Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (847)

Search Parameters:
Keywords = single-cell screening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5587 KiB  
Article
Rapid and Robust Generation of Homozygous Fluorescent Reporter Knock-In Cell Pools by CRISPR-Cas9
by Jicheng Yang, Fusheng Guo, Hui San Chin, Gao Bin Chen, Ziyan Zhang, Lewis Williams, Andrew J. Kueh, Pierce K. H. Chow, Marco J. Herold and Nai Yang Fu
Cells 2025, 14(15), 1165; https://doi.org/10.3390/cells14151165 - 29 Jul 2025
Viewed by 298
Abstract
Conventional methods for generating knock-out or knock-in mammalian cell models using CRISPR-Cas9 genome editing often require tedious single-cell clone selection and expansion. In this study, we develop and optimise rapid and robust strategies to engineer homozygous fluorescent reporter knock-in cell pools with precise [...] Read more.
Conventional methods for generating knock-out or knock-in mammalian cell models using CRISPR-Cas9 genome editing often require tedious single-cell clone selection and expansion. In this study, we develop and optimise rapid and robust strategies to engineer homozygous fluorescent reporter knock-in cell pools with precise genome editing, circumventing clonal variability inherent to traditional approaches. To reduce false-positive cells associated with random integration, we optimise the design of donor DNA by removing the start codon of the fluorescent reporter and incorporating a self-cleaving T2A peptide system. Using fluorescence-assisted cell sorting (FACS), we efficiently identify and isolate the desired homozygous fluorescent knock-in clones, establishing stable cell pools that preserve parental cell line heterogeneity and faithfully reflect endogenous transcriptional regulation of the target gene. We evaluate the knock-in efficiency and rate of undesired random integration in the electroporation method with either a dual-plasmid system (sgRNA and donor DNA in two separate vectors) or a single-plasmid system (sgRNA and donor DNA combined in one vector). We further demonstrate that coupling our single-plasmid construct with an integrase-deficient lentivirus vector (IDLV) packaging system efficiently generates fluorescent knock-in reporter cell pools, offering flexibility between electroporation and lentivirus transduction methods. Notably, compared to the electroporation methods, the IDLV system significantly minimises random integration. Moreover, the resulting reporter cell lines are compatible with most of the available genome-wide sgRNA libraries, enabling unbiased CRISPR screens to identify key transcriptional regulators of a gene of interest. Overall, our methodologies provide a powerful genetic tool for rapid and robust generation of fluorescent reporter knock-in cell pools with precise genome editing by CRISPR-Cas9 for various research purposes. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing Approaches in Cancer Therapy)
Show Figures

Figure 1

26 pages, 7715 KiB  
Article
Harnessing Nature’s Chemistry: Deciphering Olive Oil Phenolics for the Control of Invasive Breast Carcinoma
by Nehal A. Ahmed, Abu Bakar Siddique, Afsana Tajmim, Judy Ann King and Khalid A. El Sayed
Molecules 2025, 30(15), 3157; https://doi.org/10.3390/molecules30153157 - 28 Jul 2025
Viewed by 301
Abstract
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics [...] Read more.
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics are widely known for their positive outcomes on multiple cancers, including BC. The current study investigates the suppressive effects of individual and combined EVOO phenolics for BC progression and motility. Screening of a small library of EVOO phenolics at a single dose of 10 µM against the viability of the BC cell lines ZR-75-1 (luminal A) and MDA-MB-231 (triple negative BC, TNBC) identified oleocanthal (OC) and ligstroside aglycone (LA) as the most active hits. Screening of EVOO phenolics for BC cells migration inhibition identified OC, LA, and the EVOO lignans acetoxypinoresinol and pinoresinol as the most active hits. Combination studies of different olive phenolics showed that OC combined with LA had the best synergistic inhibitory effects against the TNBC MDA-MB-231 cells migration. A combination of 5 µM of each of OC and LA potently suppressed the migration and invasion of the MDA-MB-231 cells versus LA and OC individual therapies and vehicle control (VC). Animal studies using the ZR-75-1 BC cells orthotopic xenografting model in female nude mice showed significant tumor progression suppression by the combined OC-LA, 5 mg/kg each, ip, 3X/week treatments compared to individual LA and OC treatments and VC. The BC suppressive effects of the OC-LA combination were associated with the modulation of SMYD2–EZH2–STAT3 signaling pathway. A metastasis–clonogenicity animal study model using female nude mice subjected to tail vein injection of MDA-MB-231-Luc TNBC cells also revealed the effective synergy of the combined OC-LA, 5 mg/kg each, compared to their individual therapies and VC. Thus, EVOO cultivars rich in OC with optimal LA content can be useful nutraceuticals for invasive hormone-dependent BC and TNBC progression and metastasis. Full article
(This article belongs to the Special Issue Bioactive Molecules in Foods: From Sources to Functional Applications)
Show Figures

Graphical abstract

23 pages, 4112 KiB  
Article
Metabolic Culture Medium Enhances Maturation of Human iPSC-Derived Cardiomyocytes via Cardiac Troponin I Isoform Induction
by Daria V. Goliusova, Agnessa P. Bogomolova, Alina V. Davidenko, Kristina A. Lavrenteva, Margarita Y. Sharikova, Elena A. Zerkalenkova, Ekaterina M. Vassina, Alexandra N. Bogomazova, Maria A. Lagarkova, Ivan A. Katrukha and Olga S. Lebedeva
Int. J. Mol. Sci. 2025, 26(15), 7248; https://doi.org/10.3390/ijms26157248 - 26 Jul 2025
Viewed by 424
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This [...] Read more.
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This study aimed to identify practical culture conditions that promote iCMs maturation, thereby generating more physiologically relevant in vitro cardiac models. We evaluated the effects of short- and long-term culture in media supplemented with various stimulatory compounds under 2D conditions, focusing on intracellular content and localization of slow skeletal troponin I (ssTnI) and cardiac troponin I (cTnI) isoforms. Our findings demonstrate that the multicomponent metabolic maturation medium (MM-1) effectively enhances the transition toward a more mature iCM phenotype, as evidenced by increased cTnI expression and formation of cross-striated myofibrils. iCMs cultured in MM-1 more closely resemble adult cardiomyocytes and are compatible with high-resolution single-cell techniques such as electron microscopy and patch-clamp electrophysiology. This work provides a practical and scalable approach for advancing the maturation of iPSC-derived cardiac models, with applications in disease modeling and drug screening. Full article
Show Figures

Figure 1

18 pages, 3220 KiB  
Article
High-Throughput Microfluidic Electroporation (HTME): A Scalable, 384-Well Platform for Multiplexed Cell Engineering
by William R. Gaillard, Jess Sustarich, Yuerong Li, David N. Carruthers, Kshitiz Gupta, Yan Liang, Rita Kuo, Stephen Tan, Sam Yoder, Paul D. Adams, Hector Garcia Martin, Nathan J. Hillson and Anup K. Singh
Bioengineering 2025, 12(8), 788; https://doi.org/10.3390/bioengineering12080788 - 22 Jul 2025
Viewed by 456
Abstract
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. [...] Read more.
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation. As a result, rapidly screening genetic libraries, exploring combinatorial designs, or optimizing electroporation parameters requires extensive iterations, consuming large quantities of expensive custom-made DNA and cell lines or primary cells. To address these limitations, we have developed a High-Throughput Microfluidic Electroporation (HTME) platform that includes a 384-well electroporation plate (E-Plate) and control electronics capable of rapidly electroporating all wells in under a minute with individual control of each well. Fabricated using scalable and cost-effective printed-circuit-board (PCB) technology, the E-Plate significantly reduces consumable costs and reagent consumption by operating on nano to microliter volumes. Furthermore, individually addressable wells facilitate rapid exploration of large sets of experimental conditions to optimize electroporation for different cell types and plasmid concentrations/types. Use of the standard 384-well footprint makes the platform easily integrable into automated workflows, thereby enabling end-to-end automation. We demonstrate transformation of E. coli with pUC19 to validate the HTME’s core functionality, achieving at least a single colony forming unit in more than 99% of wells and confirming the platform’s ability to rapidly perform hundreds of electroporations with customizable conditions. This work highlights the HTME’s potential to significantly accelerate synthetic biology Design-Build-Test-Learn (DBTL) cycles by mitigating the transformation/transfection bottleneck. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Graphical abstract

11 pages, 778 KiB  
Article
Gut and Other Differences Between Female and Male Veterans—Vive La Différence? Bringing It All Together
by Martin Tobi, Donald Bradley, Fadi Antaki, MaryAnn Rambus, Noreen F. Rossi, James Hatfield, Suzanne Fligiel and Benita McVicker
Gastrointest. Disord. 2025, 7(3), 48; https://doi.org/10.3390/gidisord7030048 - 22 Jul 2025
Viewed by 239
Abstract
Background: The number of women veterans has been rising steadily since the Gulf War and many assume the functions of their male counterparts. Women face unique obstacles in their service, and it is imperative that differences in physiology not be overlooked so [...] Read more.
Background: The number of women veterans has been rising steadily since the Gulf War and many assume the functions of their male counterparts. Women face unique obstacles in their service, and it is imperative that differences in physiology not be overlooked so as to provide better and appropriate care to our women in uniform. Despite this influx and incorporation of female talent, dedicated reports contrasting female and male veterans are rare, outside of specific psychological studies. We therefore attempt to contrast gut constituents, absorption, innate immune system, and nutritional differences to provide a comprehensive account of similarities and differences between female and male veterans, from our single-center perspective, as this has not been carried out previously. Herein, we obtained a detailed roster of commonly used biomedical tests and some novel entities to detect differences between female and male veterans. The objective of this study was to detect differences in the innate immune system and other ancillary test results to seek differences that may impact the health of female and male veterans differently. Methods: To contrast biochemical and sociomedical parameters in female and male veterans, we studied the data collected on 450 female veterans and contrasted them to a group of approximately 1642 males, sequentially from 1995 to 2022, all selected because of above-average risk for CRC. As part of this colorectal cancer (CRC) screening cross-sectional and longitudinal study, we also collected stool, urine, saliva, and serum specimens. We used ELISA testing to detect stool p87 shedding by the Adnab-9 monoclonal and urinary organ-specific antigen using the BAC18.1 monoclonal. We used the FERAD ratio (blood ferritin/fecal p87), a measure of the innate immune system to gauge the activity of the innate immune system (InImS) by dividing the denominator p87 (10% N-linked glycoprotein detected by ELISA) into the ferritin level (the enumerator, a common lab test to assess anemia). FERAD ratios have not been performed elsewhere despite past Adnab-9 commercial availability so we have had to auto-cite our published data where appropriate. Results: Many differences between female and males were detected. The most impressive differences were those of the InImS where males clearly had the higher numbers (54,957 ± 120,095) in contrast to a much lower level in females (28,621 ± 66,869), which was highly significantly different (p < 0.004). Mortality was higher in males than females (49.4% vs. 24.1%; OR 3.08 [2.40–3.94]; p < 0.0001). Stool p87, which is secreted by Paneth cells and may have a protective function, was lower in males (0.044 ± 0.083) but higher in females (0.063 ± 0.116; p < 0.031). Immunohistochemistry of the Paneth cell-fixed p87 antigen was also higher in females (in the descending colon and rectum). In contrast, male ferritin levels were significantly higher (206.3 ± 255.9 vs. 141.1 ± 211.00 ng/mL; p < 0.0006). Females were less likely to be diabetic (29.4 vs. 37.3%; OR 0.7 [0.55–0.90]; p < 0.006). Females were also more likely to use NSAIDs (14.7 vs. 10.7%, OR 1.08 [1.08–2.00]; p < 0.015). Females also had borderline less GI bleeding by fecal immune tests (FITs), with 13.2% as opposed to 18.2% in males (OR 0.68 [0.46–1.01]; p = 0.057), but were less inclined to have available flexible sigmoidoscopy (OR 0.68 [0.53–0.89]; p < 0.004). Females also had more GI symptomatology, a higher rate of smoking, and were significantly younger than their male counterparts. Conclusions: This study shows significant differences with multiple parameters in female and male veterans. Full article
Show Figures

Figure 1

24 pages, 2281 KiB  
Article
Multilayer Network Modeling for Brand Knowledge Discovery: Integrating TF-IDF and TextRank in Heterogeneous Semantic Space
by Peng Xu, Rixu Zang, Zongshui Wang and Zhuo Sun
Information 2025, 16(7), 614; https://doi.org/10.3390/info16070614 - 17 Jul 2025
Viewed by 222
Abstract
In the era of homogenized competition, brand knowledge has become a critical factor that influences consumer purchasing decisions. However, traditional single-layer network models fail to capture the multi-dimensional semantic relationships embedded in brand-related textual data. To address this gap, this study proposes a [...] Read more.
In the era of homogenized competition, brand knowledge has become a critical factor that influences consumer purchasing decisions. However, traditional single-layer network models fail to capture the multi-dimensional semantic relationships embedded in brand-related textual data. To address this gap, this study proposes a BKMN framework integrating TF-IDF and TextRank algorithms for comprehensive brand knowledge discovery. By analyzing 19,875 consumer reviews of a mobile phone brand from JD website, we constructed a tri-layer network comprising TF-IDF-derived keywords, TextRank-derived keywords, and their overlapping nodes. The model incorporates co-occurrence matrices and centrality metrics (degree, closeness, betweenness, eigenvector) to identify semantic hubs and interlayer associations. The results reveal that consumers prioritize attributes such as “camera performance”, “operational speed”, “screen quality”, and “battery life”. Notably, the overlap layer exhibits the highest node centrality, indicating convergent consumer focus across algorithms. The network demonstrates small-world characteristics (average path length = 1.627) with strong clustering (average clustering coefficient = 0.848), reflecting cohesive consumer discourse around key features. Meanwhile, this study proposes the Mul-LSTM model for sentiment analysis of reviews, achieving a 93% sentiment classification accuracy, revealing that consumers have a higher proportion of positive attitudes towards the brand’s cell phones, which provides a quantitative basis for enterprises to understand users’ emotional tendencies and optimize brand word-of-mouth management. This research advances brand knowledge modeling by synergizing heterogeneous algorithms and multilayer network analysis. Its practical implications include enabling enterprises to pinpoint competitive differentiators and optimize marketing strategies. Future work could extend the framework to incorporate sentiment dynamics and cross-domain applications in smart home or cosmetic industries. Full article
Show Figures

Figure 1

30 pages, 10669 KiB  
Article
Integration of Untargeted Metabolomics, Network Pharmacology, Single-Cell RNA Sequencing, and Molecular Dynamics Simulation Reveals GOT1, CYP1A2, and CA2 as Potential Targets of Huang Qin Decoction Preventing Colorectal Cancer Liver Metastasis
by Tiegang Li, Zheng Yan, Mingxuan Zhou, Wenyi Zhao, Fang Zhang, Silin Lv, Yufang Hou, Zifan Zeng, Liu Yang, Yixin Zhou, Zengni Zhu, Xinyi Ren and Min Yang
Pharmaceuticals 2025, 18(7), 1052; https://doi.org/10.3390/ph18071052 - 17 Jul 2025
Viewed by 369
Abstract
Background: Huang Qin Decoction (HQD) is a well-established Traditional Chinese Medicine (TCM) formulation recognized for its application in the treatment of colorectal cancer (CRC). However, the precise therapeutic mechanisms remain inadequately defined. Methods: This study integrates metabolomics from a mouse model and network [...] Read more.
Background: Huang Qin Decoction (HQD) is a well-established Traditional Chinese Medicine (TCM) formulation recognized for its application in the treatment of colorectal cancer (CRC). However, the precise therapeutic mechanisms remain inadequately defined. Methods: This study integrates metabolomics from a mouse model and network pharmacology to screen potential targets and bio-active ingredients of HQD. The pharmacological activity of HQD for CRC was evidenced via single-cell RNA sequencing (scRNA-seq), molecular docking, and molecular dynamics simulations. Atomic force microscopy (AFM) assays and cellular experimental validation were used to confirm the relative mechanisms. Results: The metabolite profile undergoes significant alterations, with metabolic reprogramming evident during the malignant progression of CRC liver metastasis. Network pharmacology analysis identified that HQD regulates several metabolic pathways, including arginine biosynthesis, alanine, aspartate, and glutamate metabolism, nitrogen metabolism, phenylalanine metabolism, and linoleic acid metabolism, by targeting key proteins such as aspartate aminotransferase (GOT1), cytochrome P450 1A2 (CYP1A2), and carbonic anhydrase 2 (CA2). ScRNA-seq analysis indicated that HQD may enhance the functionality of cytotoxic T cells, thereby reversing the immunosuppressive microenvironment. Virtual verification revealed a strong binding affinity between the identified hub targets and active constituents of HQD, a finding subsequently corroborated by AFM assays. Cellular experiments confirmed that naringenin treatment inhibits the proliferation, migration, and invasion of CRC cells by downregulating GOT1 expression and disrupting glutamine metabolism. Conclusions: Computational prediction and in vitro validation reveal the active ingredients, potential targets, and molecular mechanisms of HQD against CRC liver metastasis, thereby providing a scientific foundation for the application of TCM in CRC treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

20 pages, 2440 KiB  
Article
Single-Round LDCT Screening in Men Aged ≥ 70 Years: Prevalence of Pulmonary Nodules and Lung Cancer Detection
by Hye-Rin Kang, Jin Hwa Song, Yeon Wook Kim, Keun Bum Chung, Sukki Cho, Seung Hun Jang, Jin-Haeng Chung, Jaeho Lee and Choon-Taek Lee
Cancers 2025, 17(14), 2318; https://doi.org/10.3390/cancers17142318 - 11 Jul 2025
Viewed by 405
Abstract
Background/Objectives: Lung cancer screening with low-dose computed tomography (LDCT) has reduced lung cancer mortality in high-risk smokers. However, the evidence on LDCT screening in the elderly is limited, with there being few older participants in major trials and ongoing debate about the benefits, [...] Read more.
Background/Objectives: Lung cancer screening with low-dose computed tomography (LDCT) has reduced lung cancer mortality in high-risk smokers. However, the evidence on LDCT screening in the elderly is limited, with there being few older participants in major trials and ongoing debate about the benefits, risks, and appropriate age limits of LDCT. This study aimed to investigate the prevalence of pulmonary nodules and lung cancer detection rates in men aged 70 and above who underwent a single round of LDCT screening. Methods: We retrospectively analyzed data from elderly male participants aged 70 years or older who underwent a single low-dose CT lung cancer screening at the Veterans Health Service Medical Center between 2010 and 2023. The participants included those who requested screening or were asymptomatic but recommended by physicians. Individuals with prior lung cancer, symptoms suggestive of lung cancer, or suspicious findings on previous imaging were excluded. The nodule prevalence, lung cancer diagnoses, pathological subtypes, and clinical stages were reviewed. Results: A total of 1409 individuals with a mean age of 74.2 years were included. The median follow-up duration was 3.6 years. Among the included individuals, 1304 (92.6%) had a history of smoking. Positive nodules were detected in 179 patients (12.7%, 95% CI: 11.0–14.5%), and lung cancer was diagnosed in 31 patients (2.2%, 95% CI: 1.5–3.1%). Of the diagnosed cases, 14 (45.2%) were adenocarcinomas and 12 (38.7%) were squamous cell carcinomas. Nineteen patients (51.3%) were diagnosed with stage I or II cancer, while seven (22.6%) were diagnosed at stage IV. Conclusions: A single round of LDCT screening in elderly men resulted in a relatively high lung cancer detection rate, with over half of the diagnosed cases being identified at an early stage. This highlights the potential clinical benefit of even one-time screening in enabling timely treatment, which may still be feasible in older adults. However, potential harms such as overdiagnosis should also be considered. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

23 pages, 524 KiB  
Review
A Narrative Review of the Role of Non-Viral Circulating Tumor DNA Profiling in Predicting the Treatment Response and Recurrence in Head and Neck Squamous Cell Carcinoma
by Ugur Gezer, Rasim Meral, Emre Özgür, Ebru. E. Yörüker, Abel Bronkhorst and Stefan Holdenrieder
Cancers 2025, 17(14), 2279; https://doi.org/10.3390/cancers17142279 - 9 Jul 2025
Viewed by 552
Abstract
Head and neck squamous cell carcinomas (HNSCCs) that develop from the mucosal epithelium in the oral cavity, pharynx, and larynx are a heterogeneous group of malignant tumors. A lack of appropriate screening and diagnostic methods leads to late diagnoses, with the majority of [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) that develop from the mucosal epithelium in the oral cavity, pharynx, and larynx are a heterogeneous group of malignant tumors. A lack of appropriate screening and diagnostic methods leads to late diagnoses, with the majority of patients having locally advanced disease, which is associated with a high risk of local recurrence and a poor prognosis and is usually treated with combination therapies. Biomarkers for predicting the therapy response and risk of recurrence in HNSCC patients are urgently needed. Liquid biopsy, e.g., the profiling of circulating biomarkers in bodily fluids, is a promising approach with increasing utility in the early detection and diagnosis of cancer, monitoring cancer progression, patient stratification and treatment selection, detecting minimal residual disease (MRD), and predicting recurrence across different cancer types, including HNSCC. Among liquid biomarkers, circulating tumor DNA (ctDNA), which is based on detecting tumor-specific mutations, insertions/deletions, copy number alterations, and methylation, is the most promising transformative tool in cancer management and personalized cancer treatment. In this review, we provide an update of recent data on the role of non-viral ctDNA in the management of HNSCC patients. Accumulating data suggests the enormous potential of ctDNA profiling by serial sampling during and after definitive therapy in detecting MRD and predicting recurrence in HNSSC patients treated with a single treatment modality (surgery or radiotherapy) or with combination therapies, including immune-checkpoint-inhibitor-based immunotherapy. By incorporating the latest immunotherapy trials and organizing the data by the treatment modality, this review offers a novel perspective not found in previous surveys. Full article
Show Figures

Figure 1

17 pages, 3602 KiB  
Article
Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate
by Yanni Wang, Bo Liu, Yanmei Dai, Zijuan Tao, Lan Tang and Zhimin Ou
Molecules 2025, 30(13), 2869; https://doi.org/10.3390/molecules30132869 - 6 Jul 2025
Viewed by 350
Abstract
In this study, CGMCC NO:28566, a strain that can efficiently convert Ethyl 4-chloroacetoacetate(COBE) to (R)-4-chloro-3-hydroxybutyrate((R)-CHBE), was screened by soil-sieving bacteria. In order to improve the transformation effect of the strain, the natural low-eutectic solvent (NADES), which can alter the [...] Read more.
In this study, CGMCC NO:28566, a strain that can efficiently convert Ethyl 4-chloroacetoacetate(COBE) to (R)-4-chloro-3-hydroxybutyrate((R)-CHBE), was screened by soil-sieving bacteria. In order to improve the transformation effect of the strain, the natural low-eutectic solvent (NADES), which can alter the cell permeability, was utilized for assisted catalysis, and a better catalytic effect was achieved. This study was carried out using a co-culture of strains with NADES and secondary addition of NADES on the basis of co-culture, and 10 NADESs were screened at the same time. The co-catalytic effect of 0.5% (w/v) choline chloride: urea (1:2) (ChCl:U (1:2)) was found to be the most significant, with a yield of (R)-CHBE reaching 89.1%, which was 58.2% higher than that of the control group, with a 99% ee value. Furthermore, the catalytic results demonstrated that the co-culture of the strain with NADES during fermentation yielded superior outcomes to the secondary addition of NADES during the reaction buffer. Furthermore, the catalytic effect of ChCl:U (1:2) was demonstrated to be superior to that of its individual components or single-component blends, due to its distinctive valence bonding advantage. The results indicate that the addition of 0.5% (w/v) ChCl:U (1:2) during the co-culture process has the effect of improving cell permeability to a certain extent, thereby increasing the contact between the substrate and the enzyme during the whole-cell catalytic reactions. Full article
(This article belongs to the Special Issue Current Development of Asymmetric Catalysis and Synthesis)
Show Figures

Graphical abstract

16 pages, 2462 KiB  
Article
Potential of LP as a Biocontrol Agent for Vibriosis in Abalone Farming
by Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Fengqiang Lin and Zhaolong Li
Microorganisms 2025, 13(7), 1554; https://doi.org/10.3390/microorganisms13071554 - 2 Jul 2025
Viewed by 290
Abstract
Vibrio species are among the primary pathogenic bacteria affecting abalone aquaculture, posing significant threats to farming practices. Current clinical control predominantly relies on antibiotics, which can result in antibiotic residues in both abalone and the surrounding marine environments. Lactobacillus plantarum (LP) [...] Read more.
Vibrio species are among the primary pathogenic bacteria affecting abalone aquaculture, posing significant threats to farming practices. Current clinical control predominantly relies on antibiotics, which can result in antibiotic residues in both abalone and the surrounding marine environments. Lactobacillus plantarum (LP) has been shown to release bioactive antagonistic substances and exhibits potent inhibitory effects against marine pathogenic bacteria. This study aimed to screen and characterize the probiotic properties of LP strains isolated from rice wine lees to develop a novel biocontrol strategy against Vibriosis in abalone. The methods employed included selective media cultivation, streak plate isolation, and single-colony purification for strain screening, followed by Gram staining, 16S rDNA sequencing, and phylogenetic tree construction using MEGA11 for identification. The resilience, antimicrobial activity, and in vivo antagonistic efficacy of the strains were evaluated through stress tolerance assays, agar diffusion tests, and animal experiments. The results demonstrated the successful isolation and purification of four LP strains (NDMJ-1 to NDMJ-4). Phylogenetic analysis revealed closer genetic relationships between NDMJ-3 and NDMJ-4, while NDMJ-1 and NDMJ-2 were found to be more distantly related. All strains exhibited γ-hemolytic activity, bile salt tolerance (0.3–3.0%), and resistance to both acid (pH 2.5) and alkali (pH 8.5), although they were temperature sensitive (inactivated above 45 °C). The strains showed susceptibility to most of the 20 tested antibiotics, with marked variations in hydrophobicity (1.91–93.15%) and auto-aggregation (13.29–60.63%). In vitro antibacterial assays revealed that cell-free supernatants of the strains significantly inhibited Vibrio parahaemolyticus, V. alginolyticus, and V. natriegens, with NDMJ-4 displaying the strongest inhibitory activity. In vivo experiments confirmed that NDMJ-4 significantly reduced mortality in abalone infected with V. parahaemolyticus. In conclusion, the LP strains isolated from rice wine lees (NDMJ-1 to NDMJ-4) possess robust stress resistance, adhesion capabilities, and broad antibiotic susceptibility. Their metabolites exhibit significant inhibition against abalone-pathogenic Vibrios, particularly NDMJ-4, which demonstrates exceptional potential as a candidate strain for developing eco-friendly biocontrol agents against Vibriosis in abalone aquaculture. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

37 pages, 1459 KiB  
Review
Current Landscape of Preclinical Models for Pediatric Gliomas: Clinical Implications and Future Directions
by Syed M. Faisal, Monika Yadav, Garrett R. Gibson, Adora T. Klinestiver, Ryan M. Sorenson, Evan Cantor, Maria Ghishan, John R. Prensner, Andrea T. Franson, Kevin F. Ginn, Carl Koschmann and Viveka Nand Yadav
Cancers 2025, 17(13), 2221; https://doi.org/10.3390/cancers17132221 - 2 Jul 2025
Viewed by 1278
Abstract
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and [...] Read more.
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and TP53 inactivation, all of which contribute to tumor biology and therapeutic resistance. Developing physiologically relevant preclinical models that replicate both tumor biology and the tumor microenvironment (TME) is critical for advancing effective treatments. This review highlights recent progress in in vitro, ex vivo, and in vivo models, including patient-derived brain organoids, genetically engineered mouse models (GEMMs), and region-specific midline organoids incorporating SHH, BMP, and FGF2/8/19 signaling to model pontine gliomas. Key genetic alterations can now be introduced using lipofectamine-mediated transfection, PiggyBac plasmid systems, and CRISPR-Cas9, allowing the precise study of tumor initiation, progression, and therapy resistance. These models enable the investigation of TME interactions, including immune responses, neuronal infiltration, and therapeutic vulnerabilities. Future advancements involve developing immune-competent organoids, integrating vascularized networks, and applying multi-omics platforms like single-cell RNA sequencing and spatial transcriptomics to dissect tumor heterogeneity and lineage-specific vulnerabilities. These innovative approaches aim to enhance drug screening, identify new therapeutic targets, and accelerate personalized treatments for pediatric gliomas. Full article
Show Figures

Figure 1

20 pages, 3121 KiB  
Article
Decoupling Analysis of Parameter Inconsistencies in Lithium-Ion Battery Packs Guiding Balancing System Design
by Yanzhou Duan, Wenbin Ye, Qiang Zhang, Jixu Wang and Jiahuan Lu
Energies 2025, 18(13), 3439; https://doi.org/10.3390/en18133439 - 30 Jun 2025
Viewed by 237
Abstract
Inconsistencies in lithium-ion battery packs pose significant challenges for both electric vehicles and energy storage systems, causing diminished energy utilization and accelerated battery aging. This study investigates the characteristics and aging processes of 32 batteries, creating simulation models for cells and packs based [...] Read more.
Inconsistencies in lithium-ion battery packs pose significant challenges for both electric vehicles and energy storage systems, causing diminished energy utilization and accelerated battery aging. This study investigates the characteristics and aging processes of 32 batteries, creating simulation models for cells and packs based on experimental data. Through a controlled single-variable approach, the decoupled analysis of multi-parameter inconsistencies is carried out. Simulation results demonstrate that parallel-connected packs can maintain charge consistency without the need for external balancing systems, thanks to their self-balancing mechanisms. On the other hand, series-connected packs experience accelerated capacity degradation primarily due to charge inconsistencies linked to differences in Coulombic efficiency (CE) and the initial state of charge (SOC). For packs with minor capacity variations and temperature inconsistencies, a passive balancing current of 0.001 C can effectively eliminate up to 3.8% of capacity loss caused by charge inconsistencies within 15 cycles. Active balancing systems outperform passive ones primarily when there is significant capacity inconsistency. However, for packs that have undergone capacity screening before assembly, both active and passive balancing systems prove to be equally effective. Additionally, inconsistencies in internal resistance have a minimal impact on overall pack capacity but limit the power of both series-connected and parallel-connected packs. These findings offer essential insights for the development of balancing systems within battery management systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 2260 KiB  
Article
Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.)
by Shiying Zhang, Sujuan Guo and Ruijie Zheng
Agronomy 2025, 15(7), 1595; https://doi.org/10.3390/agronomy15071595 - 30 Jun 2025
Viewed by 422
Abstract
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, [...] Read more.
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, protoplast isolation, and fusion. Studies have shown that when 1.0 g yellow loose embryonic callus was inoculated into MS + 1.5 mg∙L−1 6-BA + 0.2 mg∙L−1 NAA + 0.5 mg∙L−1 2, 4-D liquid medium, a stable suspension cell line can be obtained. After further culturing for 2–4 days, protoplast isolation was performed. First, single-factor screening was conducted on the four enzymes, and then a two-factor random block was further set up to screen the enzyme combinations based on the results. We found that 1.0%cellulase R-10 + 0.5%pectolase Y-23 led to the highest protoplast yield (9.27 × 106/g FW) and the highest activity (92.49%). Furthermore, the protoplast yield could be increased to 9.47 × 106/g FW by adding 0.4 M mannitol and shaking for 8 h. The protoplasts were purified by centrifuging at 40× g for 4 min and then mixed with 30% PEG 6000 at a volume ratio of 1.5:1 for 25 min. The fusion rate could reach 70.00%. This study laid a foundation for the creation of new germplasm by Castanea mollissima Bl. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

12 pages, 1348 KiB  
Article
Role of Saccharomyces cerevisiae Fcy Proteins and Their Homologs in the Catabolism of Modified Heterocyclic Pyrimidine Bases
by Jaunius Urbonavičius, Iglė Vepštaitė-Monstavičė, Juliana Lukša-Žebelovič, Elena Servienė and Daiva Tauraitė
Microorganisms 2025, 13(7), 1506; https://doi.org/10.3390/microorganisms13071506 - 27 Jun 2025
Viewed by 414
Abstract
The synthesis of various heterocyclic base modifications of nucleic acids has been thoroughly investigated; however, much less is known about their catabolism. Also, little is known about the transport of such compounds across the microbial cell membranes. Using the Saccharomyces cerevisiae single-gene deletion [...] Read more.
The synthesis of various heterocyclic base modifications of nucleic acids has been thoroughly investigated; however, much less is known about their catabolism. Also, little is known about the transport of such compounds across the microbial cell membranes. Using the Saccharomyces cerevisiae single-gene deletion library, we performed genome-wide screening for genes affecting the growth of yeast in minimal media supplemented with N4-acetylcytosine as a source of uracil. We found that Fcy1, Fcy21, Bud16, Gnd1, and Fur4 proteins are required for efficient growth in the tested medium. Additionally, we used several heterocyclic pyrimidine bases and Fcy homolog mutants to test their growth in respective minimal media. We found that tested permeases differently affect the growth of yeast that is dependent on the heterocyclic pyrimidine bases used as a source of uracil. The most pronounced effect was observed for the ∆fur4 mutant, which was growing much slower than the corresponding wild-type strain in the media supplemented with N4-acetylcytosine, 4-methylthiouracil, N4-methylcytosine, N4,N4-dimethylcytosine, 2-thiouracil, or 4-thiouracil. We suggest that Fur4 protein is the major yeast transporter of modified heterocyclic pyrimidine bases. Our observations might be helpful when investigating the actions of various heterocyclic base-based antifungal, anticancer, and antiviral drugs. Full article
(This article belongs to the Collection Trends in Yeast Biochemistry and Biotechnology)
Show Figures

Figure 1

Back to TopTop