Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Peptide Synthesis
2.3. AFM Studies
2.4. QCM-D Studies
2.5. Frequency Response Cooperativity Model
- This scaling factor of the hyperbolic term describes the additive contribution of the process.
- The hyperbolic term multiplication constant of kobs shifts the sigmoidal curve of the process horizontally. This term is both related to the time at which the process happens at maximum velocity and the time at which half of the process shift has accumulated.
- : This is the time shift for the point of inflection of the sigmoid curve for the process. At this time, the curve both has the maximum rate of change and is at one-half of the final sensor frequency shift change.
- A vertical shift of the process curve below the horizontal axis. Our physical interpretation is that this shift fits the time of the limit of deflection, the amount of elapsed time prior to the deflection shift in sensor frequency. The initial value for this shift in curve fitting begins at zero. See Figure S10 for the limit of deflection (LOD) as a function of frequency in our adsorption measurements. The higher LOD values show when the emergence of the change in sensor frequency is more sudden and when less gradual growth kinetics can be observed.
2.6. Peak Deconvolution
3. Results and Discussion
3.1. Peptide Assembly at Low Concentrations
3.2. Experimental Evaluation of Peptide Adsorption over Time
3.3. Effect of Ionic Conditions on Peptide Adsorption
3.4. Cooperativity-Based Modeling of Peptide Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasemo, B. Biological surface science. Surf. Sci. 2002, 500, 656–677. [Google Scholar] [CrossRef]
- Gao, W.; Chen, Y.; Li, B.; Liu, S.-P.; Liu, X.; Jiang, Q. Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates. Nat. Commun. 2020, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, M.; Bu, H.; Zia, D.S.; Dai, P.; Liu, J. Nanomaterials for molecular recognition: Specific adsorption and regulation of nanozyme activities. Mater. Chem. Front. 2023, 7, 3625–3640. [Google Scholar] [CrossRef]
- Du, P.; Xu, S.; Xu, Z.K.; Wang, Z.G. Bioinspired Self-Assembling Materials for Modulating Enzyme Functions. Adv. Funct. Mater. 2021, 31, 2104819. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lu, X.-M.; Zhang, M.-R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater. 2022, 11, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Sohail, M.; Zhao, J.; Hu, F.; Li, Y.; Wang, P.; Zhang, L. Applications of Material-Binding Peptides: A Review. ACS Biomater. Sci. Eng. 2022, 8, 4738–4750. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Knecht, M.R. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem. Rev. 2017, 117, 12641–12704. [Google Scholar] [CrossRef] [PubMed]
- Pushpavanam, K.; Ma, J.; Cai, Y.; Naser, N.Y.; Baneyx, F. Solid-Binding Proteins: Bridging Synthesis, Assembly, and Function in Hybrid and Hierarchical Materials Fabrication. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 333–357. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Care, A.; Lord, M.S.; Walsh, T.R.; Sunna, A. Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides. New Biotechnol. 2019, 52, 9–18. [Google Scholar] [CrossRef]
- Care, A.; Bergquist, P.L.; Sunna, A. Solid-binding peptides: Smart tools for nanobiotechnology. Trends Biotechnol. 2015, 33, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, D.B.; Gooding, J.J.; Erokhin, P. Kinetics of irreversible adsorption with diffusion: Application to biomolecule immobilization. Langmuir 2002, 18, 1770–1776. [Google Scholar] [CrossRef]
- Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.F.; Ugliengo, P. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev. 2013, 113, 4216–4313. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.H.; Palafox-Hernandez, J.P.; Law, W.C.; Hughes, Z.E.; Swihart, M.T.; Prasad, P.N.; Knecht, M.R.; Walsh, T.R. Biomolecular Recognition Principles for Bionanocombinatorics: An Integrated Approach To Elucidate Enthalpic and Entropic Factors. ACS Nano 2013, 7, 9632–9646. [Google Scholar] [CrossRef]
- Hellner, B.; Lee, S.B.; Subramaniam, A.; Subramanian, V.R.; Baneyx, F. Modeling the Cooperative Adsorption of Solid-Binding Proteins on Silica: Molecular Insights from Surface Plasmon Resonance Measurements. Langmuir 2019, 35, 5013–5020. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, E.; Weidenhaupt, M.; Picart, C. Practical guide to characterize biomolecule adsorption on solid surfaces (Review). Biointerphases 2018, 13, 06D303. [Google Scholar] [CrossRef]
- Tamerler, C.; Oren, E.E.; Duman, M.; Venkatasubramanian, E.; Sarikaya, M. Adsorption kinetics of an engineered gold binding peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir 2006, 22, 7712–7718. [Google Scholar] [CrossRef]
- Seker, U.O.; Wilson, B.; Dincer, S.; Kim, I.W.; Oren, E.E.; Evans, J.S.; Tamerler, C.; Sarikaya, M. Adsorption behavior of linear and cyclic genetically engineered platinum binding peptides. Langmuir 2007, 23, 7895–7900. [Google Scholar] [CrossRef]
- So, C.R.; Tamerler, C.; Sarikaya, M. Adsorption, Diffusion, and Self-Assembly of an Engineered Gold-Binding Peptide on Au(111) Investigated by Atomic Force Microscopy. Angew. Chem. Int. Ed. 2009, 48, 5174–5177. [Google Scholar] [CrossRef]
- So, C.R.; Kulp, J.L.; Oren, E.E.; Zareie, H.; Tamerler, C.; Evans, J.S.; Sarikaya, M. Molecular Recognition and Supramolecular Self-Assembly of a Genetically Engineered Gold Binding Peptide on Au{111}. ACS Nano 2009, 3, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Yurtsever, A.; Sun, L.; Hirata, K.; Fukuma, T.; Rath, S.; Zareie, H.; Watanabe, S.; Sarikaya, M. Molecular Scale Structure and Kinetics of Layer-by-Layer Peptide Self-Organization at Atomically Flat Solid Surfaces. ACS Nano 2023, 17, 7311–7325. [Google Scholar] [CrossRef]
- Weiss, J.N. The Hill equation revisited: Uses and misuses. FASEB J. 1997, 11, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Brandholt, S.; Stockmar, F.; Trouillet, V.; Bruns, M.; Nienhaus, G.U. Effect of Protein Adsorption on the Fluorescence of Ultrasmall Gold Nanoclusters. Small 2012, 8, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.M.; Brust, M.; Cooper, D.L.; Volk, M. Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation. Anal. Chem. 2017, 89, 6807–6814. [Google Scholar] [CrossRef] [PubMed]
- Boulos, S.P.; Davis, T.A.; Yang, J.A.; Lohse, S.E.; Alkilany, A.M.; Holland, L.A.; Murphy, C.J. Nanoparticle-protein interactions: A thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir 2013, 29, 14984–14996. [Google Scholar] [CrossRef] [PubMed]
- Naphtali, L.M.; Polinski, L.M. A Novel Technique For Characterization of Adsorption Rates on Hetergeneous Surfaces. J. Phys. Chem. 1963, 67, 369–375. [Google Scholar] [CrossRef]
- Reyes, S.C.; Sinfelt, J.H.; DeMartin, J.G.; Ernst, R.H.; Iglesia, E. Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids. J. Phys. Chem. B 1997, 101, 614–622. [Google Scholar] [CrossRef]
- Karacan, S. Application of a non-linear long range predictive control to a packed distillation column. Chem. Eng. Process 2003, 42, 943–953. [Google Scholar] [CrossRef]
- Živković, L.A.; Vidaković-Koch, T.; Petkovska, M. Computer-Aided Nonlinear Frequency Response Method for Investigating the Dynamics of Chemical Engineering Systems. Processes 2020, 8, 1354. [Google Scholar] [CrossRef]
- Ilić, M.; Petkovska, M.; Seidel-Morgenstern, A. Nonlinear frequency response functions of a chromatographic column—A critical evaluation of their potential for estimation of single solute adsorption isotherms. Chem. Eng. Sci. 2007, 62, 1269–1281. [Google Scholar] [CrossRef]
- Reviakine, I.; Johannsmann, D.; Richter, R.P. Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces. Anal. Chem. 2011, 83, 8838–8848. [Google Scholar] [CrossRef] [PubMed]
- McNamara, T.P.; Blanford, C.F. A sensitivity metric and software to guide the analysis of soft films measured by a quartz crystal microbalance. Analyst 2016, 141, 2911–2919. [Google Scholar] [CrossRef] [PubMed]
- Easley, A.D.; Ma, T.; Eneh, C.I.; Yun, J.; Thakur, R.M.; Lutkenhaus, J.L. A practical guide to quartz crystal microbalance with dissipation monitoring of thin polymer films. J. Polym. Sci. 2022, 60, 1090–1107. [Google Scholar] [CrossRef]
- Tonda-Turo, C.; Carmagnola, I.; Ciardelli, G. Quartz Crystal Microbalance With Dissipation Monitoring: A Powerful Method to Predict the in vivo Behavior of Bioengineered Surfaces. Front. Bioeng. Biotech. 2018, 6, 158. [Google Scholar] [CrossRef]
- Limo, M.J.; Sola-Rabada, A.; Boix, E.; Thota, V.; Westcott, Z.C.; Puddu, V.; Perry, C.C. Interactions between Metal Oxides and Biomolecules: From Fundamental Understanding to Applications. Chem. Rev. 2018, 118, 11118–11193. [Google Scholar] [CrossRef]
- Evans, J.S.; Samudrala, R.; Walsh, T.R.; Oren, E.E.; Tamerler, C. Molecular design of inorganic-binding polypeptides. Mrs Bull. 2008, 33, 514–518. [Google Scholar] [CrossRef]
- Hnilova, M.; Khatayevich, D.; Carlson, A.; Oren, E.E.; Gresswell, C.; Zheng, S.; Ohuchi, F.; Sarikaya, M.; Tamerler, C. Single-step fabrication of patterned gold film array by an engineered multi-functional peptide. J. Colloid. Interf. Sci. 2012, 365, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Hnilova, M.; Karaca, B.T.; Park, J.; Jia, C.; Wilson, B.R.; Sarikaya, M.; Tamerler, C. Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly. Biotechnol. Bioeng. 2012, 109, 1120–1130. [Google Scholar] [CrossRef]
- Cetinel, S.; Caliskan, H.B.; Yucesoy, D.T.; Donatan, A.S.; Yuca, E.; Urgen, M.; Karaguler, N.G.; Tamerler, C. Addressable self-immobilization of lactate dehydrogenase across multiple length scales. Biotechnol. J. 2013, 8, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.B.; Alvisi, N.; de Haas, R.J.; Zhang, Z.S.; Zuilhof, H.; de Vries, R. Modular Design for Proteins Assembling into Antifouling Coatings: Case of Gold Surfaces. Langmuir 2023, 39, 9290–9299. [Google Scholar] [CrossRef]
- Kamathewatta, N.J.B.; Nguyen, T.M.; Lietz, R.; Hughes, T.; Karaca, B.T.; Deay, D.O.; Richter, M.L.; Tamerler, C.; Berrie, C.L. Probing Selective Self-Assembly of Putrescine Oxidase with Controlled Orientation Using a Genetically Engineered Peptide Tag. Langmuir 2021, 37, 7536–7547. [Google Scholar] [CrossRef]
- Shao, L.; Ma, J.R.; Prelesnik, J.L.; Zhou, Y.C.; Nguyen, M.; Zhao, M.F.; Jenekhe, S.A.; Kalinin, S.V.; Ferguson, A.L.; Pfaendtner, J.; et al. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem. Rev. 2022, 122, 17397–17478. [Google Scholar] [CrossRef]
- Jorgenson, T.D.; Zareie, H.M.; Sarikaya, M.; Overney, R.M. Symbiotic assembly of peptide nano-mosaics at solid interfaces. Nanoscale 2021, 13, 7735–7743. [Google Scholar] [CrossRef]
- Lee, Y.S.; Baek, S.; Lee, H.; Reginald, S.S.; Kim, Y.; Kang, H.; Choi, I.G.; Chang, I.S. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer. ACS Appl. Mater. Interfaces 2018, 10, 28615–28626. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, Y.S.; Reginald, S.S.; Baek, S.; Lee, E.M.; Choi, I.G.; Chang, I.S. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide. Biosens. Bioelectron. 2020, 165, 112427. [Google Scholar] [CrossRef] [PubMed]
- Dedisch, S.; Wiens, A.; Davari, M.D.; Soder, D.; Rodriguez-Emmenegger, C.; Jakob, F.; Schwaneberg, U. Matter-tag: A universal immobilization platform for enzymes on polymers, metals, and silicon-based materials. Biotechnol. Bioeng. 2020, 117, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Care, A.; Petroll, K.; Gibson, E.S.Y.; Bergquist, P.L.; Sunna, A. Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides. Biotechnol. Biofuels 2017, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Huber, M.C.; Cölfen, H.; Schiller, S.M. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures. Nat. Commun. 2015, 6, 6705. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.M.; Ki, M.-R.; Lee, C.; Pack, S.P. Nanosized and tunable design of biosilica particles using novel silica-forming peptide-modified chimeric ferritin templates. J. Ind. Eng. Chem. 2019, 73, 198–204. [Google Scholar] [CrossRef]
- Xie, M.C.; Slocik, J.M.; Kelley-Loughnane, N.; Knecht, M.R. Effect of a Mixed Peptide Ligand Layer on Au Nanoparticles for Optical Control of Catalysis. ACS Appl. Nano Mater. 2022, 5, 9379–9388. [Google Scholar] [CrossRef]
- Corni, S.; Hnilova, M.; Tamerler, C.; Sarikaya, M. Conformational Behavior of Genetically-Engineered Dodecapeptides as a Determinant of Binding Affinity for Gold. J. Phys. Chem. C 2013, 117, 16990–17003. [Google Scholar] [CrossRef]
- Palafox-Hernandez, J.P.; Lim, C.K.; Tang, Z.H.; Drew, K.L.M.; Hughes, Z.E.; Li, Y.; Swihart, M.T.; Prasad, P.N.; Knecht, M.R.; Walsh, T.R. Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 1050–1060. [Google Scholar] [CrossRef]
- Coppage, R.; Slocik, J.M.; Briggs, B.D.; Frenkel, A.I.; Heinz, H.; Naik, R.R.; Knecht, M.R. Crystallographic Recognition Controls Peptide Binding for Bio-Based Nanomaterials. J. Am. Chem. Soc. 2011, 133, 12346–12349. [Google Scholar] [CrossRef] [PubMed]
- Hostert, J.D.; Loney, C.N.; Pramounmat, N.; Yan, K.; Su, Z.H.; Renner, J.N. Self-Assembly and Rearrangement of a Polyproline II Helix Peptide on Gold. Langmuir 2021, 37, 6115–6122. [Google Scholar] [CrossRef]
- Nguyen, M.A.; Hughes, Z.E.; Liu, Y.; Li, Y.; Swihart, M.T.; Knecht, M.R.; Walsh, T.R. Peptide-Mediated Growth and Dispersion of Au Nanoparticles in Water via Sequence Engineering. J. Phys. Chem. C 2018, 122, 11532–11542. [Google Scholar] [CrossRef]
- Donatan, S.; Sarikaya, M.; Tamerler, C.; Urgen, M. Effect of solid surface charge on the binding behaviour of a metal-binding peptide. J. R. Soc. Interface 2012, 9, 2688–2695. [Google Scholar] [CrossRef]
- Hnilova, M.; Oren, E.E.; Seker, U.O.S.; Wilson, B.R.; Collino, S.; Evans, J.S.; Tamerler, C.; Sarikaya, M. Effect of Molecular Conformations on the Adsorption Behavior of Gold-Binding Peptides. Langmuir 2008, 24, 12440–12445. [Google Scholar] [CrossRef]
- Suyetin, M.; Bag, S.; Anand, P.; Borkowska-Panek, M.; Gussmann, F.; Brieg, M.; Fink, K.; Wenzel, W. Modelling peptide adsorption energies on gold surfaces with an effective implicit solvent and surface model. J. Colloid. Interf. Sci. 2022, 605, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Hughes, Z.E.; Walsh, T.R. Probing nano-patterned peptide self-organisation at the aqueous graphene interface. Nanoscale 2018, 10, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Ilić, M.; Petkovska, M.; Seidel-Morgenstern, A. Estimation of single solute adsorption isotherms applying the nonlinear frequency response method using non-optimal frequencies. J. Chromatogr. A 2008, 1200, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Hughes, Z.E.; Nguyen, M.A.; Wang, J.; Liu, Y.; Swihart, M.T.; Poloczek, M.; Frazier, P.I.; Knecht, M.R.; Walsh, T.R. Tuning Materials-Binding Peptide Sequences toward Gold- and Silver-Binding Selectivity with Bayesian Optimization. ACS Nano 2021, 15, 18260–18269. [Google Scholar] [CrossRef] [PubMed]
- Palafox-Hernandez, J.P.; Tang, Z.; Hughes, Z.E.; Li, Y.; Swihart, M.T.; Prasad, P.N.; Walsh, T.R.; Knecht, M.R. Comparative Study of Materials-Binding Peptide Interactions with Gold and Silver Surfaces and Nanostructures: A Thermodynamic Basis for Biological Selectivity of Inorganic Materials. Chem. Mater. 2014, 26, 4960–4969. [Google Scholar] [CrossRef]
- Latour, R.A. Fundamental Principles of the Thermodynamics and Kinetics of Protein Adsorption to Material Surfaces. Colloids Surf. B 2020, 191, 110992. [Google Scholar] [CrossRef] [PubMed]
- Cloyd, A.K.; Boone, K.; Ye, Q.; Snead, M.L.; Spencer, P.; Tamerler, C. Engineered Peptides Enable Biomimetic Route for Collagen Intrafibrillar Mineralization. Int. J. Mol. Sci. 2023, 24, 6355. [Google Scholar] [CrossRef] [PubMed]
- Woolfolk, S.K.; Cloyd, A.K.; Ye, Q.; Boone, K.; Spencer, P.; Snead, M.L.; Tamerler, C. Peptide-Enabled Nanocomposites Offer Biomimetic Reconstruction of Silver Diamine Fluoride-Treated Dental Tissues. Polymers 2022, 14, 1368. [Google Scholar] [CrossRef]
- Johnson, C.; Bader, T.; Boone, K.; Nair, T.; Hashim, A.; Tamerler, C.; Berrie, C.L. Multi-Step Self-Assembly of the Gold Binding Peptide AuBP1. J. Phys. Chem. B, 2024; Submitted. [Google Scholar]
- Eslami, H.; Müller-Plathe, F. Self-Assembly Pathways of Triblock Janus Particles into 3D Open Lattices. Small 2024, 20, 2306337. [Google Scholar] [CrossRef] [PubMed]
- Keshtkar, M.; Mehdipour, N.; Eslami, H. Supramolecular Self-Assembly of Dipalmitoylphosphatidylcholine and Carbon Nanotubes: A Dissipative Particle Dynamics Simulation Study. Nanomaterials 2022, 12, 2653. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, W.M.; Frenkel, D. Self-Assembly of Structures with Addressable Complexity. J. Am. Chem. Soc. 2016, 138, 2457–2467. [Google Scholar] [CrossRef]
- Corni, S. Affinity and Selectivity of Peptides for Inorganic Materials: A Thermodynamic Discussion of the Role of Conformational Flexibility. JOM 2015, 67, 781–787. [Google Scholar] [CrossRef]
- Singh, G.; Brovchenko, I.; Oleinikova, A.; Winter, R. Peptide Aggregation in Finite Systems. Biophys. J. 2008, 95, 3208–3221. [Google Scholar] [CrossRef]
- Zapadka, K.L.; Becher, F.J.; Gomes Dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef] [PubMed]
- Sevlever, F.; Di Bella, J.P.; Ventura, A.C. Discriminating between negative cooperativity and ligand binding to independent sites using pre-equilibrium properties of binding curves. PLoS Comput. Biol. 2020, 16, e1007929. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Hu, Q.L.; Lan, R.; He, L.R.; Liu, H.Y.; Pei, X.J. A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. J. Environ. Manag. 2023, 329, 117104. [Google Scholar] [CrossRef]
- Tamerler, C. Created in BioRender. 2025. Available online: https://BioRender.com/r14n820 (accessed on 3 October 2024).
Keq (M−1) | ∆GB.E. (kcal/mol) | Concentrations | Ionic Strength | Model | |
---|---|---|---|---|---|
Current Study | 1.06 ± 0.75 × 106 | −8.23 ± 0.16 | 0.05–0.75 µM | 1 mM phosphate buffer with 10 mM KCl | Hill equation |
Hnilova, et al., 2008 [57] | 3.24 ± 1.31 × 106 | −8.9 ± 0.2 | 0.23–2 µM | 10 mM phosphate buffer with 100 mM KCl | Langmuir model |
Hughes, et al., 2021 [61] | Not reported | −9.73 ± 0.5 | 2–10 µM | Not reported | Langmuir model |
Palafox-Hernandez, et al., 2014 [62] | Not reported | −8.98 ± 0.22 | 2–10 µM | Not reported | Langmuir model |
Tang, et al., 2013 [14] | 4.0 × 106 | −8.99 ± 0.22 | 2–10 µM | Not reported | Langmuir model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bader, T.; Boone, K.; Johnson, C.; Berrie, C.L.; Tamerler, C. Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model. Biomimetics 2025, 10, 107. https://doi.org/10.3390/biomimetics10020107
Bader T, Boone K, Johnson C, Berrie CL, Tamerler C. Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model. Biomimetics. 2025; 10(2):107. https://doi.org/10.3390/biomimetics10020107
Chicago/Turabian StyleBader, Taylor, Kyle Boone, Chris Johnson, Cindy L. Berrie, and Candan Tamerler. 2025. "Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model" Biomimetics 10, no. 2: 107. https://doi.org/10.3390/biomimetics10020107
APA StyleBader, T., Boone, K., Johnson, C., Berrie, C. L., & Tamerler, C. (2025). Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model. Biomimetics, 10(2), 107. https://doi.org/10.3390/biomimetics10020107