Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,021)

Search Parameters:
Keywords = single-cell-protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3183 KB  
Article
Effects of Exogenous SARS-CoV-2 S1 Protein and mRNA Vaccines on Mixed Neuronal–Glial Cell Cultures
by Vytenis Markevičius, Eimina Dirvelytė-Valauskė, Urtė Neniškytė and Vilmantė Borutaitė
Medicina 2026, 62(1), 198; https://doi.org/10.3390/medicina62010198 (registering DOI) - 17 Jan 2026
Abstract
Background and Objectives: SARS-CoV-2 produces potentially pathogenic molecules, such as single-stranded RNA and spike proteins, which can potentially activate microglial cells. In this study, we aimed to investigate whether SARS-CoV-2 spike protein S1 and mRNA vaccines can cause neurotoxicity directly or through [...] Read more.
Background and Objectives: SARS-CoV-2 produces potentially pathogenic molecules, such as single-stranded RNA and spike proteins, which can potentially activate microglial cells. In this study, we aimed to investigate whether SARS-CoV-2 spike protein S1 and mRNA vaccines can cause neurotoxicity directly or through microglial involvement. Materials and Methods: Primary cerebellar granule cell cultures isolated from Wistar rats and organotypic hippocampal slice cultures from transgenic C57BL/6J mice were used in the experiments. Imaging and quantitative analysis of cell viability, proliferation, and phagocytic activity were performed using light and fluorescence microscopy. Results: The exogenous SARS-CoV-2 S1 protein at 50 µg/mL concentration induced neuronal cell death in neuronal–glial co-cultures and stimulated microglial proliferation during the first 3 days of exposure without an effect on inflammatory cytokine secretion. Single application of Tozinameran/Riltozinameran and Original/Omicron BA. 4-5 vaccines did not affect neuronal viability and total neuronal number in cell co-cultures after 7 days of exposure. In contrast, three repeated treatments with mRNA vaccines at 6 ng/mL caused microglial proliferation without affecting microglial phagocytosis and TNF-α release. In organotypic brain slice cultures, only Tozinameran/Riltozinameran stimulated microglial cell proliferation in female brain slices, while male brain slices remained unaffected by both vaccines, indicating sex-dependent effects. Conclusions: The findings suggest that mRNA vaccines do not exert neurotoxic effects in primary neuronal–glial co-cultures, but induce microglial proliferation, particularly in female brains in the absence of inflammatory cytokine release. SARS-CoV-2 S1 protein at high concentrations directly induces neuronal death. Full article
15 pages, 8399 KB  
Article
Magnolol Ameliorates Cisplatin-Induced Acute Kidney Injury with Activation of Nrf2-Associated Antioxidant Responses
by Mi-Gyeong Gwon, Min Hui Park and Jaechan Leem
Curr. Issues Mol. Biol. 2026, 48(1), 96; https://doi.org/10.3390/cimb48010096 (registering DOI) - 17 Jan 2026
Abstract
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. [...] Read more.
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. This study evaluated the renoprotective effects of MG in a murine model of CDDP-induced AKI. Male C57BL/6 mice received MG (20 mg/kg) via daily intraperitoneal injection for four consecutive days, starting one day before a single CDDP injection. MG significantly reduced the serum concentrations of blood urea nitrogen and creatinine. Histopathological assessment revealed attenuated tubular damage and reduced expression of tubular injury markers. MG inhibited pro-inflammatory cytokines at both systemic and renal levels, alleviated endoplasmic reticulum stress, and suppressed activation of mitogen-activated protein kinase signaling pathways. Apoptotic damage was mitigated, as shown by the fewer TUNEL-positive cells and lowered expression of pro-apoptotic markers. In parallel, ferroptotic processes were alleviated through downregulation of pro-ferroptotic proteins and preservation of key antioxidant regulators. Importantly, MG restored nuclear factor erythroid 2-related factor 2 activity and upregulated downstream antioxidant effectors. These findings highlight the multi-targeted renoprotective actions of MG and support its possible utility as a therapeutic agent to prevent CDDP-induced renal injury. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Kidney Diseases)
Show Figures

Figure 1

26 pages, 10854 KB  
Article
HSP90α and KLK6 Coregulate Stress-Induced Prostate Cancer Cell Motility
by Katelyn L. O’Neill, Johnny W. Zigmond and Raymond Bergan
Cells 2026, 15(2), 166; https://doi.org/10.3390/cells15020166 - 16 Jan 2026
Viewed by 198
Abstract
Prostate cancer (PCa) metastasis is reliant on the activity of proteases, such as matrix metalloproteinase-2 (MMP-2). While increased extracellular heat shock protein 90α (eHSP90α) has been linked to increased MMP-2 activity, this has not been examined in the context of cellular stress. We [...] Read more.
Prostate cancer (PCa) metastasis is reliant on the activity of proteases, such as matrix metalloproteinase-2 (MMP-2). While increased extracellular heat shock protein 90α (eHSP90α) has been linked to increased MMP-2 activity, this has not been examined in the context of cellular stress. We examined stress-induced eHSP90α in human prostate cell lines by immunoblot. Fluorometric gelatin dequenching and zymography assays measured MMP activity. Wound healing and Matrigel drop invasion assays were used to quantify cell motility. HSP90α knockout (KO) cells were established with CRISPR/Cas9. Proteases were profiled with molecular inhibitors and protein arrays and validated by siRNA knockdown, immunoblot, and motility assays. Stress increased eHSP90 in four out of four human prostate cell lines examined. Surprisingly, it concurrently decreased MMP-2 activity. The functional relevance of this was demonstrated when conditioned media from stressed cells decreased the motility of non-stressed cells. Screening for protease inhibitors that would rescue stress-induced decreases in MMP-2 activity identified a single serine protease inhibitor: aprotinin. Yet rescue with aprotinin was lost in HSP90α KO cells. A protease array identified stress-induced increases in kallikrein-related peptidase 6 (KLK6). Knockdown of KLK6 rescued stress-induced MMP-2 activity and cell motility. In conclusion, we identify a novel stress-induced extracellular network that regulates MMP-2 activity and cell motility. We identified KLK6 as a stress-induced extracellular protease leading to decreased MMP-2 activity and cellular invasion, while eHSP90α is required for the rescue of MMP-2 activity once KLK6 is neutralized. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

20 pages, 6292 KB  
Article
Chloroquine Potentiates the Chemotherapeutic Effect of Carboplatin and ATR/Chk1 Inhibitors by Increasing the Replication Stress
by Maria Zamkova, Nadezhda Persiyantseva, Svetlana Vikhrova and Dmitriy Kazansky
Int. J. Mol. Sci. 2026, 27(2), 856; https://doi.org/10.3390/ijms27020856 - 15 Jan 2026
Viewed by 68
Abstract
Lysosomal inhibition by different agents like chloroquine and bafilomycin A is known to sensitize some tumor cells to chemotherapeutic drugs. The mechanism and signaling pathways are still under investigation. We showed that chloroquine sensitized tumor cells (MCF7, SKBR3, HCT116) to drugs (carboplatin, cisplatin) [...] Read more.
Lysosomal inhibition by different agents like chloroquine and bafilomycin A is known to sensitize some tumor cells to chemotherapeutic drugs. The mechanism and signaling pathways are still under investigation. We showed that chloroquine sensitized tumor cells (MCF7, SKBR3, HCT116) to drugs (carboplatin, cisplatin) treatment. Treatment with the combination of platinum drugs and chloroquine resulted in the increased rate of apoptosis compared with single agent treatment. Moreover, we demonstrated the inhibition of the resumption of cell proliferation after cell cycle arrest induced by drugs treatment. Cells treated with the combination of carboplatin (or cisplatin) and chloroquine demonstrated the significant increase in Chk1 protein phosphorylation (Ser345), which together with S-phase increase indicated the induction of replication stress compared to cells treated with carboplatin (or cisplatin) alone. The rescue experiment performed by supplementation the combination of carboplatin and chloroquine with deoxyribonucleotides (dNTPs) demonstrated the reverse of inhibition of cells’ re-proliferation after cell cycle arrest caused by this combination of drugs. Treatment with carboplatin and ATR inhibitor (ceralasertib) greatly increased the level of phospho-Chk1 and induced the replication stress, which is consistent with previous studies. Supplementation of the above drug combination with chloroquine further increased Chk1 phosphorylation and decreased the number of cells able to re-proliferate after the induced stress. Here, we also demonstrated that dNTPs’ supplementation reversed the effect of chloroquine. Similar results were obtained with the combination of carboplatin and Chk1 inhibitor (prexasertib). It was also demonstrated that chloroquine could potentiate the effect of single agent treatment of tumor cells with ATRi/Chk1i in MCF7 cells. Here, we proposed a novel explanation for the chloroquine ability to potentiate the effect of chemotherapy. The results clearly demonstrated that stress induced by chloroquine is due to its ability to increase the replication stress and to reduce the availability of nucleotides. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 3381 KB  
Article
Multi-Omics Evidence Linking Depression to MASLD Risk via Inflammatory Immune Signaling
by Keye Lin, Yiwei Liu, Xitong Liang, Yiming Zhang, Zijie Luo, Fei Chen, Runhua Zhang, Peiyu Ma and Xiang Chen
Biomedicines 2026, 14(1), 174; https://doi.org/10.3390/biomedicines14010174 - 13 Jan 2026
Viewed by 187
Abstract
Background: Depression and Metabolic Dysfunction-Associated Steatotic Fatty Liver Disease (MASLD) are common chronic diseases, respectively. However, the causal and molecular links between them remain unclear. In order to explore whether depression contributes to an increased risk of MASLD and whether inflammation mediates [...] Read more.
Background: Depression and Metabolic Dysfunction-Associated Steatotic Fatty Liver Disease (MASLD) are common chronic diseases, respectively. However, the causal and molecular links between them remain unclear. In order to explore whether depression contributes to an increased risk of MASLD and whether inflammation mediates this effect, we integrated multi-level evidence from the epidemiology of the National Health and Nutrition Examination Survey (NHANES), the genetics of GWAS, the transcriptomes of GEO, and single-cell RNA sequencing datasets. Methods: A multi-level integrative analysis strategy was used to validate this pathway. First, a cross-sectional epidemiological analysis based on NHANES data was used to reveal the association between depression and MASLD, and to explore the mediating role of inflammation and liver injury markers. Secondly, a two-sample Mendelian randomization analysis was used to infer the causal direction of depression and MASLD, and to verify the mediating effect of systemic inflammation and liver injury indicators at the genetic level. Then, the transcriptome co-expression network analysis and machine learning were used to screen the common hub genes connecting the two diseases. Finally, single-cell transcriptome data were used to characterize the dynamic expression of potential key genes during disease progression at cellular resolution. Results: Depression significantly increased the risk of MASLD, especially in women (OR = 1.39, 95%CI [1.17–1.65]). Parallel mediation analysis showed that high-sensitivity C-reactive protein (hs-CRP) (p < 0.001), γ-glutamyltransferase (GGT) (p < 0.001), and alkaline phosphatase (ALP) (p < 0.001) mediated this relationship. Mendelian randomization analysis confirmed the unidirectional causal effect of depression on MASLD, and there was no reverse association (β = 0.483, SE = 0.146, p = 0.001). Weighted gene co-expression network analysis and machine learning identified CD40LG as a potential molecular bridge between depression-associated immune modules and MASLD. In addition, single-cell data analysis revealed a stage-specific trend of CD40LG expression in CD4+ T cells during MASLD progression, while its receptor CD40 was also activated in B cells. In the female sample, CD40LG maintained an upward trend. However, the stability of this result is limited by the limited sample size. Conclusions: This study provides converging multi-omics evidence that depression plays a causal role in MASLD through inflammation-mediated immune signaling. The CD40LG-CD40 axis has emerged as an immune mechanism that transposes depression into the pathogenesis of MASLD, providing a potential target for the intervention of gender-specific metabolic liver disease. Full article
Show Figures

Figure 1

21 pages, 3780 KB  
Article
Chromatin Nano-Organization in Peripheral Blood Mononuclear Cells After In-Solution Irradiation with the Beta-Emitter Lu-177
by Myriam Schäfer, Razan Muhtadi, Sarah Schumann, Felix Bestvater, Uta Eberlein, Georg Hildenbrand, Harry Scherthan and Michael Hausmann
Biomolecules 2026, 16(1), 142; https://doi.org/10.3390/biom16010142 - 13 Jan 2026
Viewed by 113
Abstract
Background: In nuclear medicine, numerous cancer types are treated via internal irradiation with radiopharmaceuticals, including low-LET (linear energy transfer) beta-emitting radionuclides like Lu-177. In most cases, such treatments lead to low-dose exposure of organ systems with β-irradiation, which induces only few isolated [...] Read more.
Background: In nuclear medicine, numerous cancer types are treated via internal irradiation with radiopharmaceuticals, including low-LET (linear energy transfer) beta-emitting radionuclides like Lu-177. In most cases, such treatments lead to low-dose exposure of organ systems with β-irradiation, which induces only few isolated DSBs (double-strand breaks) in the nuclei of hit cells, the most threatening DNA damage type. That damaging effect contrasts with the clustering of DNA damage and DSBs in nuclei traversed by high-LET particles (α particles, ions, etc.). Methods: After in-solution β-irradiation for 1 h with Lu-177 leading to an absorbed dose of about 100 mGy, we investigated the spatial nano-organization of chromatin at DSB damage sites, of repair proteins and of heterochromatin marks via single-molecule localization microscopy (SMLM) in PBMCs. For evaluation, mathematical approaches were used (Ripley distance frequency statistics, DBScan clustering, persistent homology and similarity measurements). Results: We analyzed, at the nanoscale, the distribution of the DNA damage response (DDR) proteins γH2AX, 53BP1, MRE11 and pATM in the chromatin regions surrounding a DSB. Furthermore, local changes in spatial H3K9me3 heterochromatin organization were analyzed relative to γH2AX distribution. SMLM measurements of the different fluorescent molecule tags revealed characteristic clustering of the DDR markers around one or two damage foci per PBMC cell nucleus. Ripley distance histograms suggested the concentration of MRE11 molecules inside γH2AX-clusters, while 53BP1 was present throughout the entire γH2AX clusters. Persistent homology comparisons for 53BP1, MRE11 and γH2AX by Jaccard index calculation revealed significant topological similarities for each of these markers. Since the heterochromatin organization of cell nuclei determines the identity of cell nuclei and correlates to genome activity, it also influences DNA repair. Therefore, the histone H3 tri methyl mark H3K9me3 was analyzed for its topology. In contrast to typical results obtained through photon irradiation, where γH2AX and H3K9me3 markers were well separated, the results obtained here also showed a close spatial proximity (“co-localization”) in many cases (minimum distance of markers = marker size), even with the strictest co-localization distance threshold (20 nm) for γH2AX and H3K9me3. The data support the results from the literature where only one DSB induced by low-dose low LET irradiation (<100 mGy) can remain without heterochromatin relaxation for subsequent repair. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 5093 KB  
Article
Single-Cell Tracking of Brewing Yeast Dynamics in Baijiu Fermentation Using GFP-Labeled Engineered Saccharomyces cerevisiae FSC01
by Yeyu Huang, Jie Meng, Xinglin Han, Dan Huang, Ruiqi Luo and Deliang Wang
Fermentation 2026, 12(1), 45; https://doi.org/10.3390/fermentation12010045 - 13 Jan 2026
Viewed by 217
Abstract
In view of the technical bottleneck of microbial dynamic monitoring during the solid-state fermentation of traditional Baijiu, this study introduced green fluorescent protein (GFP) labeling technology into the dominant Saccharomyces cerevisiae of Jiang-flavored Baijiu to construct the chromosomal integration engineering strain named FSC01. [...] Read more.
In view of the technical bottleneck of microbial dynamic monitoring during the solid-state fermentation of traditional Baijiu, this study introduced green fluorescent protein (GFP) labeling technology into the dominant Saccharomyces cerevisiae of Jiang-flavored Baijiu to construct the chromosomal integration engineering strain named FSC01. By designing an integrated recombinant plasmid containing the GFP gene and the geneticmycin resistance gene, an engineered strain that stably expresses fluorescent proteins was obtained by electroconversion. Flow cytometry verification showed that FSC01 showed excellent linear responses in the pure microbial system (R2 = 0.998) and the complex matrix of Baijiu jiupei (R2 = 0.981), with a detection limit of 102 cells/mL, and the detection cycle was shortened to 10 min. Solid-state fermentation simulation experiments show that the inoculation volume of FSC01 of 105 cells/kg can not only ensure the effective identification of fluorescence signals, but also does not significantly interfere with the growth and growth patterns of the original yeast (p > 0.05), which is highly consistent with the results of the traditional plate counting method. Dynamic monitoring shows that Saccharomyces cerevisiae during fermentation presents a typical succession pattern of “increase first and then decrease”, reaching a peak on the 7th day (1.2 × 107 cells/g), which is positively correlated with the base alcohol yield rate (26.7%). Compared with metagenomic (72 h) and PMA-qPCR (4 h) methods, this technology breaks through the limitations of specificity and timeliness of live bacteria detection, and provides a single-cell-level dynamic analysis tool for the digitization of traditional brewing processes. In the future, it will be expanded to monitor key functional microorganisms such as lactic acid bacteria through a multi-color fluorescent labeling system, and optimized pretreatment to eliminate starch granule interference, and promote the in-depth application of synthetic biology technology in the traditional fermentation industry. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

24 pages, 2708 KB  
Review
Berberine: A Negentropic Modulator for Multi-System Coordination
by Xiaolian Tian, Qingbo Chen, Yingying He, Yangyang Cheng, Mengyu Zhao, Yuanbin Li, Meng Yu, Jiandong Jiang and Lulu Wang
Int. J. Mol. Sci. 2026, 27(2), 747; https://doi.org/10.3390/ijms27020747 - 12 Jan 2026
Viewed by 242
Abstract
Berberine (BBR), a protoberberine alkaloid with a long history of medicinal use, has consistently demonstrated benefits in glucose–lipid metabolism and inflammatory balance across both preclinical and human studies. These diverse effects are not mediated by a single molecular target but by BBR’s capacity [...] Read more.
Berberine (BBR), a protoberberine alkaloid with a long history of medicinal use, has consistently demonstrated benefits in glucose–lipid metabolism and inflammatory balance across both preclinical and human studies. These diverse effects are not mediated by a single molecular target but by BBR’s capacity to restore network coordination among metabolic, immune, and microbial systems. At the core of this regulation is an AMP-activated Protein Kinase (AMPK)-centered mechanistic hub, integrating signals from insulin and nutrient sensing, Sirtuin 1/3 (SIRT1/3)-mediated mitochondrial adaptation, and inflammatory pathways such as nuclear Factor Kappa-light-chain-enhancer of Activated B cells (NF-κB) and NOD-, LRR- and Pyrin Domain-containing Protein 3 (NLRP3). This hub is dynamically regulated by system-level inputs from the gut, mitochondria, and epigenome, which in turn strengthen intestinal barrier function, reshape microbial and bile-acid metabolites, improve redox balance, and potentially reverse the epigenetic imprint of metabolic stress. These interactions propagate through multi-organ axes, linking the gut, liver, adipose, and vascular systems, thus aligning local metabolic adjustments with systemic homeostasis. Within this framework, BBR functions as a negentropic modulator, reducing metabolic entropy by fostering a coordinated balance among these interconnected systems, thereby restoring physiological order. Combination strategies, such as pairing BBR with metformin, Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors, and agents targeting the microbiome or inflammation, have shown enhanced efficacy and substantial translational potential. Berberine ursodeoxycholate (HTD1801), an ionic-salt derivative of BBR currently in Phase III trials and directly compared with dapagliflozin, exemplifies the therapeutic promise of such approaches. Within the hub–axis paradigm, BBR emerges as a systems-level modulator that recouples energy, immune, and microbial circuits to drive multi-organ remodeling. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Human Health and Disease)
Show Figures

Figure 1

13 pages, 7859 KB  
Article
Itaconate Promotes Cold Adaptation and Myocardial Protection by Enhancing Brown Adipose Tissue Metabolism
by Zilong Geng, Xing Liu, Xiao Cheng, Shizhan Xu, Jin Zhang, Ao Tan, Shun Song and Shasha Zhang
Metabolites 2026, 16(1), 66; https://doi.org/10.3390/metabo16010066 - 12 Jan 2026
Viewed by 142
Abstract
Background/Objectives: Itaconic acid (ITA) is an immunometabolite with anti-inflammatory and metabolic regulatory functions, but its cellular source and role in brown adipose tissue (BAT) remain unclear. This study aims to reveal the expression patterns of the key ITA synthesis gene Irg1 in BAT [...] Read more.
Background/Objectives: Itaconic acid (ITA) is an immunometabolite with anti-inflammatory and metabolic regulatory functions, but its cellular source and role in brown adipose tissue (BAT) remain unclear. This study aims to reveal the expression patterns of the key ITA synthesis gene Irg1 in BAT at different developmental stages and to investigate the effects of cold exposure and exogenous ITA on BAT metabolic function and cardioprotection. Methods: Single-cell RNA sequencing was used to analyze the gene expression profiles of stromal vascular fraction (SVF) cells in BAT from P7 neonatal and adult mice. Bioinformatic methods were applied to identify cell types expressing Irg1. Cold exposure (4 °C) and exogenous ITA treatment were employed to evaluate BAT morphology, and the ITA content in BAT was detected using gas chromatography–triple quadrupole mass spectrometry, UCP1 protein expression, and body temperature changes. A transverse aortic constriction (TAC) surgery model was established to induce cardiac dysfunction, and BAT excision was performed to explore the BAT-dependent effects of ITA on myocardial hypertrophy, fibrosis, and cardiac function. Results: In P7 neonatal mouse BAT, Irg1 was predominantly expressed in a subset of interferon-responsive activated macrophages (macrophage27), while in adult mice, it was mainly expressed in neutrophils and a functionally similar macrophage subset (macrophage25). Cold exposure significantly suppressed Irg1 expression in neutrophils but did not affect its expression in macrophages, also resulting in a significant decrease in ITA content in BAT. Exogenous ITA significantly enhanced BAT thermogenesis under cold conditions, which manifested as reduced lipid droplets, upregulated UCP1 expression, and increased body temperature. In the TAC model, ITA treatment markedly improved cardiac function, attenuated myocardial hypertrophy and fibrosis, and these protective effects were significantly diminished after BAT excision. Conclusions: ITA promotes cold adaptation and ameliorates cardiac injury by enhancing BAT metabolic function, and its effects depend on the presence of BAT. This study provides new insights for the treatment of metabolic cardiovascular diseases. Full article
Show Figures

Figure 1

14 pages, 1406 KB  
Article
DOTAP-Based Hybrid Nanostructured Lipid Carriers for CRISPR–Cas9 RNP Delivery Targeting TGFB1 in Diabetic Nephropathy
by Nurul Jummah, Hanifa Syifa Kamila, Satrialdi, Aluicia Anita Artarini, Ebrahim Sadaqa, Anindyajati and Diky Mudhakir
Pharmaceutics 2026, 18(1), 94; https://doi.org/10.3390/pharmaceutics18010094 - 11 Jan 2026
Viewed by 240
Abstract
Background: Diabetic nephropathy (DN) is largely driven by transforming growth factor-β1 (TGF-β1)-mediated fibrosis. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes offer precise gene disruption, yet effective non-viral delivery remains a challenge. This study developed cationic lipid-based [...] Read more.
Background: Diabetic nephropathy (DN) is largely driven by transforming growth factor-β1 (TGF-β1)-mediated fibrosis. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes offer precise gene disruption, yet effective non-viral delivery remains a challenge. This study developed cationic lipid-based hybrid nanostructured lipid carriers (NLCs) for intracellular delivery of TGFB1-targeting RNP as an early-stage platform for DN gene modulation. Methods: A single-guide RNA (sgRNA) targeting human TGFB1 was assembled with Cas9 protein (1:1 and 1:2 molar ratios). Hybrid NLCs comprising squalene, glyceryl trimyristate, and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were formulated via optimized emulsification–sonication to achieve sub-100 nm particles. Physicochemical properties, including polydispersity index (PDI), were assessed via dynamic light scattering (DLS), while silencing efficacy in HEK293T cells was quantified using quantitative reverse transcription PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results: Optimized NLCs achieved hydrodynamic diameters of 65–99 nm (PDI < 0.5) with successful RNP complexation. The 1:2 Cas9:sgRNA formulation produced the strongest gene-editing response, reducing TGFB1 mRNA by 67% (p < 0.01) compared with 39% for the 1:1 ratio. This translated to a significant reduction in TGF-β1 protein (p < 0.05) within 24 h. Conclusions: DOTAP-based hybrid NLCs enable efficient delivery of CRISPR–Cas9 RNP and achieve significant suppression of TGFB1 expression at both transcriptional and protein levels. These findings establish a promising non-viral platform for upstream modulation of profibrotic signaling in DN and support further evaluation in kidney-derived cells and in vivo renal models. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
Show Figures

Graphical abstract

16 pages, 1760 KB  
Article
Targeting of Human Mitochondrial DNA with Programmable pAgo Nuclease
by Beatrisa Rimskaya, Ekaterina Kropocheva, Elza Shchukina, Egor Ulashchik, Daria Gelfenbein, Lidiya Lisitskaya, Vadim Shmanai, Svetlana Smirnikhina, Andrey Kulbachinskiy and Ilya Mazunin
Cells 2026, 15(2), 127; https://doi.org/10.3390/cells15020127 - 10 Jan 2026
Viewed by 206
Abstract
Manipulating the mitochondrial genome remains a significant challenge in genetic engineering, primarily due to the mitochondrial double-membrane structure. While recent advances have expanded the genetic toolkit for nuclear and cytoplasmic targets, precise editing of mitochondrial DNA (mtDNA) has remained elusive. Here we report [...] Read more.
Manipulating the mitochondrial genome remains a significant challenge in genetic engineering, primarily due to the mitochondrial double-membrane structure. While recent advances have expanded the genetic toolkit for nuclear and cytoplasmic targets, precise editing of mitochondrial DNA (mtDNA) has remained elusive. Here we report the first successful mitochondrial import of a catalytically active RNA-guided prokaryotic Argonaute protein from the mesophilic bacterium Alteromonas macleodii (AmAgo). By guiding AmAgo to the single-stranded D- or R-loop region of mtDNA using synthetic RNA guides, we observed a nearly threefold reduction in mtDNA copy number in human cell lines. This proof of concept study demonstrates that a bacterial Argonaute can remain active within the mitochondrial environment and influence mtDNA levels. These findings establish a foundational framework for further development of programmable systems for mitochondrial genome manipulation. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease—Second Edition)
Show Figures

Figure 1

20 pages, 2139 KB  
Review
Application of Orthoflavivirus Pseudovirus Technology in Antiviral Research
by Yalan Zhang, Yaqi Zhao, Chaojun Wang, Yuanyuan Zhou, Hao Yuan, Xiaodan Li, Yong Wang and Xiaoling Pan
Int. J. Mol. Sci. 2026, 27(2), 722; https://doi.org/10.3390/ijms27020722 - 10 Jan 2026
Viewed by 147
Abstract
Arthropod-borne orthoflaviviruses, including dengue, Zika, Japanese encephalitis, yellow fever and West Nile viruses, pose a significant global public health threat, causing hundreds of millions of infections annually with severe clinical symptoms. However, the lack of effective vaccines and antiviral drugs, coupled with the [...] Read more.
Arthropod-borne orthoflaviviruses, including dengue, Zika, Japanese encephalitis, yellow fever and West Nile viruses, pose a significant global public health threat, causing hundreds of millions of infections annually with severe clinical symptoms. However, the lack of effective vaccines and antiviral drugs, coupled with the biosafety risks associated with handling live highly pathogenic strains, hinders progress in antiviral research. Pseudovirus technology, which uses single-round infectious viral particles lacking replication competence, has thus gained prominence as a safe and versatile tool for antiviral research. This review systematically summarizes the construction, optimization, and applications of orthoflavivirus pseudoviruses in antiviral research. The primary construction strategies of orthoflavivirus pseudoviruses rely on multi-plasmid co-transfection of viral replicons and structural protein expression vectors, leveraging the host cell secretory pathway to mimic natural viral assembly and maturation. The core applications of pseudovirus technology are highlighted, including high-throughput screening and detection of neutralizing antibodies, identification of antiviral drugs targeting viral entry or replication, and evaluation of vaccine immunogenicity. Despite these strengths, the approach still faces limitations, such as incomplete simulation of native viral structures and batch-to-batch titer variability, which may affect the physiological relevance of findings. In summary, orthoflavivirus pseudovirus technology has become an essential platform in both basic virology research and translational medicine, providing critical insights and tools in the ongoing fight against arthropod-borne orthoflaviviruses diseases. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Molecular Insights into the Synergistic Anticancer and Oxidative Stress–Modulating Activity of Quercetin and Gemcitabine
by Yasemin Afşin, Senem Alkan Akalın, İlhan Özdemir, Mehmet Cudi Tuncer and Şamil Öztürk
Antioxidants 2026, 15(1), 91; https://doi.org/10.3390/antiox15010091 - 10 Jan 2026
Viewed by 281
Abstract
Quercetin (Q), a bioactive flavonoid, exerts potent antioxidant and redox-modulating effects by activating the nuclear factor erythroid 2-related factor 2/antioxidant response Element (Nrf2/ARE) pathway and upregulating endogenous antioxidant defenses, including enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT), as well as [...] Read more.
Quercetin (Q), a bioactive flavonoid, exerts potent antioxidant and redox-modulating effects by activating the nuclear factor erythroid 2-related factor 2/antioxidant response Element (Nrf2/ARE) pathway and upregulating endogenous antioxidant defenses, including enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT), as well as non-enzymatic glutathione (GSH) and lipid peroxidation (MDA). Gemcitabine (Gem), a widely used antimetabolite chemotherapeutic, often shows limited efficacy under hypoxic and oxidative stress conditions driven by hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF)-mediated angiogenesis. This study investigated the redox-mediated synergistic effects of Q and Gem in MDA-MB-231 human breast cancer cells. Combination treatment significantly reduced cell viability beyond the expected Bliss value, indicating a synergistic interaction and enhanced apoptosis compared with single-agent treatments. Increased reactive oxygen species (ROS) production was accompanied by depletion of GSH and accumulation of MDA, establishing a pro-apoptotic oxidative stress environment. Q alone enhanced SOD and CAT activities, whereas the combination induced exhaustion of antioxidant defenses under oxidative load, reflecting a redox-adaptive response. Molecular analyses revealed downregulation of HIF-1α and VEGF, alongside upregulation of Bax and Caspase-3, confirming suppression of hypoxia-driven survival and activation of the intrinsic apoptotic pathway. Transcriptomic and enrichment analyses further identified modulation of oxidative stress- and apoptosis-related pathways, including phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/Akt), HIF-1 and VEGF signaling. Collectively, these results indicate that Q potentiates Gem cytotoxicity via redox modulation, promoting controlled ROS elevation and apoptosis while suppressing hypoxia-induced survival mechanisms, highlighting the therapeutic potential of redox-based combination strategies against chemoresistant breast cancer. Full article
(This article belongs to the Special Issue Redox Biomarkers in Cancer)
Show Figures

Figure 1

14 pages, 2159 KB  
Article
Interdependent Regulation of Alternative Splicing by Serine/Arginine-Rich and Heterogeneous Nuclear Ribonucleoprotein Splicing Factors
by Megan E. Holmes and Klemens J. Hertel
Genes 2026, 17(1), 78; https://doi.org/10.3390/genes17010078 - 9 Jan 2026
Viewed by 276
Abstract
Background: Alternative pre-mRNA splicing is a combinatorial process involving serine/arginine-rich (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) splicing factors. These proteins can silence or enhance splicing based on their expression levels and binding positions. Objectives: To better understand the combinatorial and interdependent regulation between [...] Read more.
Background: Alternative pre-mRNA splicing is a combinatorial process involving serine/arginine-rich (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) splicing factors. These proteins can silence or enhance splicing based on their expression levels and binding positions. Objectives: To better understand the combinatorial and interdependent regulation between SR and hnRNP splicing factors during alternative splicing. Methods: Computational analyses were performed using cell knockdown and binding datasets from available databases. Results: Analyses of differential splicing data for 9 SR proteins and 21 hnRNP knockdowns revealed statistically significant interdependent regulation among several RNA-binding protein (RBP) combinations, albeit at different levels. Neither SR proteins nor hnRNPs showed strong preferences for collaborating with specific RBP classes in mediating exon inclusion. While SRSF3, hnRNPK, hnRNPC, and hnRNPL stand out as major influencers of alternative splicing, they do so predominantly independent of other RBPs. Minor influencers of alternative splicing, such as hnRNPDL and hnRNPR, predominantly regulate exon inclusion in concert with other RBPs, indicating that exon inclusion can be mediated by both single and multiple RBPs. Interestingly, the higher the number of RBPs that regulate the inclusion of an exon, the more variable exon inclusion preferences become. Interdependently regulated exons are more modular and can be characterized by weaker splice sites compared to their independently regulated counterparts. A comparison of RBP interdependence between HeLa and other cell lines provides a framework that explains cell-type-specific alternative splicing. Conclusions: Our study highlights the importance of the interdependent regulation of alternative exons and identifies characteristics of interdependently regulated exons that differ from independently regulated exons. Full article
(This article belongs to the Special Issue The 15th Anniversary of Genes: Feature Papers in the "RNA" Section)
Show Figures

Figure 1

35 pages, 3152 KB  
Review
AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration
by Cosmin Pantu, Alexandru Breazu, Stefan Oprea, Matei Serban, Razvan-Adrian Covache-Busuioc, Octavian Munteanu, Nicolaie Dobrin, Daniel Costea and Lucian Eva
Int. J. Mol. Sci. 2026, 27(2), 676; https://doi.org/10.3390/ijms27020676 - 9 Jan 2026
Viewed by 202
Abstract
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of [...] Read more.
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of the neuron. The use of new technologies such as quantum-informed molecular simulation (QIMS), dielectric nanoscale mapping, fluid dynamics of the cell, and imaging of perivascular flow are allowing researchers to understand how the collective interactions among proteins, membranes and their electrical properties, along with fluid dynamics within the cell, form a highly interconnected dynamic system. These systems require fine control over the energetic, mechanical and electrical interactions that maintain their coherence. When there is even a small change in the protein conformations, the electric properties of the membrane, or the viscosity of the cell’s interior, it can cause changes in the high dimensional space in which the system operates to lose some of its stabilizing curvature and become prone to instability well before structural pathologies become apparent. AI has allowed researchers to create digital twin models using combined physical data from multiple scales and to predict the trajectory of the neural system toward instability by identifying signs of early deformation. Preliminary studies suggest that deviations in the ergodicity of metabolic–mechanical systems, contraction of dissipative bandwidth, and fragmentation of attractor basins could be indicators of vulnerability. This study will attempt to combine all of the current research into a cohesive view of the role of progressive loss of multi-physics coherence in neurodegenerative disease. Through integration of protein energetics, electrodynamic drift, and hydrodynamic irregularities, as well as predictive modeling utilizing AI, the authors will provide mechanistic insights and discuss potential approaches to early detection, targeted stabilization, and precision-guided interventions based on neurophysics. Full article
Show Figures

Figure 1

Back to TopTop