satel-
lite orbit prediction models, and refining clock calibration algorithms [19,20]. Previous
studies [21-23] have focused on the pseudo-range positioning algorithm. However, the ac-
curacy of pseudo-range positioning is limited to approximately 1 m [24], whereas precision
single-point positioning based on carrier-phase measurement can achieve milli-meter-level
accuracy [25]. Consequently, research attention has shifted towards carrier-phase mea-
surement [26-28]. Lee et al. [29] explored the integration of wireless communication and
Internet technology with the GNSS. By using data from additional reference stations or
reference stations, they corrected errors in the GNSS signal, and then introduced a channel
check statistical algorithm based on the continuous time-double difference sequence of
carrier-phase measurement provided by the GNSS. The effectiveness of the proposed de-
tection statistics was verified through experiments conducted in a multipath environment.
Building upon this work, Scataglini et al. [30] proposed an aircraft attitude estimation sys-
tem that utilizes a single-difference carrier phase, demonstrating higher accuracy in attitude
estimation compared to a double-difference carrier phase. Simultaneously, Bai et al. [31]
introduced an enhanced GNSS positioning method that leverages the time correlation
between the continuous epoch code and carrier-phase measurements, thereby significantly
enhancing outlier measurement robustness. Experimental results conducted using a vehicle-
mounted GNSS receiver in a typical urban canyon in Hong Kong demonstrated average
positioning errors of 1.76 m, but the error was reduced by 40%. To investigate the impact of
the target motion state on positioning accuracy, Pin et al. [32] compared different modes
of differential corrections through special experiments through static and dynamic test
conditions in open agricultural sites. Such analysis confirmed that double difference clearly
provides the best performance.

However, these studies were conducted for specific scenarios with stable motion
conditions, and their positioning algorithm demonstrated strong matching capabilities
with their application scene and the object’s motion state. Due to the complexity of
the agricultural operating environment, a single technique may prove challenging to
apply across different operating scenarios [33,34]. Moreover, various sources of error
simultaneously affect the GNSS carrier measurement. Traditional methods of differencing
the measurements to reduce correlation error can increase irrelevant error and receiver
noise. Additionally, farmers and ranchers are concerned about equipment costs and seek
reliable positioning solutions at a lower expense. Therefore, to exploit the full potential
of precision single-point positioning algorithms in the agricultural sector, it is necessary
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to provide suitable positioning algorithms catering to different agricultural equipment
operations to achieve an accurate location.

The main contributions of the current work are as follows.

First, to make positioning algorithms adaptive to different operating environments
and motion states, we established a scenario and state-matching mechanism according to
several common operation scenarios of agricultural machinery. We constructed a general
theoretical framework of the multi-scenario variable-state ranging.

Secondly, this paper put forward the idea of estimating IVRs through the initial carrier-
phase measurement. Under the operation environment of the agricultural machinery,
this work first systematically compares the performance of PPP-SD, PPP-TCAR, and PPP-
LAMBDA under the constructed framework.

Finally, an experiment platform was built, and the best matching mode of the algo-
rithm, scenario, and state was obtained through field experiments in different scenarios.
The results show that the PPP-TCAR algorithm is the most effective in the dynamic open
scenario, while the PPP-LAMBDA algorithm shows better robustness in other stages.

The remainder of the paper is organized as follows. Section 2 describes the materials
and methods, and an analytical framework is proposed to estimate the distance between
two agricultural vehicles in three different ways using the carrier-phase observation data.
Section 3 describes the distance estimation results of two agricultural vehicles in different
scenarios and different motion states by using three methods. Section 4 discussed how
to improve the application of GNSS positioning technology in agriculture in the future.
Section 5 summarizes the contributions of this work after highlighting some essential
observations from this work.

2. Materials and Methods
2.1. Ranging Model

This paper established a workshop cooperative ranging framework. As shown in
Figure 1, the absolute localization position of agricultural vehicles a and b are obtained
by precise point positioning, and the workshop distance is calculated by exchanging the
absolute position localization.

— —
D = ||Pv, — Pyy|l 1
where D is the range between vehicles a and b. The subscript V is the agricultural vehicle.

— —
The subscripts a and b are the numbers of the two vehicles. The Py, and Py, are the
estimated location vectors of vehicles a2 and b, respectively.
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Figure 1. The framework of multi-scenario variable-state fusion ranging analysis algorithm.
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2.2. Carrier Phase Location and Ranging

In this section, we described a framework that utilizes GNSS code observables to
calculate the IVRs between vehicles in three different scenarios. The principle of each
ranging algorithm is shown in the Figure 1a.

2.2.1. PPP-SD

PPP-SD measurements only involve the observation values of the same satellite tracked
by two receivers simultaneously. In Figure 1, vehicles and base stations trace the same
satellite simultaneously [20].

— L. (552*1) y(S—Dion 4 w(S—1) trO) +f ( (- 1)( )_1{;(571)( 1) + N(S I) +€e Vﬂ )
— AL (62571) (S I)ion) +1Y(S I) tro) +f ( (8- I)( ) ‘F(Sil)(t)) +N](3 +€ (5-1) 3)
[
A=— 4)
f
Wos =Wy v ©)

where the carrier phase is observed between satellite (S) and the receivers of vehicles a
in tp‘(/su =D ; the carrier phase is observed between satellite (S) and the receivers of the base

station in ¢1(3st) ; the symbol |-| represents the inner product operator; A denotes the carrier

wavelength; the superscript (S), ion, and tro are satellite, ionosphere, and troposphere,
respectively; the number of the satellite is expressed as the symbol {I,1I, ..., M}; subscript

B is the base station; 6%2 D is the true geometric range between vehicle V, and satellite
(S — 1); ¥(5-Dion s the ionospheric delay error; ¥~ D js the tropospheric delay error;
f is the carrier frequency; ¥ ( I)( t) is the receiver clock difference of vehicle V, at time t;
YD (¢) is the clock d1fference of satellite (S — I) at time £; N‘(/f_l) is the overall ambiguity
between vehicle V, and satellite (S —I); £}, (571 is the true geometric range between the base
station and satellite (S — I); ‘I’(S I)( t) is the receiver clock difference of the base station at
time £; N (5=1) is the overall ambiguity between the base station and satellite (S —I); {,, (5~ I)
and {5 (1) are the unknown error, representing the sum of all errors not directly reﬂected
in (2) and (3); and c is the velocity of light.

Since the satellite is far away from vehicle 4 and the base station, it can be assumed
that the distances between these two receivers and the satellite are parallel. Furthermore,
it is assumed that the base station is at the same elevation as the vehicle. Therefore,

the tropospheric single differencing error and ionospheric single differencing error between
two receivers are equal, and both are 0. Here, (5) is simplified as (6).

g = At e D NG+ g5 )

(5-1)

The single difference geometric distance ¢y, ;' between vehicle 2 and the base station

to the satellite (S — I) is equal to the negative number of the inner product £y, g between
(S—1)

vehicle a and the base station in the direction £ of the base station to the satellite

(S — I) observation.
) =ty 505 ?)

Assume that the vehicle 2 and the reference station receiver jointly generate measurements
for M different satellites and that the M"" single difference carrier-phase measurements they
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single difference carrier phase observation equations form the followmg matrix equation.

(5—1) S—I (5—1
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The single-difference carrier-phase measurements at the adjacent moments ¢, and ;1

are l/)%,i Et)n and l/)E,i ;{Bn+1, respectively.
(5-1) S—I
IPX{g,BI;)M 'l’g/ﬂ,g,t),,
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e YT = =AT Gy $71 +A7 (G, — Gy,) - -y (11)
. 17 . T%/Q,B )(t) 1 c. T%/,,,B,t)n ()
(S—M)
meB tn+1 - ll]Va/B tn
where G is a geometric matrix; £y, p is a baseline vector; ‘FEZ _BI) (t) is the clock difference of

the single difference receiver; Aly, g and A‘YE/SH ;31) (t) are the change in Aly, g and A‘I’%Z ;3[) (1)

between these two moments, respectively.
Equation (10) cancels the single-difference whole-cycle ambiguity vector forward and
backward. However, the mean square error of the single difference measurement noise

éés‘zg increases to the v/2 times of the initial carrier-phase measurement noise, which will
be eliminated by the double difference.

2.2.2. PPP-DD

The double difference measurements consist of two receivers measuring the satellite
at the same time [35]. As shown in Figure 1, the vehicle receiver a and the base station

B track both satellites (S — I) and (S — II) simultaneously, while their single-difference

carrier-phase measurement for satellite (S — II) is lpVS BH .

lstBH A1 EE/SBH +f ‘I’S H)()+N(S H)+€esvlé (12)

(S—LII .

The double-difference carrier-phase measurement ¢y, ;" is defined as follows.

(S—LII) _

Yy =Yy,

By substituting (6) and (12) into (13), the observation equation of the double difference

(S—LI
measurement value l/)v B i

(s-I) (S—I)

95 (13)

1S:

S—LII) — S—II1 S—I,I1 S—LII) (S—LII
P = At oD () N 4 g6 (14)
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Equation (14) indicates that the double difference can eliminate the receiver and
satellite clock difference. - -
g =ty ty " (15)

ar

The double difference consists of (M — 1) double-difference carrier-phase measurements.

111(5 LIT) M%,BH) _g(S I)) N\(/f,;sl)
(s 1111) (=11 _g(s N N

vaa, — )1, —(fy, B . Sy g+ Va.,B (16)
S—1,M) ' T S—M

o (655" - ) Nus"

The cost of the double difference is to increase the mean square error of the double-

(S—LII . ..
difference measurement noise é V. B ) to v/2 times the mean square error of the original

)

single-difference measurement noise ¢ ESV: 5, and sacrifice an observation equation.

If the whole cycle ambiguity value of each double difference in (16) can be determined,
the baseline vector Aly, g can be solved from this equation, thus achieving relative po-
sitioning. The next section describes two different algorithms for fixing the ambiguity
of the double-difference round: Three-Carrier Ambiguity Resolution (TCAR) and Least-
squares Ambiguity Decorrelation Adjustment (LAMBDA).

2.2.3. PPP-TCAR

The PPP-TCAR generates a series of combined measurements with different beat fre-
quency wavelengths by linearly combining multi-frequency measurements and then solves
the whole-period ambiguity in all individual combinations step by step along the sequence
from the most comprehensive aisle combination to the narrowest aisle combination [36].
The observation equation of the double-difference super-wide lane carrier-phase measure-
ment 23 is:

Yz = Aggy - (L4 8+ ) — ¥urs + Nuos + Luwns 17)

where A,,23 is the wide-lane carrier wavelength. The subscripts 1, 2, and 3 are the number
of GNSS carrier frequencies of L1, L2, and L5, respectively; g is the double-difference
ephemeris error. Since all the measurements discussed in this section are double dif-
ference, the original receiver subscript V, B, and satellite superscript (S) in the double-
difference measurement symbols are omitted to simplify the expression. Neglecting
the double-differential ionospheric delay residuals in the short baseline case, the whole-
period ambiguity of the ultra-wide-alley carrier-phase measurements N3 is:

Nozs = [tpwzs - A‘“] (18)
w23
Cwrs = (Y3 — Nuzs) - Awaz = (L + g+ Y) — Aoz - Yz + wns (19)

where pj is the double-difference pseudo-range measurement, and {3 is the high-precision
double-difference measurement value.

The double-difference measurement 3 without the whole-period ambiguity ob-
tained from (19) is used to solve the whole-period ambiguity of the double-difference
wide-aisle carrier-phase measurement 1. The observation equation for the double-
difference wide-aisle measurement 1,15 is as follows.

Y12 = Aty (L+8+Y) — Yorz + Ntz + Lot (20)
Nowz = [ = S22 e
w12
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Cwi2 = (w12 — No12) Awiz = L+ 8+ Y) — Az - Yoz + otz (22)

Using the double-difference distance measurement without the integer ambiguity .12
obtained from (22) to solve for the integer ambiguity in the double-difference carrier-phase
measurement 1Py, on carrier L1:

Ni = [¢1 — LoroM] (23)
Ny =Ny — N» (24)
Nuw2s = N2 — N (25)

2.2.4. PPP-LAMBDA

The PPP-LAMBDA algorithm is a fast method for solving the double-difference whole-
period ambiguity that can be applied to real-time dynamic and static positioning sys-
tems [37]. The relative localization equation based on the double-difference carrier phase is

expressed as a linear matrix.
y = A(Abyg) + BN (26)

where y is the vector of double-difference carrier-phase measurements given by the receiver,
and Abyp is the unknown baseline vector correction. N is the double-difference integer
ambiguity vector to be solved, and A and B are the constant coefficient matrices.

Jmin [y — A(Abyp) — BN|[¢ = min (y — A(Abyg) — BN)' C(y — A(Abyg) — BN) (27)

VB/

ve,N

where C is the weight coefficient matrix.

o Abyg] | Qabyy  RLabypn

where Qraby 5,47 18 the covariance matrix; Abyp and N are floating-point weighted least
squares solutions; Q Abys is the covariance matrix of Abyp; Qy; is the covariance matrix of

N;and Q Aby TEPTEsents the correlation between Abyp and Qxr-

Using the distance squared between the integer vector N and the floating-point so-
lution N as the objective function, we search for the integer perimeter ambiguity N to
minimize this objective function.

m}\iInHN— NHZQ; (29)
IN-Nlg. <T (30)
N

where T is a threshold that takes the appropriate value. The search space defined by (30) is
a multidimensional ellipsoid, and the integral numerical grid points inside the sphere need
to be searched and investigated theoretically one by one. One of the crucial numerical grid
points can satisfy (29).

In order to make the optimal integer solution N appear near the floating-point solution
N, and accordingly restrict the search near N to improve the search efficiency, the PPP-
LAMBDA algorithm transforms the original search for N inside a narrow and long ellipsoid
into a search for P in an approximate sphere space through the following Z-transformation.

A A

P-P=2Z(N-N) (31)

. 2 . A2
min [N~ |3 1 = min|[P— P rg 1,4 32
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where the power factor is changed from the original Q; to the diagonal array Z’TQ;Z’l.

Its most integer solution P is directly equal to the rounded value of the vector P.

N=z'p (33)

3. Results

Field experiments were conducted to validate the performance and applicability of
three methods utilizing carrier phase for ranging in real-world scenarios. This section
provides a comprehensive description of these experiments, presents the results obtained
from all methods, and thoroughly discusses these findings.

3.1. Experimental Setup

The present study utilized two agricultural tracked vehicles equipped with an AnavS
sensor module (AnavS, Munich, Germany) and a U-Blox M8T receiver (ComVav Technology
Ltd., Shanghai, China), configured to provide raw GNSS data at a frequency of 5 Hz.
The GNSS active antennas were mounted atop each vehicle, and the raw GNSS data
were collected and stored in a laptop computer within each vehicle for post-processing.
The experiment equipment is shown in the Figure 1b. The propagation of satellite signals
was impacted by various environmental factors, such as cover and “urban canyons”, which
caused a reduction in collection points and, in turn, affected the accuracy of positioning

(Figure 2).
1.20 1.30
1.15¢ 121+
A =¥
QO 1.10¢ @)
E i E 1 . 13 B
1.05 105!
1.00+- , . . .
0 100 200 300 400 500 0 100 200 300 400
Collection points Collection points
(a) (b)
L2417 - PDOP 124" ""ppop,
% 1.17
ALI0}f —
e
0 300 600 900 0 150 300 450
Collection points Collection points
(0) (d)

Figure 2. The PDOP of satellites in different scenarios. (a) Greenhouse, MAXcp = 521; (b) avenue,
MAXcp = 441; (c) playground, MAXcp = 1002; (d) urban, MAXcp = 500.

To account for these factors, this study employed four scenarios: complete-cover
greenhouse, partial-cover avenue, open playground, and urban area with multi-path effects
(Figure 3).
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Figure 3. Vehicle trajectory; (a) greenhouse; (b) avenue; (c) playground; (d) urban.
As shown in the Figure 1c, the experiment involved three algorithmic methods, namely,
PPP-SD, PPP-TCAR, and PPP-LAMBDA, which were validated using absolute stillness,
relative stillness with a dynamic and static vehicle, and two random dynamic moving
vehicles. The experimental scheme is shown in Table 1.
Table 1. Experimental scheme.
. True Distance of . . . . Replicated
Experimental Types ASE/m Sampling Time/min Sampling Days/d Experimental Units
ASE (5,50), dim=5 15 15 10
RSE (1,10), dim = 1 15 15 10
OMOSE (0, 50), dim = 5 15 15 10

RME Random 15 15 10
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3.2. ASE (Absolute Static Experiment)

The first set of experiments was conducted for absolute stationary positioning data
acquisition. Two vehicles were parked stationary in different scenarios, and the positioning
data of the two chassis were collected for the same timestamp (15 min) and at different
distances each day. Three algorithms, PPPSD, PPP-TCAR, and PPP-LAMBDA, were used
to optimize the collected data. Figures 4-7 show the deviation between the localization
distance and the actual distance processed by the three algorithms, with an accurate
distance of 5 cm.

== PPP-SD

= PPP-TCAR
—— PPP-LAMBDA
True Distance

The error band

=
(=}
T

W
(=]
T

IS
(=]

W
(=]
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Distance between vehicles/m

S
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Figure 4. The distance between vehicles of ASE in greenhouse.
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Figure 5. The distance between vehicles of ASE in avenue.
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Figure 6. The distance between vehicles of ASE in playground.
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Figure 7. The distance between vehicles of ASE in urban.

Although precision single-point positioning integrates the advantages of standard
single-point positioning and differential positioning, using the precision ephemeris and
clock difference calculated from the data collected by the global monitoring station, the
non-difference data processing of the phase and pseudo-distance measurements observed
by a single receiver can reach centimetre-level positioning accuracy and is not limited by
the operating distance [28]. The significant reduction in the number of satellites makes
the error of the PPP-SD method relatively large. While the PPP-DD algorithm obtains
accurate position information, the corresponding high-precision clock difference and tropo-
spheric delay estimators can be obtained by solving the whole-circle ambiguity through
PPP-LAMBDA. Hence, the PPP-LAMBDA algorithm has a minor error. The accuracy of
the PPP-TCAR algorithm is at the intermediate level in this scenario and state, and the data
are shown in Table 2. The second experiment scenario was an avenue with dense leaves.
Although there was a shelter on the avenue, it was less sheltered than the shady shed,
called semi-sheltered. Compared with the data processing results of the three algorithms,
the accuracy of the three algorithms was slightly improved in the semi-shaded shaded
shed scene, and the PPP-LAMBDA algorithm was still the best. In the open playground
environment, the accuracy of the three methods is significantly improved compared with
the first two environments due to the significant increase in the visible number of satellites.
However, due to the “urban canyons” phenomenon in the residential area, there is a mul-
tipath effect and positioning error. When the two positioning targets are stationary, the
PPP-LAMBDA algorithm maintains stable positioning accuracy in the four environments
with robustness. Under full shelter, the PPP-LAMBDA algorithm has the highest accuracy.

Table 2. Average error of ASE.

Average Error of ASE/%

Algorithm "
& Complete-Cover Partial-Cover Avenue Open Playground Urban
Greenhouse
PPP-SD 6.73 3.95 4.64 41.06
PPP-TCAR 4.06 4.27 4.64 36.09
PPP-LMBDA 0.83 1.30 0.30 1.48

3.3. RSE (Relative Static Experiment)

The second set of tests was relatively static, in which the distance between vehicles a
and b remained constant while moving vehicles a and b. The positioning data of the two
vehicles were collected within 15 min (Figures 8-11). As shown in Table 3, the analysis
showed that the PPP-LAMBDA algorithm had the highest accuracy in the full-shade, semi-
shade, and cell scenarios. Furthermore, the PPP-TCAR algorithm had the highest accuracy
in the open playground scenario. Meanwhile, the PPP-TCAR algorithm is the most accurate
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and less computationally intensive in open environments with moving localization targets.
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Table 3. Average error of RSE.

Average Error of RSE /%

Algorithm Complete-Cover Partial-Cover Avenue Open Playground Urban
Greenhouse
PPP-SD 8.67 17.22 5.53 32.40
PPP-TCAR 9.19 16.88 6.63 16.00
PPP-LMBDA 1.57 2.66 0.91 2.98

3.4. OMOSE (One Moving and One Stationary Experiment)

The third group is a dynamic cooperative experiment, where the position of vehicle
a is fixed, and vehicle b is moved to a specified distance at different speeds at a constant
rate. The positioning data of vehicle 2 and b were collected during the moving time. It
is concluded that the PPP-LAMBDA algorithm has better robustness in complete cover,
partial cover, and multipath effects when vehicle a is stationary and vehicle b is moving. In
contrast, the PPP-TCAR algorithm has the highest localization accuracy in open scenarios
(Figures 12-15). As shown in Figure 16, the PPP-LAMBDA error accumulation is the small-
est when the vehicle is in the woods and the cell, while the PPP-TCAR error accumulation
is the smallest when the vehicle is in the playground.
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Figure 12. The distance between vehicles of OMOSE in greenhouse.
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Figure 13. The distance between vehicles of OMOSE in avenue.
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Figure 17 shows that the errors of the three algorithms increase with the increase in

the moving distance at different moving speeds.
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Figure 17. The error at different speeds of OMOSE; (a) PPP-SD; (b) PPP-TCAR; (c) PPP-LAMBDA.
The standard deviations of the three algorithms are obtained for different scenarios,
moving distances, and moving speeds, and the results are shown in Table 4.
Table 4. Average error of OMOSE.
Average Error of OMOSE/%
Algorithm Complete-Cover Partial-Cover Avenue Open Playground Urban
Greenhouse
PPP-SD 9.63 3.29 1.27 9.36
PPP-TCAR 4.18 4.23 0.18 6.41
PPP-LMBDA 0.36 2.07 0.99 1.52
3.5. RME (Random Motion Experiment)
The fourth group is a two-vehicles random dynamic cooperative experiment, where
vehicles 2 and b move randomly in the same scene, and the positioning data of vehicles
a and b were collected during the moving time. The error is shown in Table 5. Like the
relative stationary trials, PPP-TCAR has higher accuracy in the open environment when
both positioning targets are moving (Figures 18-21).
Table 5. Average error of RME.
Average Error of RME/%
Algorithm Complete-Cover Partial-Cover Avenue Open Playground Urban
Greenhouse
PPP-SD 4.34 5.16 2.36 6.07
PPP-TCAR 3.96 3.70 0.90 3.79
PPP-LMBDA 1.43 0.12 2.18 0.60
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Through the above research, the framework constructed in this paper is integrated
with different common field operation scenarios to evaluate the application level of the three
algorithms and flexibly switch the positioning algorithm in different operation scenarios
(Table 6).

Table 6. Multi-scenario variable-state fusion algorithm ranging analysis framework.

PPP- .
NO. PPP-SD PPP-TCAR LAMBDA Operation Status
Complete cover—absolute static state
Greenhouse farm . .t . Complete cover—relative static state
machinery operation Complete cover—one moving and one static state
Complete cover—random dynamic motion
Partial cover—absolute static state
Fixed-point picking . st - Partial cover—relative static state
operation of fruit forest Partial cover—one moving and one static state
Partial cover—random dynamic motion
Cooperative operation of . ot . Open—absolute static state
farm machinery in field Open—relative static state
Farm machinery . . " Open—one moving and one static state
scheduling in the field Open—random dynamic motion
“Urban Canyon” —absolute static state
Urban landscaping . .t . “Urban Canyon” —relative static state
operations “Urban Canyon” —one moving and one static state

“Urban Canyon” —random dynamic motion

s

Note: the symbol
strong applicability.

means weak applicability, “**” means general applicability, and “***” means

4. Discussion

For the above experimental results, the principles of PPP-SD and PPP-DD (PPP-TCAR
and PPP-LAMBDA) positioning are discussed and analyzed in conjunction with their
positioning principles.

Pseudo-ranging positioning technology has been widely used. Study [20] established
pseudo-ranging single-difference and double-difference ranging frameworks, and carried
out positioning accuracy experiments in two different scenarios, and the results concluded
that the positioning accuracy of double-difference is significantly better than that of single-
difference positioning. This is because double-difference positioning is differential for two
satellites based on single-difference positioning, and therefore can further eliminate the
receiver clock difference in the measured values. The experimental results in this paper
are the same as that study, with double-difference positioning accuracy outperforming
single-difference positioning in different scenarios. However, adding one differential means
increasing the complexity of the positioning system model. Therefore, it is necessary to
investigate different double-difference positioning models. In the research results in Table 6,
the PPP-LAMBDA algorithm has the strongest robustness and can adapt to the solution
of multiple scenarios; PPP-TCAR uses a double-difference pseudo-range measurement to
solve for the whole-week ambiguity of a double-difference carrier-phase measurement with
a longer wavelength, thus obtaining an accurate distance measurement without ambiguity.
The distance measurement just obtained is then used to solve for the perimeter ambiguity
of another shorter wavelength double-difference carrier-phase measurement, and so on,
step by step. As a result, PPP-TCAR is more dependent on valid satellite signals, and when
the environment is favorable, PPP-TCAR exerts superior positioning performance [36].

However, some experimental results show (e.g., Figure 21) that when the environ-
ment is poor and affected by NLOS, the GNSS signal loses packets and some positioning
data are missing. Therefore, to improve positioning accuracy and stability, multi-source
information-assisted GNSS positioning will be one of the choices for intelligent farm equip-
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ment positioning. For example, GNSS/Ultra-wide Bandwidth (UWB) fusion positioning
technology [38] is adopted to increase the UWB auxiliary base station as a pseudo-satellite
to provide more ranging equations, and, at the same time, to make up for the shortcom-
ings of the insufficient accuracy of indoor positioning of GNSS. Through the fusion of
GNSS/UWB/Inertial Navigation System (INS) [39], it provides the motion attitude charac-
teristics of the farm machinery body to solve the problem of packet loss in the case of NLOS
of GNSS signals. Furthermore, the simultaneous localization and mapping (SLAM) tech-
nique [40], real-time dynamic acquisition of environmental features, is used to assist GNSS
positioning. Inspired by this, in future research, the research of GNSS/UWB/INS/SLAM
multi-source information fusion positioning technology based on the extended Kalman
filter algorithm will be considered to improve the positioning accuracy of agricultural
machines in different environments.

5. Conclusions

This paper proposes a multi-scenario variable-state fusion algorithm as a theoretical
framework for observing the distance between vehicles. The performance of three different
algorithms, PPP-SD, PPP-TCAR, and PPP-LAMBDA, was analyzed in four different sce-
narios with varying vehicle motion states. Specifically, this study focused on the impact
of uncorrelated errors, such as the masking effect and multipath effect, on the accuracy of
distance estimation. The experimental results indicate that the PPP-TCAR algorithm outper-
forms the others when the distance measurement is unaffected by these errors. However, in
scenarios where complete cover, partial cover, and urban canyon effects are present, the PPP-
LAMBDA algorithm demonstrated excellent accuracy, regardless of whether the vehicle
was stationary or in motion. Therefore, when estimating distance in complex environments,
it is recommended to use the PPP-LAMBDA algorithm, while the PPP-TCAR algorithm is
optimal for open environments to achieve both accuracy and timeliness.
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