Multi-Omics Evidence Linking Depression to MASLD Risk via Inflammatory Immune Signaling
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. NHANES Disease Definitions and Analytic Strategy
2.3. Mendelian Randomization
2.4. Transcriptome Data Analysis
2.5. Single-Cell Analysis
2.6. Statistical Analysis
3. Results
3.1. Association Between Depression and MASLD in Population-Based Data
3.2. Inflammatory and Hepatic Injury Biomarkers Mediate Involved in the Association
3.3. Genetic Evidence for a Causal Effect of Depression on MASLD
3.4. Transcriptomics Analysis Identified Immune-Inflammation Modules
3.5. Single-Cell Analysis: Upregulation of CD40LG in Intrahepatic T Cells During Disease Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALP | Alkaline Phosphatase |
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| AUC-ROC | Area Under the Receiver-Operating Characteristic Curve |
| BMI | Body-Mass Index |
| BP | Biological Process |
| CAP | Controlled Attenuation Parameter |
| CC | Cellular Component |
| CI | Confidence Interval |
| CRP | C-Reactive Protein |
| DALYs | Disability-Adjusted Life Years |
| eQTL | expression Quantitative Trait Loci |
| FDR | False Discovery Rate |
| GBD | Global Burden of Disease |
| GEO | Gene Expression Omnibus |
| GGT | Gamma-Glutamyl Transferase |
| GO | Gene Ontology |
| GWAS | Genome-Wide Association Study |
| HDL-C | High-Density Lipoprotein Cholesterol |
| hs-CRP | High-Sensitivity C-Reactive Protein |
| IVW | Inverse-Variance Weighting |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| LASSO | Least Absolute Shrinkage and Selection Operator |
| MASLD | Metabolic Dysfunction–Associated Steatotic Liver Disease |
| MF | Molecular Function |
| MR | Mendelian Randomization |
| NAFLD | Nonalcoholic Fatty Liver Disease |
| NASH | Nonalcoholic Steatohepatitis |
| NHANES | National Health and Nutrition Examination Survey |
| OR | Odds Ratio |
| PHQ-9 | 9-item Patient Health Questionnaire |
| RF | Random Forest |
| ROC | Receiver Operating Characteristic |
| SE | Standard Error |
| SNPs | Single-Nucleotide Polymorphisms |
| SVM | Support Vector Machine |
| VIFs | Variance Inflation Factors |
| WGCNA | Weighted Gene Co-expression Network Analysis |
| XCI | X chromosome inactivation |
| XGBoost | Extreme Gradient Boosting |
References
- GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161.
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.-Y.; Zheng, M.-H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. TEM 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Kalligeros, M.; Henry, L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin. Mol. Hepatol. 2024, 31, S32. [Google Scholar] [CrossRef]
- Shea, S.; Lionis, C.; Kite, C.; Lagojda, L.; Uthman, O.A.; Dallaway, A.; Atkinson, L.; Chaggar, S.S.; Randeva, H.S.; Kyrou, I. Non-alcoholic fatty liver disease and coexisting depression, anxiety and/or stress in adults: A systematic review and meta-analysis. Front. Endocrinol. 2024, 15, 1357664. [Google Scholar] [CrossRef]
- Teixeira, A.L.; de Miranda, A.S.; Venna, V.R.; Himali, J.J.; Bauer, M. EUnderstanding late-life depression: Focus on inflammation. Curr. Opin. Psychiatry 2025, 38, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Kosekli, M.A.; Aktas, G. The systemic immune inflammation index is a reliable and novel risk factor for metabolic dysfunction-associated fatty liver disease. Curr. Med. Res. Opin. 2025, 41, 247–251. [Google Scholar] [CrossRef]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5166 patients and 5083 controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Penninx, B.W.J.H.; Lamers, F.; Jansen, R.; Berk, M.; Khandaker, G.M.; De Picker, L.; Milaneschi, Y. Immuno-metabolic depression: From concept to implementation. Lancet Reg. Health Eur. 2025, 48, 101166. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Han, N.; Yuan, M.; Huang, W.; Yan, L.; Tang, H. Depression and the risk of non-alcohol fatty liver disease: Results from a cross-sectional study and a Mendelian randomization analysis. J. Affect. Disord. 2024, 366, 300–307, Erratum in J. Affect. Disord. 2025, 368, 373.. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Duan, F.; Lu, B. Depression and NAFLD risk: A meta-analysis and Mendelian randomization study. J. Affect. Disord. 2024, 352, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.M.; Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023, 613, 508–518, Erratum in Nature 2023, 615, E19.. [Google Scholar] [CrossRef]
- Hu, S.; Ferreira, L.A.F.; Shi, S.; Hellenthal, G.; Marchini, J.; Lawson, D.J.; Myers, S.R. Fine-scale population structure and widespread conservation of genetic effect sizes between human groups across traits. Nat. Genet. 2025, 57, 379–389. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q. Causal associations between liver enzymes and diabetic microvascular complications: A univariable and multivariable Mendelian randomization. PLoS ONE 2024, 19, e0296894. [Google Scholar] [CrossRef]
- Loya, H.; Kalantzis, G.; Cooper, F.; Palamara, P.F. A scalable variational inference approach for increased mixed-model association power. Nat. Genet. 2025, 57, 461–468. [Google Scholar] [CrossRef]
- Venhorst, J.; Hanemaaijer, R.; Dulos, R.; Caspers, M.P.M.; Toet, K.; Attema, J.; de Ruiter, C.; Kalkman, G.; Rankouhi, T.R.; de Jong, J.C.B.C.; et al. Integrating text mining with network models for successful target identification: In vitro validation in MASH-induced liver fibrosis. Front. Pharmacol. 2024, 15, 1442752. [Google Scholar] [CrossRef]
- Leday, G.G.R.; Vertes, P.; Richardson, S.; Greene, J.R.; Regan, T.; Khan, S.; Henderson, R.; Freeman, T.; Pariante, C.; Harrison, N.A.; et al. Replicable and Coupled Changes in Innate and Adaptive Immune Gene Expression in Two Case-Control Studies of Blood Microarrays in Major Depressive Disorder. Biol. Psychiatry 2018, 83, 70–80. [Google Scholar] [CrossRef]
- Gribben, C.; Galanakis, V.; Calderwood, A.; Williams, E.C.; Chazarra-Gil, R.; Larraz, M.; Frau, C.; Puengel, T.; Guillot, A.; Rouhani, F.J.; et al. Acquisition of epithelial plasticity in human chronic liver disease. Nature 2024, 630, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Onouchi, Y.; Onoue, S.; Tamari, M.; Wakui, K.; Fukushima, Y.; Yashiro, M.; Nakamura, Y.; Yanagawa, H.; Kishi, F.; Ouchi, K.; et al. CD40 ligand gene and Kawasaki disease. Eur. J. Hum. Genet. 2004, 12, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Syrett, C.M.; Paneru, B.; Sandoval-Heglund, D.; Wang, J.; Banerjee, S.; Sindhava, V.; Behrens, E.M.; Atchison, M.; Anguera, M.C. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 2019, 4, e126751. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Mou, L.; Yao, H. Exploring the link between non-alcoholic fatty liver disease and depression: A systematic review and meta-analysis of bidirectional risk. Am. J. Transl. Res. 2025, 17, 3691–3702. [Google Scholar]
- Liang, W.; Zhong, K.; Lai, T.; Zeng, Y.; Huang, Z.; Zhou, J.; Huang, J.; Shi, Z.; Zhang, J.; Ding, F. Causal relationship between depression and metabolic dysfunction-associated steatotic liver disease: A bidirectional Mendelian randomized study. Front. Psychiatry 2024, 15, 1384003. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhou, L.; Gao, T.; Cao, R.; Cai, C.; Jiang, G. Sex differences in the mediation of the MASLD—Depression association by fat distribution in U.S. adults. Acta Psychol. 2025, 256, 105041. [Google Scholar]
- Ng, C.H.; Xiao, J.; Chew, N.W.S.; Chin, Y.H.; Chan, K.E.; Quek, J.; Lim, W.H.; Tan, D.J.H.; Loke, R.W.K.; Tan, C.; et al. Depression in non-alcoholic fatty liver disease is associated with an increased risk of complications and mortality. Front. Med. 2022, 9, 985803. [Google Scholar] [CrossRef]
- Labenz, C.; Huber, Y.; Michel, M.; Nagel, M.; Galle, P.R.; Kostev, K.; Schattenberg, J.M. Nonalcoholic Fatty Liver Disease Increases the Risk of Anxiety and Depression. Hepatol. Commun. 2020, 4, 1293–1301. [Google Scholar] [CrossRef]
- Radford-Smith, D.E.; Patel, P.J.; Irvine, K.M.; Russell, A.; Siskind, D.; Anthony, D.C.; Powell, E.E.; Probert, F. Depressive symptoms in non-alcoholic fatty liver disease are identified by perturbed lipid and lipoprotein metabolism. PLoS ONE 2022, 17, e0261555. [Google Scholar] [CrossRef]





| Variable | Level | No MASLD (n = 1596) | MASLD (n = 2912) |
|---|---|---|---|
| Age group | <20 | 148 (9.3) | 74 (2.5) |
| 20–39 | 676 (42.4) | 751 (25.8) | |
| 40–59 | 398 (24.9) | 1068 (36.7) | |
| ≥60 | 374 (23.4) | 1019 (35.0) | |
| Gender | Male | 661 (41.4) | 1384 (47.5) |
| Female | 935 (58.6) | 1528 (52.5) | |
| Race | Mexican American | 139 (9.3) | 410 (14.9) |
| Other Hispanic | 159 (10.6) | 314 (11.4) | |
| Non-Hispanic White | 583 (38.8) | 1116 (40.7) | |
| Non-Hispanic Black | 458 (30.5) | 643 (23.4) | |
| Non-Hispanic Asian | 163 (10.9) | 260 (9.5) | |
| Other/Multi-Racial | 0 (0.0) | 0 (0.0) | |
| Clinical depression | No | 1031 (64.6) | 1780 (61.1) |
| Yes | 565 (35.4) | 1132 (38.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lin, K.; Liu, Y.; Liang, X.; Zhang, Y.; Luo, Z.; Chen, F.; Zhang, R.; Ma, P.; Chen, X. Multi-Omics Evidence Linking Depression to MASLD Risk via Inflammatory Immune Signaling. Biomedicines 2026, 14, 174. https://doi.org/10.3390/biomedicines14010174
Lin K, Liu Y, Liang X, Zhang Y, Luo Z, Chen F, Zhang R, Ma P, Chen X. Multi-Omics Evidence Linking Depression to MASLD Risk via Inflammatory Immune Signaling. Biomedicines. 2026; 14(1):174. https://doi.org/10.3390/biomedicines14010174
Chicago/Turabian StyleLin, Keye, Yiwei Liu, Xitong Liang, Yiming Zhang, Zijie Luo, Fei Chen, Runhua Zhang, Peiyu Ma, and Xiang Chen. 2026. "Multi-Omics Evidence Linking Depression to MASLD Risk via Inflammatory Immune Signaling" Biomedicines 14, no. 1: 174. https://doi.org/10.3390/biomedicines14010174
APA StyleLin, K., Liu, Y., Liang, X., Zhang, Y., Luo, Z., Chen, F., Zhang, R., Ma, P., & Chen, X. (2026). Multi-Omics Evidence Linking Depression to MASLD Risk via Inflammatory Immune Signaling. Biomedicines, 14(1), 174. https://doi.org/10.3390/biomedicines14010174

