Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = single-crystal quartz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2813 KiB  
Article
The Effect of Doping with Aluminum on the Optical, Structural, and Morphological Properties of Thin Films of SnO2 Semiconductors
by Isis Chetzyl Ballardo Rodriguez, U. Garduño Terán, A. I. Díaz Cano, B. El Filali and M. Badaoui
J. Compos. Sci. 2025, 9(7), 358; https://doi.org/10.3390/jcs9070358 - 9 Jul 2025
Viewed by 318
Abstract
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating [...] Read more.
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating the optical and structural properties, particularly the bandgap and the parameters of the unit cell, of semiconductor oxides. Recently, tin oxide has emerged as a key material due to its excellent structural properties, optical transparency, and various promising applications in optoelectronics. This study utilized the ultrasonic spray pyrolysis technique to synthesize aluminum-doped tin oxide (ATO) thin films on quartz and polished single-crystal silicon substrates. The impact of varying aluminum doping levels (0, 2, 5, and 10 at. %) on morphology and structural and optical properties was examined. The ATO thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmittance spectroscopy. SEM images demonstrated a slight reduction in the size of ATO nanoparticles as the aluminum doping concentration increased. XRD analysis revealed a tetragonal crystalline structure with the space group P42/mnm, and a shift in the XRD peaks to higher angles was noted with increasing aluminum content, indicating a decrease in the crystalline lattice parameters of ATO. The transmittance of the ATO films varied between 75% and 85%. By employing the transmittance spectra and the established Tauc formula the optical bandgap values of ATO films were calculated, showing an increase in the bandgap with higher doping levels. These findings were thoroughly analyzed and discussed; additionally, an effort was made to clarify the contradictory analyses present in the literature and to identify a doping range that avoids the onset of a secondary phase. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

18 pages, 3863 KiB  
Article
The Temperature Sensitivity of the Piezoelectric Thickness Shear Mode of α-GeO2 Single Crystals
by Philippe Papet and Pascale Armand
Crystals 2025, 15(7), 613; https://doi.org/10.3390/cryst15070613 - 30 Jun 2025
Viewed by 211
Abstract
This paper focuses on identifying temperature-compensated Y-cuts (using a Cartesian coordinate system) in a piezoelectric α-GeO2 single crystal, which is isostructural–quartz α-SiO2. The study aims to minimize the frequency drift of the thickness shear mode by analyzing the resonant frequency’s [...] Read more.
This paper focuses on identifying temperature-compensated Y-cuts (using a Cartesian coordinate system) in a piezoelectric α-GeO2 single crystal, which is isostructural–quartz α-SiO2. The study aims to minimize the frequency drift of the thickness shear mode by analyzing the resonant frequency’s first- and second-order temperature coefficients Tf(1) and Tf(2). To obtain these, the first-order, TCij(1), and second-order, TCij(2), temperature coefficients of the elastic constant, Cij, previously obtained from room temperature up to 900 °C, were calculated. Upon heating, the thermal behavior of the elastic constants indicated that some, such as C11 and C33, are stable over a range of temperatures, while others, such as C44 and C66, increase with the temperature. This paper also explores a family of singly and doubly rotated Y-cuts of α-GeO2, revealing cuts with a potential application for temperature compensation and/or linear dependence over the temperature range. The results are compared with those of the well-known piezoelectric isomorph material α-SiO2. The findings highlight that α-GeO2 is a promising material for piezoelectric devices in high-temperature environments, outperforming α-SiO2 (α-quartz), which is limited by a solid–solid phase transition at 573 °C. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 312
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 5121 KiB  
Article
Combining Operando Techniques for an Accurate Depiction of the SEI Formation in Lithium-Ion Batteries
by Michael Stich, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Falk Thorsten Krauss, Christoph Baumer, Bernhard Roling and Andreas Bund
Batteries 2025, 11(4), 117; https://doi.org/10.3390/batteries11040117 - 21 Mar 2025
Cited by 1 | Viewed by 818
Abstract
Its crucial importance to the long-term operation of lithium-ion batteries has made the solid electrolyte interphase (SEI) the subject of intensive research efforts. These investigations are challenging, however, due to the very complex and fragile nature of this layer. With its typical thickness [...] Read more.
Its crucial importance to the long-term operation of lithium-ion batteries has made the solid electrolyte interphase (SEI) the subject of intensive research efforts. These investigations are challenging, however, due to the very complex and fragile nature of this layer. With its typical thickness being in the range of some 10 nm and its chemical make-up being highly sensitive to even the smallest amounts of impurities, it becomes clear that artifacts are easily introduced in investigations of the SEI, especially if the measurements are performed ex situ. To help ameliorate these issues, we herein report a combination of non-destructive operando techniques that can be employed simultaneously in the same electrochemical cell to provide a plethora of physical, morphological, and electrochemical data on the macroscopic and microscopic scale. These techniques encompass atomic force microscopy (AFM), electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D), and impedance spectroscopy (EIS). This work focuses on how to combine these techniques in a single electrochemical cell, which is suitable to study SEI formation while avoiding noise, crosstalk, inhomogeneous SEI formation, and other pitfalls. Full article
Show Figures

Figure 1

10 pages, 1544 KiB  
Article
Rapid Solidification of Plant Latices from Campanula glomerata Driven by a Sudden Decrease in Hydrostatic Pressure
by Arne Langhoff, Astrid Peschel, Christian Leppin, Sebastian Kruppert, Thomas Speck and Diethelm Johannsmann
Plants 2025, 14(5), 798; https://doi.org/10.3390/plants14050798 - 4 Mar 2025
Cited by 1 | Viewed by 835
Abstract
By monitoring the solidification of droplets of plant latices with a fast quartz crystal microbalance with dissipation monitoring (QCM-D), droplets from Campanula glomerata were found to solidify much faster than droplets from Euphorbia characias and also faster than droplets from all technical latices tested. [...] Read more.
By monitoring the solidification of droplets of plant latices with a fast quartz crystal microbalance with dissipation monitoring (QCM-D), droplets from Campanula glomerata were found to solidify much faster than droplets from Euphorbia characias and also faster than droplets from all technical latices tested. A similar conclusion was drawn from optical videos, where the plants were injured and the milky fluid was stretched (sometimes forming fibers) after the cut. Rapid solidification cannot be explained with physical drying because physical drying is transport-limited and therefore is inherently slow. It can, however, be explained with coagulation being triggered by a sudden decrease in hydrostatic pressure. A mechanism based on a pressure drop is corroborated by optical videos of both plants being injured under water. While the liquid exuded by E. characias keeps streaming away, the liquid exuded by C. glomerata quickly forms a plug even under water. Presumably, the pressure drop causes an influx of serum into the laticifers. The serum, in turn, triggers a transition from a liquid–liquid phase separated state (an LLPS state) of a resin and hardener to a single-phase state. QCM measurements, optical videos, and cryo-SEM images suggest that LLPS plays a role in the solidification of C. glomerata. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 2773 KiB  
Article
Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model
by Taylor Bader, Kyle Boone, Chris Johnson, Cindy L. Berrie and Candan Tamerler
Biomimetics 2025, 10(2), 107; https://doi.org/10.3390/biomimetics10020107 - 12 Feb 2025
Cited by 1 | Viewed by 1245
Abstract
Biomolecular adsorption has great significance in medical, environmental, and technological processes. Understanding adsorption equilibrium and binding kinetics is essential for advanced process implementation. This requires identifying intrinsic determinants that predict optimal adsorption properties at bio–hybrid interfaces. Solid-binding peptides (SBPs) have targetable intrinsic properties [...] Read more.
Biomolecular adsorption has great significance in medical, environmental, and technological processes. Understanding adsorption equilibrium and binding kinetics is essential for advanced process implementation. This requires identifying intrinsic determinants that predict optimal adsorption properties at bio–hybrid interfaces. Solid-binding peptides (SBPs) have targetable intrinsic properties involving peptide–peptide and peptide–solid interactions, which result in high-affinity material-selective binding. Atomic force microscopy investigations confirmed this complex interplay of multi-step peptide assemblies in a cooperative modus. Yet, most studies report adsorption properties of SBPs using non-cooperative or single-step adsorption models. Using non-cooperative kinetic models for predicting cooperative self-assembly behavior creates an oversimplified view of peptide adsorption, restricting implementing SBPs beyond their current use. To address these limitations and provide insight into surface-level events during self-assembly, a novel method, the Frequency Response Cooperativity model, was developed. This model iteratively fits adsorption data through spectral analysis of several time-dependent kinetic parameters. The model, applied to a widely used gold-binding peptide data obtained using a quartz crystal microbalance with dissipation, verified multi-step assembly. Peak deconvolution of spectral plots revealed distinct differences in the size and distribution of the kinetic rates present during adsorption across the concentrations. This approach provides new fundamental insights into the intricate dynamics of self-assembly of biomolecules on surfaces. Full article
Show Figures

Figure 1

26 pages, 8922 KiB  
Article
Comparative Study of Sulfides from Porphyry, Skarn, and Carbonate-Replacement Mineralization at the Recsk Porphyry-Mineralized Complex, Hungary
by Máté Biró, Johann G. Raith, Monika Feichter, Máté Hencz, Gabriella B. Kiss, Attila Virág and Ferenc Molnár
Minerals 2024, 14(9), 956; https://doi.org/10.3390/min14090956 - 21 Sep 2024
Cited by 1 | Viewed by 1421
Abstract
A calc–alkaline dioritic–andesitic–dacitic intrusive–volcanic complex of Early Oligocene (30 Ma) age and its Mesozoic sedimentary basement at Recsk host a well-preserved porphyry–skarn–polymetallic carbonate-replacement–epithermal mineral system. The unique occurrence offers an exceptional possibility to study these related mineralization types at a single locality. This [...] Read more.
A calc–alkaline dioritic–andesitic–dacitic intrusive–volcanic complex of Early Oligocene (30 Ma) age and its Mesozoic sedimentary basement at Recsk host a well-preserved porphyry–skarn–polymetallic carbonate-replacement–epithermal mineral system. The unique occurrence offers an exceptional possibility to study these related mineralization types at a single locality. This study presents the textural–paragenetic, compositional characteristics, and systematics of sulfide mineral assemblages for the porphyry, skarn, and carbonate-replacement ore types, which are currently situated at a depth of 500–1200 m below the present surface. Detailed petrography combined with EPMA analyses of molybdenite, galena, sphalerite, tetrahedrite-group minerals and Bi-bearing sulfosalts allows for the establishment of characteristic mineral and chemical fingerprints for each mineralization type. Rhenium concentration in molybdenite, occurring as rare disseminations and quartz–carbonate veinlets in altered host rocks in all three mineralization types, shows a decreasing trend towards the more distal mineralization types. High Re contents (x¯ = 1.04 wt.%, max. up to 4.47 wt%) are typical for molybdenite from the porphyry mineralization, but Re is not homogeneously distributed, neither within individual molybdenite crystals nor on a mineralization scale. Copper and Se show opposite behavior in molybdenite, both becoming enriched in the more distal mineralization types. Silver, Bi, and Se concentrations increase in galena and tetrahedrite-group minerals, both towards the country rocks, making them the best candidates for vectoring within the whole hydrothermal system. For tetrahedrite-group minerals, Ag, Bi, Se, together with Sb and Zn, are the suitable elements for fingerprinting; all these are significantly enriched in the distal carbonate-replacement mineralization compared to the other, more proximal ore types. Additionally, further trends can be traced within the composition of sulfosalts. Lead-bearing Bi sulfosalts preferentially occur in the polymetallic carbonate-replacement veins, while being under-represented in the skarn and porphyry mineralization. Porphyry mineralization hosts Cu-bearing Bi sulfosalts dominantly, while skarn is characterized by Bi-dominated sulfosalts. Sphalerite, although present in all mineralization types, cannot be used for fingerprinting, vectoring, or thermobarometry based on EPMA measurements only. Trace element contents of sphalerite are low, often below the detection limits of the analyses. This is further complicated by the intense “chalcopyrite disease” occurring throughout the distal mineralization types. All the above-listed major, minor, and trace element ore mineral characteristics enable the characterization of the Recsk ores by mineral geochemical fingerprints, providing a possible vectoring tool in porphyry Cu–(Mo)–Au-mineralized systems. Full article
Show Figures

Figure 1

18 pages, 3399 KiB  
Article
A New Mineral Calcioveatchite, SrCaB11O16(OH)5·H2O, and the Veatchite–Calcioveatchite Isomorphous Series
by Igor V. Pekov, Natalia V. Zubkova, Vladimir N. Apollonov, Vasiliy O. Yapaskupt, Sergey N. Britvin and Dmitry Yu. Pushcharovsky
Minerals 2024, 14(9), 901; https://doi.org/10.3390/min14090901 - 2 Sep 2024
Cited by 2 | Viewed by 995
Abstract
The new mineral calcioveatchite, ideally SrCaB11O16(OH)5·H2O, is a Ca-Sr-ordered analogue of veatchite. It was found at the Nepskoe potassium salt deposit, Irkutsk Oblast, Siberia, Russia in halite-sylvite and sylvite-carnallite rocks, with boracite, hilgardite, kurgantaite, hydroboracite, [...] Read more.
The new mineral calcioveatchite, ideally SrCaB11O16(OH)5·H2O, is a Ca-Sr-ordered analogue of veatchite. It was found at the Nepskoe potassium salt deposit, Irkutsk Oblast, Siberia, Russia in halite-sylvite and sylvite-carnallite rocks, with boracite, hilgardite, kurgantaite, hydroboracite, volkovskite, veatchite, anhydrite, magnesite, and quartz. Calcioveatchite forms prismatic or tabular crystals up to 1 × 1.5 × 3 mm3 and crystal clusters up to 3 mm across. It is transparent and colourless with vitreous lustre. Calcioveatchite is brittle, cleavage is perfect on {010}, the Mohs’ hardness is ca 2, Dmeas is 2.58(1), and Dcalc is 2.567 g cm−3. Calcioveatchite is optically biaxial (+), α = 1.543(2), β = 1.550(5), γ = 1.626(2), 2Vmeas = 30(10)°, and 2Vcalc = 35°. The average chemical composition (wt.%, electron microprobe, H2O calculated by stoichiometry) is: CaO 7.05, SrO 20.70, B2O3 61.96, H2O 10.22, and total 99.93. The empirical formula, calculated based on 22 O apfu = O16(OH)5(H2O) pfu, is Sr1.23Ca0.78B10.99O16(OH)5·H2O. Calcioveatchite is monoclinic, space group P21, a = 6.7030(3), b = 20.6438(9), c = 6.6056(3) Å, β = 119.153(7)°, V = 798.26(8) Å3, and Z = 2. Polytype: 1M. The strongest reflections of the powder XRD pattern [d,Å(I,%)(hkl)] are: 10.35(100)(020), 5.633(12)(110), 5.092(10)(120), 3.447(14)(060), 3.362(13)(101, 051), 3.309(38)(–102), 2.862(10)(012), and 2.585(19)(080). The crystal structure was solved based on single-crystal XRD data, R1 = 0.0420. Calcioveatchite (calcioveatchite-1M) is an isostructural analogue of veatchite-1M with the 11-fold cation polyhedron occupied mainly by Sr [Sr0.902(8)Ca0.098(8)] whereas the 10-fold polyhedron is Ca dominant [Ca0.686(7)Sr0.314(7)]. The chemical composition of veatchite from five localities in Russia (Nepskoe), Kazakhstan (Shoktybay and Chelkar in the North Caspian Region), and the USA (Tick Canyon and Billie Mine in California) was studied, and it is shown to exist in nature as a continuous, almost complete isomorphous series which extends from Ca-free veatchite, Sr2B11O16(OH)5·H2O, to calcioveatchite with the composition Sr1.14Ca0.87B10.99O16(OH)5·H2O. Full article
Show Figures

Figure 1

20 pages, 11562 KiB  
Article
Effects of Fineness and Morphology of Quartz in Siliceous Limestone on the Calcination Process and Quality of Cement Clinker
by Donggen Nie, Wei Li, Lilan Xie, Min Deng, Hao Ding and Kaiwei Liu
Materials 2024, 17(14), 3601; https://doi.org/10.3390/ma17143601 - 21 Jul 2024
Cited by 1 | Viewed by 1663
Abstract
With the increasing depletion of high-quality raw materials, siliceous limestone, sandstone and other hard-to-burn raw materials containing crystalline SiO2 are gradually being used to produce clinker. This study investigates the influence of the quartz content and particle size in siliceous limestone on [...] Read more.
With the increasing depletion of high-quality raw materials, siliceous limestone, sandstone and other hard-to-burn raw materials containing crystalline SiO2 are gradually being used to produce clinker. This study investigates the influence of the quartz content and particle size in siliceous limestone on the calcination process and the resultant quality of cement clinker. Two different siliceous limestones were grinded to different fineness, and calcinated with some other materials. The content of the clinkers was analyzed with the XRD–Rietveld method and the microstructure of the clinkers was observed with laser scanning confocal microscopy (LSCM) and field emission scanning electron microscopy (FESEM). Three key outcomes of this study provide new insights on the use of siliceous limestone in cement production, namely that (i) reducing the fineness values of siliceous limestone from 15% to 0% of residue on a 0.08 mm sieve decreases the quantity of these larger quartz particles, resulting in an increase in C3S content by up to 8% and an increase in 28d compressive strength by up to 4.4 Mpa, which is 62.30 Mpa; (ii) the morphology of quartz—either as chert nodules or single crystals—affects the microstructure of C2S clusters in clinker, finding that chert nodules result in clusters with more intermediate phases, whereas large single crystals lead to denser clusters; (iii) the sufficient fineness values of siliceous limestone SL1 and SL2 are 5% and 7% of residue on a 0.08 mm sieve, respectively, which can produce a clinker with a 28d compressive strength greater than 60 Mpa, indicating that for different kinds of quartz in siliceous limestone, there is an optimum grinding solution that can achieve a balance between clinker quality and energy consumption without having to grind siliceous limestone to very fine grades. Full article
(This article belongs to the Special Issue Reaction Mechanism and Properties of Cement-Based Materials)
Show Figures

Figure 1

9 pages, 2998 KiB  
Article
Synthesis, Crystal Structure, and Electropolymerization of 1,4-Di([2,2′-bithiophen]-3-yl)buta-1,3-diyne
by Alessandro Pedrini, Chiara Massera, Enrico Dalcanale, Marco Giannetto and Roberta Pinalli
Crystals 2024, 14(7), 620; https://doi.org/10.3390/cryst14070620 - 5 Jul 2024
Viewed by 1568
Abstract
For their great structural versatility, thiophene-based π-conjugated systems have been widely exploited in the preparation of low band gap materials. Here, we report the synthesis of a highly conjugated tetrathiophene system, namely 1,4-di([2,2′-bithiophen]-3-yl)buta-1,3-diyne (1), that presents two bithiophene units connected at [...] Read more.
For their great structural versatility, thiophene-based π-conjugated systems have been widely exploited in the preparation of low band gap materials. Here, we report the synthesis of a highly conjugated tetrathiophene system, namely 1,4-di([2,2′-bithiophen]-3-yl)buta-1,3-diyne (1), that presents two bithiophene units connected at position 3 by a butadiynylene spacer. Single-crystal X-ray diffraction (SC-XRD) analysis elucidated the structure of 1, confirming the planarity of the molecule. The molecule was then electropolymerized onto the surface of a gold-coated piezoelectric quartz crystal, showing a high reactivity that is ascribable to the extended conjugation. The frontier molecular orbital energies of 1 were obtained via DFT optimization performed on the crystal structure-derived molecular geometry. Finally, DFT was also used to estimate the polymer band gap. Full article
Show Figures

Figure 1

20 pages, 5919 KiB  
Article
First Direct Gravimetric Detection of Perfluorooctane Sulfonic Acid (PFOS) Water Contaminants, Combination with Electrical Measurements on the Same Device—Proof of Concepts
by George R. Ivanov, Tony Venelinov, Yordan G. Marinov, Georgi B. Hadjichristov, Andreas Terfort, Melinda David, Monica Florescu and Selcan Karakuş
Chemosensors 2024, 12(7), 116; https://doi.org/10.3390/chemosensors12070116 - 22 Jun 2024
Cited by 1 | Viewed by 2088
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are pollutants of concern due to their long-term persistence in the environment and human health effects. Among them, perfluorooctane sulfonic acid (PFOS) is very ubiquitous and dangerous for health. Currently, the detection levels required by the legislation can [...] Read more.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are pollutants of concern due to their long-term persistence in the environment and human health effects. Among them, perfluorooctane sulfonic acid (PFOS) is very ubiquitous and dangerous for health. Currently, the detection levels required by the legislation can be achieved only with expensive laboratory equipment. Hence, there is a need for portable, in-field, and possibly real-time detection. Optical and electrochemical transduction mechanisms are mainly used for the chemical sensors. Here, we report the first gravimetric detection of small-sized molecules like PFOS (MW 500) dissolved in water. A 100 MHz quartz crystal microbalance (QCM) measured at the third harmonic and an even more sensitive 434 MHz two-port surface acoustic wave (SAW) resonator with gold electrodes were used as transducers. The PFOS selective sensing layer was prepared from the metal organic framework (MOF) MIL-101(Cr). Its nano-sized thickness and structure were optimized using the discreet Langmuir–Blodgett (LB) film deposition method. This is the first time that LB multilayers from bulk MOFs have been prepared. The measured frequency downshifts of around 220 kHz per 1 µmol/L of PFOS, a SAW resonator-loaded QL-factor above 2000, and reaction times in the minutes’ range are highly promising for an in-field sensor reaching the water safety directives. Additionally, we use the micrometer-sized interdigitated electrodes of the SAW resonator to strongly enhance the electrochemical impedance spectroscopy (EIS) of the PFOS contamination. Thus, for the first time, we combine the ultra-sensitive gravimetry of small molecules in a water environment with electrical measurements on a single device. This combination provides additional sensor selectivity. Control tests against a bare resonator and two similar compounds prove the concept’s viability. All measurements were performed with pocket-sized tablet-powered devices, thus making the system highly portable and field-deployable. While here we focus on one of the emerging water contaminants, this concept with a different selective coating can be used for other new contaminants. Full article
(This article belongs to the Special Issue Chemical Sensors and Analytical Methods for Environmental Monitoring)
Show Figures

Figure 1

27 pages, 2298 KiB  
Review
New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers
by Michaela Domsicova, Jana Korcekova, Alexandra Poturnayova and Albert Breier
Int. J. Mol. Sci. 2024, 25(13), 6833; https://doi.org/10.3390/ijms25136833 - 21 Jun 2024
Cited by 35 | Viewed by 9614
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are [...] Read more.
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches. Full article
Show Figures

Figure 1

16 pages, 5912 KiB  
Article
Unraveling How Antimicrobial Lipid Mixtures Disrupt Virus-Mimicking Lipid Vesicles: A QCM-D Study
by Suji Moon, Tun Naw Sut, Bo Kyeong Yoon and Joshua A. Jackman
Biomimetics 2024, 9(2), 67; https://doi.org/10.3390/biomimetics9020067 - 24 Jan 2024
Cited by 3 | Viewed by 2315
Abstract
Single-chain lipid amphiphiles such as fatty acids and monoglycerides are promising antimicrobial alternatives to replace industrial surfactants for membrane-enveloped pathogen inhibition. Biomimetic lipid membrane platforms in combination with label-free biosensing techniques offer a promising route to compare the membrane-disruptive properties of different fatty [...] Read more.
Single-chain lipid amphiphiles such as fatty acids and monoglycerides are promising antimicrobial alternatives to replace industrial surfactants for membrane-enveloped pathogen inhibition. Biomimetic lipid membrane platforms in combination with label-free biosensing techniques offer a promising route to compare the membrane-disruptive properties of different fatty acids and monoglycerides individually and within mixtures. Until recently, most related studies have utilized planar model membrane platforms, and there is an outstanding need to investigate how antimicrobial lipid mixtures disrupt curved model membrane platforms such as intact vesicle adlayers that are within the size range of membrane-enveloped virus particles. This need is especially evident because certain surfactants that completely disrupt planar/low-curvature membranes are appreciably less active against high-curvature membranes. Herein, we conducted quartz crystal microbalance–dissipation (QCM-D) measurements to investigate the membrane-disruptive properties of glycerol monolaurate (GML) monoglyceride and lauric acid (LA) fatty acid mixtures to rupture high-curvature, ~75 nm diameter lipid vesicle adlayers. We identified that the vesicle rupture activity of GML/LA mixtures mainly occurred above the respective critical micelle concentration (CMC) of each mixture, and that 25/75 mol% GML/LA micelles exhibited the greatest degree of vesicle rupture activity with ~100% efficiency that exceeded the rupture activity of other tested mixtures, individual compounds, and past reported values with industrial surfactants. Importantly, 25/75 GML/LA micelles outperformed 50/50 GML/LA micelles, which were previously reported to have the greatest membrane-disruptive activity towards planar model membranes. We discuss the mechanistic principles behind how antimicrobial lipid engineering can influence membrane-disruptive activity in terms of optimizing the balance between competitive membrane remodeling processes and inducing anisotropic vs. isotropic spontaneous curvature in lipid membrane systems. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 3rd Edition)
Show Figures

Figure 1

16 pages, 3945 KiB  
Article
Characterization of Silicate Glass/Mullite Composites Based on Coal Fly Ash Cenospheres as Effective Gas Separation Membranes
by Elena V. Fomenko, Elena S. Rogovenko, Natalia N. Anshits, Leonid A. Solovyov and Alexander G. Anshits
Materials 2023, 16(21), 6913; https://doi.org/10.3390/ma16216913 - 27 Oct 2023
Cited by 1 | Viewed by 1317
Abstract
Membrane technology is a promising method for gas separation. Due to its low energy consumption, environmental safety, and ease of operation, membrane separation has a distinct advantage over the cryogenic distillation conventionally used to capture light inert gases. For efficient gas recovery and [...] Read more.
Membrane technology is a promising method for gas separation. Due to its low energy consumption, environmental safety, and ease of operation, membrane separation has a distinct advantage over the cryogenic distillation conventionally used to capture light inert gases. For efficient gas recovery and purification, membrane materials should be highly selective, highly permeable, thermally stable, and low-cost. Currently, many studies are focused on the development of high-tech materials with specific properties using industrial waste. One of the promising waste products that can be recycled into membrane materials with improved microstructure is cenospheres—hollow aluminosilicate spherical particles that are formed in fly ash from coal combustion during power generation. For this purpose, based on narrow fractions of fly ash cenospheres containing single-ring and network structure globules, silicate glass/mullite composites were prepared, characterized, and tested for helium–neon mixture separation. The results indicate that the fragmented structure of the cenosphere shells with areas enriched in SiO2 without modifier oxides, formed due to the crystallization of defective phases of mullite, quartz, cristobalite, and anorthite, significantly facilitates the gas transport process. The permeability coefficients He and Ne exceed similar values for silicate glasses; the selectivity corresponds to a high level even at a high temperature: αHe/Ne—22 and 174 at 280 °C. Full article
(This article belongs to the Special Issue Synthesis and Structure of Advanced Materials)
Show Figures

Figure 1

17 pages, 8297 KiB  
Article
Natural Nitrogen-Bearing and Phosphorus-Bearing Nanoparticles in Surface Sediments of the Pearl River Estuary, China: Implications for Nitrogen and Phosphorus Cycling in Estuarine and Coastal Ecosystems
by Guoqiang Wang, Tianjian Yang, Mengmeng Zhao, Ting Li, Cai Zhang, Qinghua Chen, Xinyue Wen and Lirong Dang
Sustainability 2023, 15(19), 14301; https://doi.org/10.3390/su151914301 - 27 Sep 2023
Cited by 1 | Viewed by 1695
Abstract
Eutrophication creates multiple environmental problems, threatening the ecological security and sustainability of estuarine and coastal ecosystems worldwide. Key nutrients of concern are nitrogen (N) and phosphorus (P), which are the main controls in eutrophication. Considering that sediments are inseparable sinks of N and [...] Read more.
Eutrophication creates multiple environmental problems, threatening the ecological security and sustainability of estuarine and coastal ecosystems worldwide. Key nutrients of concern are nitrogen (N) and phosphorus (P), which are the main controls in eutrophication. Considering that sediments are inseparable sinks of N and P, concern has grown regarding the forms in which N and P occur in the surface sediments of estuaries and coastal areas. Nonetheless, studies on the natural N-bearing or P-bearing nanoparticles in estuarine and coastal sediments have rarely been reported. Herein, the surface sediments (0–5 cm) of the Pearl River Estuary in China were collected and subjected to analysis. Using high-resolution transmission electron microscopy (HR-TEM) analysis, numerous natural N-bearing and P-bearing nanoparticles were observed. The results revealed that there are some differences in the occurrence forms of N and P in nanoparticles, suggesting that N and P could be adsorbed by nanoparticles of minerals such as hematite, goethite, muscovite, anorthite and quartz in estuarine and coastal environments, and further form N-bearing and P-bearing nanoparticles. These nanoparticles contained small amounts of N (1.52–3.73 wt%) and P (0.22–1.12 wt%), and were mainly single crystal or polycrystalline in form, with sizes ranging from 10 nm × 50 nm to 250 nm × 400 nm. In addition, P was shown to exist in the form of Ca and Fe phosphate nanoparticles in the estuarine sediments. The Ca and Fe phosphate nanoparticles had higher phosphorus content (5.02–9.97 wt%), mainly amorphous, with sizes ranging from 50 nm × 120 nm to 250 nm × 400 nm. Moreover, N-bearing and P-bearing nanoparticles could influence the migration, precipitation and release processes of N and P, and play a certain role in the N-cycling and P-cycling of estuarine and coastal ecosystems. Furthermore, we explored the role of N-bearing and P-bearing nanoparticles in the N-cycling and P-cycling in estuarine and coastal ecosystems. Thus, this study could provide new ideas for water environment management and other related research fields. Full article
Show Figures

Figure 1

Back to TopTop