Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = single strand deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12323 KiB  
Article
Correlation of Microstructural Features within Short Carbon Fiber/ABS Manufactured via Large-Area Additive- Manufacturing Beads
by Neshat Sayah and Douglas E. Smith
J. Compos. Sci. 2024, 8(7), 246; https://doi.org/10.3390/jcs8070246 - 28 Jun 2024
Cited by 6 | Viewed by 1612
Abstract
Short carbon fiber-reinforced polymer composites are widely used in polymer extrusion additive manufacturing (AM), including large-area additive manufacturing (LAAM), due to their enhanced mechanical properties as compared to neat polymers. However, the mechanical properties of these composites depend on microstructural characteristics, including fibers [...] Read more.
Short carbon fiber-reinforced polymer composites are widely used in polymer extrusion additive manufacturing (AM), including large-area additive manufacturing (LAAM), due to their enhanced mechanical properties as compared to neat polymers. However, the mechanical properties of these composites depend on microstructural characteristics, including fibers and micro-voids, which are determined during processing. In this work, the correlation between fibers and micro-voids within the microstructure of LAAM polymer composites throughout various processing stages of short carbon fiber-reinforced acrylonitrile butadiene styrene (SCF/ABS) is investigated. The processing stages considered here include the incoming pellets, a single freely extruded strand, a single regularly deposited bead, and a single regularly deposited bead pressed by a mechanical roller. A high-resolution X-ray micro-computed tomography (µCT) system is employed to characterize the microstructural features in terms of the fibers (volume fraction, fiber orientation tensor) and micro-voids (volume fraction, sphericity) in the SCF/ABS samples. The results indicate that micro-voids exist within the microstructure of the SCF/ABS composite in all four stages considered here and that the micro-void volume fraction and micro-void sphericity vary among the test samples. Moreover, the results show a considerable variation in fiber orientation and fiber volume fraction within the microstructure throughout all the stages considered; however, all the samples show the highest alignment in the extrusion/print direction. Furthermore, a correlation is identified between the fiber orientation and the micro-void volume fraction within samples from all four stages considered here. This finding suggests that fibers tend to align more in the extrusion/print direction in regions with less micro-void content. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, Volume II)
Show Figures

Figure 1

15 pages, 4711 KiB  
Article
Monte Carlo-Based Nanoscale Dosimetry Holds Promise for Radiopharmaceutical Therapy Involving Auger Electron Emitters
by Ohyun Kwon, Sabrina L. V. Hoffman, Paul A. Ellison and Bryan P. Bednarz
Cancers 2024, 16(13), 2349; https://doi.org/10.3390/cancers16132349 - 26 Jun 2024
Cited by 2 | Viewed by 1868
Abstract
Radiopharmaceutical therapy (RPT) is evolving as a promising strategy for treating cancer. As interest grows in short-range particles, like Auger electrons, understanding the dose–response relationship at the deoxyribonucleic acid (DNA) level has become essential. In this study, we used the Geant4-DNA toolkit to [...] Read more.
Radiopharmaceutical therapy (RPT) is evolving as a promising strategy for treating cancer. As interest grows in short-range particles, like Auger electrons, understanding the dose–response relationship at the deoxyribonucleic acid (DNA) level has become essential. In this study, we used the Geant4-DNA toolkit to evaluate DNA damage caused by the Auger-electron-emitting isotope I-125. We compared the energy deposition and single strand break (SSB) yield at each base pair location in a short B-form DNA (B-DNA) geometry with existing simulation and experimental data, considering both physical direct and chemical indirect hits. Additionally, we evaluated dosimetric differences between our high-resolution B-DNA target and a previously published simple B-DNA geometry. Overall, our benchmarking results for SSB yield from I-125 decay exhibited good agreement with both simulation and experimental data. Using this simulation, we then evaluated the SSB and double strand break (DSB) yields caused by a theranostic Br-77-labeled poly ADP ribose polymerase (PARP) inhibitor radiopharmaceutical. The results indicated a predominant contribution of chemical indirect hits over physical direct hits in generating SSB and DSB. This study lays the foundation for future investigations into the nano-dosimetric properties of RPT. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

24 pages, 6232 KiB  
Article
Analysis of Antibacterial and Antiviral Properties of ZnO and Cu Coatings Deposited by Magnetron Sputtering: Evaluation of Cell Viability and ROS Production
by Viktors Vibornijs, Martins Zubkins, Edvards Strods, Zhanna Rudevica, Ksenija Korotkaja, Andrejs Ogurcovs, Karlis Kundzins, Juris Purans and Anna Zajakina
Coatings 2024, 14(1), 14; https://doi.org/10.3390/coatings14010014 - 22 Dec 2023
Cited by 10 | Viewed by 2081
Abstract
The development and testing of antimicrobial coatings continues to be a crucial approach, considering the ongoing emergence of antibiotic-resistant bacteria and the rapid transmission of highly pathogenic viruses. In this study, three types of coatings—pure metallic copper (Cu), zinc oxide (ZnO), and a [...] Read more.
The development and testing of antimicrobial coatings continues to be a crucial approach, considering the ongoing emergence of antibiotic-resistant bacteria and the rapid transmission of highly pathogenic viruses. In this study, three types of coatings—pure metallic copper (Cu), zinc oxide (ZnO), and a three-layer zinc oxide and copper mixed coating (ZnO/Cu/ZnO)—were deposited by magnetron sputtering on polyethylene terephthalate substrates to evaluate their antimicrobial potential using various microorganisms, including viruses. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria were used for the assessment of antibacterial properties. Antiviral testing was performed using MS2 bacteriophage and replication-deficient Semliki Forest virus, both representing single-stranded RNA-containing viruses. The samples’ ability to cause reactive oxygen species formation was measured, and the effect on bacterial metabolic activity was evaluated. Cu-coated samples showed high inhibitory activity (>95%) against E. coli and S. aureus bacteria, as well as against tested viruses (SFV and MS2). The antibacterial and antiviral properties of ZnO/Cu/ZnO and ZnO coatings were not significant. Although ZnO/Cu/ZnO and ZnO caused inhibition of the metabolic activity of the bacteria, it was insufficient for complete bacteria eradication. Furthermore, significant reactive oxygen species (ROS) production was detected only for single Cu-coated samples, correlating with the strong bacteria-killing ability. We suppose that the ZnO layer exhibited a low release of Zn ions and prevented contact of the Cu layer with bacteria and viruses in the ZnO/Cu/ZnO coating. We conclude that current ZnO and Cu-ZnO-layered coatings do not possess antibacterial and antiviral activity. Full article
(This article belongs to the Special Issue Biomaterials and Antimicrobial Coatings)
Show Figures

Figure 1

15 pages, 4374 KiB  
Article
Effect of the Functional VP1 Unique Region of Human Parvovirus B19 in Causing Skin Fibrosis of Systemic Sclerosis
by Der-Yuan Chen, Chih-Chen Tzang, Chuan-Ming Liu, Tsu-Man Chiu, Jhen-Wei Lin, Pei-Hua Chuang, Chia-Wei Kuo, Bor-Show Tzang and Tsai-Ching Hsu
Int. J. Mol. Sci. 2023, 24(20), 15294; https://doi.org/10.3390/ijms242015294 - 18 Oct 2023
Cited by 5 | Viewed by 2577
Abstract
Human parvovirus B19 (B19V) is a single-stranded non-enveloped DNA virus of the family Parvoviridae that has been associated with various autoimmune disorders. Systemic sclerosis (SSc) is an autoimmune connective tissue disorder with high mortality and has been linked to B19V infection. However, the [...] Read more.
Human parvovirus B19 (B19V) is a single-stranded non-enveloped DNA virus of the family Parvoviridae that has been associated with various autoimmune disorders. Systemic sclerosis (SSc) is an autoimmune connective tissue disorder with high mortality and has been linked to B19V infection. However, the precise mechanism underlying the B19V contribution to the development of SSc remains uncertain. This study investigated the impacts of the functional B19V-VP1 unique region (VP1u) in macrophages and bleomycin (BLE)-induced SSc mice. Cell experimental data showed that significantly decreased viability and migration of both B19V-VP1u-treated U937 and THP-1 macrophages are detected in the presence of celastrol. Significantly increased MMP9 activity and elevated NF-kB, MMP9, IL-6, TNF-α, and IL-1β expressions were detected in both B19V-VP1u-treated U937 and THP-1 macrophages. Conversely, celastrol revealed an inhibitory effect on these molecules. Notably, celastrol intervened in this pathogenic process by suppressing the sPLA2 activity of B19V-VP1u and subsequently reducing the inflammatory response. Notably, the administration of B19V-VP1u exacerbated BLE-induced skin fibrosis in mice, with augmented expressions of TGF-β, IL-6, IL-17A, IL-18, and TNF-α, ultimately leading to α-SMA and collagen I deposits in the dermal regions of BLE-induced SSc mice. Altogether, this study sheds light on parvovirus B19 VP1u linked to scleroderma and aggravated dermal fibrosis. Full article
(This article belongs to the Special Issue Molecular Aspects of Autoimmune Diseases)
Show Figures

Figure 1

13 pages, 26869 KiB  
Article
Automated Image Analysis of Transmission Electron Micrographs: Nanoscale Evaluation of Radiation-Induced DNA Damage in the Context of Chromatin
by Mutaz A. Abd Al-razaq, Anna Isermann, Markus Hecht and Claudia E. Rübe
Cells 2023, 12(20), 2427; https://doi.org/10.3390/cells12202427 - 10 Oct 2023
Viewed by 1829
Abstract
Background: Heavy ion irradiation (IR) with high-linear energy transfer (LET) is characterized by a unique depth dose distribution and increased biological effectiveness. Following high-LET IR, localized energy deposition along the particle trajectories induces clustered DNA lesions, leading to low electron density domains (LEDDs). [...] Read more.
Background: Heavy ion irradiation (IR) with high-linear energy transfer (LET) is characterized by a unique depth dose distribution and increased biological effectiveness. Following high-LET IR, localized energy deposition along the particle trajectories induces clustered DNA lesions, leading to low electron density domains (LEDDs). To investigate the spatiotemporal dynamics of DNA repair and chromatin remodeling, we established the automated image analysis of transmission electron micrographs. Methods: Human fibroblasts were irradiated with high-LET carbon ions or low-LET photons. At 0.1 h, 0.5 h, 5 h, and 24 h post-IR, nanoparticle-labeled repair factors (53BP1, pKu70, pKu80, DNA-PKcs) were visualized using transmission electron microscopy in interphase nuclei to monitor the formation and repair of DNA damage in the chromatin ultrastructure. Using AI-based software tools, advanced image analysis techniques were established to assess the DNA damage pattern following low-LET versus high-LET IR. Results: Low-LET IR induced single DNA lesions throughout the nucleus, and most DNA double-strand breaks (DSBs) were efficiently rejoined with no visible chromatin decondensation. High-LET IR induced clustered DNA damage concentrated along the particle trajectories, resulting in circumscribed LEDDs. Automated image analysis was used to determine the exact number of differently sized nanoparticles, their distance from one another, and their precise location within the micrographs (based on size, shape, and density). Chromatin densities were determined from grayscale features, and nanoparticles were automatically assigned to euchromatin or heterochromatin. High-LET IR-induced LEDDs were delineated using automated segmentation, and the spatial distribution of nanoparticles in relation to segmented LEDDs was determined. Conclusions: The results of our image analysis suggest that high-LET IR induces chromatin relaxation along particle trajectories, enabling the critical repair of successive DNA damage. Following exposure to different radiation qualities, automated image analysis of nanoparticle-labeled DNA repair proteins in the chromatin ultrastructure enables precise characterization of specific DNA damage patterns. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

18 pages, 14134 KiB  
Article
Effect of Process Parameters on Void Distribution, Volume Fraction, and Sphericity within the Bead Microstructure of Large-Area Additive Manufacturing Polymer Composites
by Neshat Sayah and Douglas E. Smith
Polymers 2022, 14(23), 5107; https://doi.org/10.3390/polym14235107 - 24 Nov 2022
Cited by 28 | Viewed by 3772
Abstract
Short carbon fiber-reinforced composite materials produced by large-area additive manufacturing (LAAM) are attractive due to their lightweight, favorable mechanical properties, multifunctional applications, and low manufacturing costs. However, the physical and mechanical properties of short carbon-fiber-reinforced composites 3D printed via LAAM systems remain below [...] Read more.
Short carbon fiber-reinforced composite materials produced by large-area additive manufacturing (LAAM) are attractive due to their lightweight, favorable mechanical properties, multifunctional applications, and low manufacturing costs. However, the physical and mechanical properties of short carbon-fiber-reinforced composites 3D printed via LAAM systems remain below expectations due in part to the void formation within the bead microstructure. This study aimed to assess void characteristics including volume fraction and sphericity within the microstructure of 13 wt% short carbon fiber acrylonitrile butadiene styrene (SCF/ABS). Our study evaluated SCF/ABS as a pellet, a single freely extruded strand, a regularly deposited single bead, and a single bead manufactured with a roller during the printing process using a high-resolution 3D micro-computed tomography (µCT) system. Micro voids were shown to exist within the microstructure of the SCF/ABS pellet and tended to become more prevalent in a single freely extruded strand which showed the highest void volume fraction among all the samples studied. Results also showed that deposition on the print bed reduced the void volume fraction and applying a roller during the printing process caused a further reduction in the void volume fraction. This study also reports the void’s shape within the microstructure in terms of sphericity which indicated that SCF/ABS single freely extruded strands had the highest mean void sphericity (voids tend to be more spherical). Moreover, this study evaluated the effect of printing process parameters, including nozzle temperature, extrusion speed and nozzle height above the printing table on the void volume fraction and sphericity within the microstructure of regularly deposited single beads. Full article
(This article belongs to the Special Issue New Developments in Fiber Reinforced Polymer Materials)
Show Figures

Figure 1

17 pages, 774 KiB  
Article
Track Structure-Based Simulations on DNA Damage Induced by Diverse Isotopes
by Pavel Kundrát, Werner Friedland and Giorgio Baiocco
Int. J. Mol. Sci. 2022, 23(22), 13693; https://doi.org/10.3390/ijms232213693 - 8 Nov 2022
Cited by 3 | Viewed by 2124
Abstract
Diverse isotopes such as 2H, 3He, 10Be, 11C and 14C occur in nuclear reactions in ion beam radiotherapy, in cosmic ray shielding, or are intentionally accelerated in dating techniques. However, only a few studies have specifically addressed the [...] Read more.
Diverse isotopes such as 2H, 3He, 10Be, 11C and 14C occur in nuclear reactions in ion beam radiotherapy, in cosmic ray shielding, or are intentionally accelerated in dating techniques. However, only a few studies have specifically addressed the biological effects of diverse isotopes and were limited to energies of several MeV/u. A database of simulations with the PARTRAC biophysical tool is presented for H, He, Li, Be, B and C isotopes at energies from 0.5 GeV/u down to stopping. The doses deposited to a cell nucleus and also the yields per unit dose of single- and double-strand breaks and their clusters induced in cellular DNA are predicted to vary among diverse isotopes of the same element at energies < 1 MeV/u, especially for isotopes of H and He. The results may affect the risk estimates for astronauts in deep space missions or the models of biological effectiveness of ion beams and indicate that radiation protection in 14C or 10Be dating techniques may be based on knowledge gathered with 12C or 9Be. Full article
(This article belongs to the Special Issue Radiation Damage in Biomolecules and Cells 3.0)
Show Figures

Figure 1

18 pages, 8786 KiB  
Article
Enhancing Photoluminescence Intensity and Spectral Bandwidth of Hybrid Nanofiber/Thin-Film Multilayer Tm3+-Doped SiO2–HfO2
by Nurul Izzati Zafirah Zulfikri, Abdel-Baset M. A. Ibrahim, Nur Amalina Mustaffa, Rozan Mohamad Yunus and Suraya Ahmad Kamil
Nanomaterials 2022, 12(21), 3739; https://doi.org/10.3390/nano12213739 - 25 Oct 2022
Cited by 2 | Viewed by 2116
Abstract
Multilayering of optical thin films is widely used for a range of purposes in photonic technology, but the development of nanofiber structures that can outperform thin films and nanoparticles in optical applications cannot simply be disregarded. Hybrid structures composed of Tm3+-doped [...] Read more.
Multilayering of optical thin films is widely used for a range of purposes in photonic technology, but the development of nanofiber structures that can outperform thin films and nanoparticles in optical applications cannot simply be disregarded. Hybrid structures composed of Tm3+-doped SiO2–HfO2 in the form of nanofibers (NFs) and thin films (TFs) are deposited on a single substrate using the electrospinning and dip-coating methods, respectively. Ultrafine nanofiber strands with a diameter of 10–60 nm were fabricated in both single and multilayer samples. Enhanced photoluminescence emission intensity of about 10 times was attained at wavelengths of around 457, 512 and 634 nm under an excitation of 350 nm for NF-TF-NF* hybrid structures when compared with single-layered NF and TF structures. The arrangement of nanofibers and thin films in a multilayer structure influenced the luminescence intensity and spectral bandwidth. High transparency in the range of 75–95% transparency across the wavelength of 200–2000 nm was achieved, making it ideal for photonic application. Theoretical findings obtained through IMD software were compared with experimental results, and they were found to be in good agreement. Full article
(This article belongs to the Special Issue Advance in Photoactive Nanomaterials)
Show Figures

Figure 1

17 pages, 4405 KiB  
Article
Laser Bioprinting of Cells Using UV and Visible Wavelengths: A Comparative DNA Damage Study
by Panagiotis Karakaidos, Christina Kryou, Nikiana Simigdala, Apostolos Klinakis and Ioanna Zergioti
Bioengineering 2022, 9(8), 378; https://doi.org/10.3390/bioengineering9080378 - 9 Aug 2022
Cited by 17 | Viewed by 3081
Abstract
Laser-based techniques for printing cells onto different substrates with high precision and resolution present unique opportunities for contributing to a wide range of biomedical applications, including tissue engineering. In this study, laser-induced forward transfer (LIFT) printing was employed to rapidly and accurately deposit [...] Read more.
Laser-based techniques for printing cells onto different substrates with high precision and resolution present unique opportunities for contributing to a wide range of biomedical applications, including tissue engineering. In this study, laser-induced forward transfer (LIFT) printing was employed to rapidly and accurately deposit patterns of cancer cells in a non-contact manner, using two different wavelengths, 532 and 355 nm. To evaluate the effect of LIFT on the printed cells, their growth and DNA damage profiles were assessed and evaluated quantitatively over several days. The damaging effect of LIFT-printing was thoroughly investigated, for the first time at a single cell level, by counting individual double strand breaks (DSB). Overall, we found that LIFT was able to safely print patterns of breast cancer cells with high viability with little or no heat or shear damage to the cells, as indicated by unperturbed growth and negligible gross DNA damage. Full article
(This article belongs to the Special Issue Advances in Organoid Research and Developmental Engineering)
Show Figures

Figure 1

20 pages, 2724 KiB  
Article
Sequence-Specific Electrochemical Genosensor for Rapid Detection of blaOXA-51-like Gene in Acinetobacter baumannii
by Swarnaletchumi Kanapathy, Godwin Attah Obande, Candy Chuah, Rafidah Hanim Shueb, Chan Yean Yean and Kirnpal Kaur Banga Singh
Microorganisms 2022, 10(7), 1413; https://doi.org/10.3390/microorganisms10071413 - 13 Jul 2022
Cited by 6 | Viewed by 2853
Abstract
Acinetobacter baumannii (A. baumannii) are phenotypically indistinguishable from the Acinetobacter calcoaceticusA. baumannii (ACB) complex members using routine laboratory methods. Early diagnosis plays an important role in controlling A. baumannii infections and this could be assisted by the development of [...] Read more.
Acinetobacter baumannii (A. baumannii) are phenotypically indistinguishable from the Acinetobacter calcoaceticusA. baumannii (ACB) complex members using routine laboratory methods. Early diagnosis plays an important role in controlling A. baumannii infections and this could be assisted by the development of a rapid, yet sensitive diagnostic test. In this study, we developed an enzyme-based electrochemical genosensor for asymmetric PCR (aPCR) amplicon detection of the blaOXA-51-like gene in A. baumannii. A. baumanniiblaOXA-51-like gene PCR primers were designed, having the reverse primer modified at the 5′ end with FAM. A blaOXA-51-like gene sequence-specific biotin labelled capture probe was designed and immobilized using a synthetic oligomer (FAM-labelled) deposited on the working electrode of a streptavidin-modified, screen-printed carbon electrode (SPCE). The zot gene was used as an internal control with biotin and FAM labelled as forward and reverse primers, respectively. The blaOXA-51-like gene was amplified using asymmetric PCR (aPCR) to generate single-stranded amplicons that were detected using the designed SPCE. The amperometric current response was detected with a peroxidase-conjugated, anti-fluorescein antibody. The assay was tested using reference and clinical A. baumannii strains and other nosocomial bacteria. The analytical sensitivity of the assay at the genomic level and bacterial cell level was 0.5 pg/mL (1.443 µA) and 103 CFU/mL, respectively. The assay was 100% specific and sensitive for A. baumannii. Based on accelerated stability performance, the developed genosensor was stable for 1.6 years when stored at 4 °C and up to 28 days at >25 °C. The developed electrochemical genosensor is specific and sensitive and could be useful for rapid, accurate diagnosis of A. baumannii infections even in temperate regions. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

18 pages, 4160 KiB  
Article
Detection of a Double-Stranded MGMT Gene Using Electrochemically Reduced Graphene Oxide (ErGO) Electrodes Decorated with AuNPs and Peptide Nucleic Acids (PNA)
by Mina Safarzadeh and Genhua Pan
Biosensors 2022, 12(2), 98; https://doi.org/10.3390/bios12020098 - 5 Feb 2022
Cited by 10 | Viewed by 3460
Abstract
The ability to detect double-stranded DNA (dsDNA) as a biomarker without denaturing it to single-stranded DNA (ss-DNA) continues to be a major challenge. In this work, we report a sandwich biosensor for the detection of the ds-methylated MGMT gene, a potential biomarker for [...] Read more.
The ability to detect double-stranded DNA (dsDNA) as a biomarker without denaturing it to single-stranded DNA (ss-DNA) continues to be a major challenge. In this work, we report a sandwich biosensor for the detection of the ds-methylated MGMT gene, a potential biomarker for brain tumors and breast cancer. The purpose of this biosensor is to achieve simultaneous recognition of the gene sequence, as well as the presence of methylation. The biosensor is based on reduced graphene oxide (rGO) electrodes decorated with gold nanoparticles (AuNPs) and uses Peptide Nucleic Acid (PNA) that binds to the ds-MGMT gene. The reduction of GO was performed in two ways: electrochemically (ErGO) and thermally (TrGO). XPS and Raman spectroscopy, as well as voltammetry techniques, showed that the ErGO was more efficiently reduced, had a higher C/O ratio, showed a smaller crystallite size of the sp2 lattice, and was more stable during measurement. It was also revealed that the electro-deposition of the AuNPs was more successful on the ErGO surface due to the higher At% of Au on the ErGO electrode. Therefore, the ErGO/AuNPs electrode was used to develop biosensors to detect the ds-MGMT gene. PNA, which acts as a bio-recognition element, was used to form a self-assembled monolayer (SAM) on the ErGO/AuNPs surface via the amine-AuNPs interaction, recognizing the ds-MGMT gene sequence by its invasion of the double-stranded DNA and the formation of a triple helix. The methylation was then detected using biotinylated-anti-5mC, which was then measured using the amperometric technique. The selectivity study showed that the proposed biosensor was able to distinguish between blank, non-methylated, non-complementary, and target dsDNA spiked in mouse plasma. The LOD was calculated to be 0.86 pM with a wide linear range of 1 pM to 50 µM. To the best of our knowledge, this is the first report on using PNA to detect ds-methylated DNA. This sandwich design can be modified to detect other methylated genes, making it a promising platform to detect ds-methylated biomarkers. Full article
Show Figures

Figure 1

13 pages, 1247 KiB  
Article
Nitrogen Accumulation in Oyster (Crassostrea gigas) Slurry Exposed to Virucidal Cold Atmospheric Plasma Treatment
by Isabella Csadek, Peter Paulsen, Pia Weidinger, Kathrine H. Bak, Susanne Bauer, Brigitte Pilz, Norbert Nowotny and Frans J. M. Smulders
Life 2021, 11(12), 1333; https://doi.org/10.3390/life11121333 - 2 Dec 2021
Cited by 5 | Viewed by 2871
Abstract
Viral contamination of edible bivalves is a major food safety issue. We studied the virucidal effect of a cold atmospheric plasma (CAP) source on two virologically different surrogate viruses [a double-stranded DNA virus (Equid alphaherpesvirus 1, EHV-1), and a single-stranded RNA virus (Bovine [...] Read more.
Viral contamination of edible bivalves is a major food safety issue. We studied the virucidal effect of a cold atmospheric plasma (CAP) source on two virologically different surrogate viruses [a double-stranded DNA virus (Equid alphaherpesvirus 1, EHV-1), and a single-stranded RNA virus (Bovine coronavirus, BCoV)] suspended in Dulbecco’s Modified Eagle’s Medium (DMEM). A 15 min exposure effectuated a statistically significant immediate reduction in intact BCoV viruses by 2.8 (ozone-dominated plasma, “low power”) or 2.3 log cycles (nitrate-dominated, “high power”) of the initial viral load. The immediate effect of CAP on EHV-1 was less pronounced, with “low power” CAP yielding a 1.4 and “high power” a 1.0 log reduction. We observed a decline in glucose contents in DMEM, which was most probably caused by a Maillard reaction with the amino acids in DMEM. With respect to the application of the virucidal CAP treatment in oyster production, we investigated whether salt water could be sanitized. CAP treatment entailed a significant decline in pH, below the limits acceptable for holding oysters. In oyster slurry (a surrogate for live oysters), CAP exposure resulted in an increase in total nitrogen, and, to a lower extent, in nitrate and nitrite; this was most probably caused by absorption of nitrate from the plasma gas cloud. We could not observe a change in colour, indicative for binding of NOx to haemocyanin, although this would be a reasonable assumption. Further studies are necessary to explore in which form this additional nitrogen is deposited in oyster flesh. Full article
(This article belongs to the Special Issue Cold Plasmas: A New Frontier for Disinfection?)
Show Figures

Figure 1

17 pages, 3090 KiB  
Article
MicroRNA-126b-5p Exacerbates Development of Adipose Tissue and Diet-Induced Obesity
by Linyuan Shen, Jin He, Ye Zhao, Lili Niu, Lei Chen, Guoqing Tang, Yanzhi Jiang, Xiaoxia Hao, Lin Bai, Xuewei Li, Shunhua Zhang and Li Zhu
Int. J. Mol. Sci. 2021, 22(19), 10261; https://doi.org/10.3390/ijms221910261 - 23 Sep 2021
Cited by 13 | Viewed by 3124
Abstract
Obesity has become a worldwide epidemic, caused by many factors such as genetic regulatory elements, unhealthy diet, and lack of exercise. MicroRNAs (miRNAs) are non-coding single-stranded RNA classes, which are about 22 nucleotides in length and highly conserved among species. In the last [...] Read more.
Obesity has become a worldwide epidemic, caused by many factors such as genetic regulatory elements, unhealthy diet, and lack of exercise. MicroRNAs (miRNAs) are non-coding single-stranded RNA classes, which are about 22 nucleotides in length and highly conserved among species. In the last decade, a series of miRNAs were identified as therapeutic targets for obesity. In the present study, we found that miR-126b-5p was associated with adipogenesis. miR-126b-5p overexpression promoted the proliferation of 3T3-L1 preadipocytes by upregulating the expression of proliferation-related genes and downregulating the expression of apoptosis-related genes; the inhibition of miR-126b-5p gave rise to opposite results. Similarly, miR-126b-5p overexpression could promote the differentiation of 3T3-L1 preadipocytes by increasing the expression of lipid deposition genes and triglyceride (TG) and total cholesterol (TC) levels. Moreover, luciferase reporter assay demonstrated that adiponectin receptor 2 (Adipor2) and acyl-CoA dehydrogenase, long chain (ACADL) were the direct target genes of miR-126b-5p. Moreover, overexpression of miR-126b-5p could exacerbate the clinical symptoms of obesity when mice were induced by a high-fat diet, including increased adipose tissue weight, adipocyte volume, and insulin resistance. Interestingly, overexpression of miR-126b-5p in preadipocytes and mice could significantly increase total fatty acid content and change the fatty acid composition of adipose tissue. Taken together, the present study showed that miR-126b-5p promotes lipid deposition in vivo and in vitro, indicating that miR-126b-5p is a potential target for treating obesity. Full article
(This article belongs to the Special Issue Lipid Metabolism and Metabolic Syndrome)
Show Figures

Figure 1

14 pages, 39962 KiB  
Article
Focused Ion Microbeam Irradiation Induces Clustering of DNA Double-Strand Breaks in Heterochromatin Visualized by Nanoscale-Resolution Electron Microscopy
by Yvonne Lorat, Judith Reindl, Anna Isermann, Christian Rübe, Anna A. Friedl and Claudia E. Rübe
Int. J. Mol. Sci. 2021, 22(14), 7638; https://doi.org/10.3390/ijms22147638 - 16 Jul 2021
Cited by 16 | Viewed by 3687
Abstract
Background: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by [...] Read more.
Background: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. Material and Methods: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). Results: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. Conclusion: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment. Full article
(This article belongs to the Special Issue Advances and Challenges in Biomolecular Radiation Research 2.0)
Show Figures

Figure 1

15 pages, 5169 KiB  
Article
Attachment of Single-Stranded DNA to Certain SERS-Active Gold and Silver Substrates: Selected Practical Tips
by Edyta Pyrak, Kacper Jędrzejewski, Aleksandra Szaniawska and Andrzej Kudelski
Molecules 2021, 26(14), 4246; https://doi.org/10.3390/molecules26144246 - 13 Jul 2021
Cited by 5 | Viewed by 3240
Abstract
Layers formed from single-stranded DNA on nanostructured plasmonic metals can be applied as “working elements” in surface–enhanced Raman scattering (SERS) sensors used to sensitively and accurately identify specific DNA fragments in various biological samples (for example, in samples of blood). Therefore, the proper [...] Read more.
Layers formed from single-stranded DNA on nanostructured plasmonic metals can be applied as “working elements” in surface–enhanced Raman scattering (SERS) sensors used to sensitively and accurately identify specific DNA fragments in various biological samples (for example, in samples of blood). Therefore, the proper formation of the desired DNA layers on SERS substrates is of great practical importance, and many research groups are working to improve the process in forming such structures. In this work, we propose two modifications of a standard method used for depositing DNA with an attached linking thiol moiety on certain SERS-active structures; the modifications yield DNA layers that generate a stronger SERS signal. We propose: (i) freezing the sample when forming DNA layers on the nanoparticles, and (ii) when forming DNA layers on SERS-active macroscopic silver substrates, using ω-substituted alkanethiols with very short alkane chains (such as cysteamine or mercaptopropionic acid) to backfill the empty spaces on the metal surface unoccupied by DNA. When 6-mercapto-1-hexanol is used to fill the unoccupied places on a silver surface (as in experiments on standard gold substrates), a quick detachment of chemisorbed DNA from the silver surface is observed. Whereas, using ω-substituted alkanethiols with a shorter alkane chain makes it possible to easily form mixed DNA/backfilling thiol monolayers. Probably, the significantly lower desorption rate of the thiolated DNA induced by alkanethiols with shorter chains is due to the lower stabilization energy in monolayers formed from such compounds. Full article
(This article belongs to the Special Issue In Honor of the 80th Birthday of Professor Janusz Jurczak)
Show Figures

Figure 1

Back to TopTop