Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (737)

Search Parameters:
Keywords = single electron transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 818 KB  
Review
The Effective Force Constant Approach of Protein Flexibility Applied to Selected Photosynthetic Protein Complexes
by Miriam Koppel, Maria Kulikova, Arina Sljusar, Mina Hajizadeh, Maksym Golub and Jörg Pieper
Molecules 2026, 31(2), 343; https://doi.org/10.3390/molecules31020343 - 19 Jan 2026
Abstract
Proteins are generally characterized by three-dimensional structures that are well suited for their specific function. It is much less accepted that a particular flexibility or plasticity of a protein is essential for performing its function. The latter plasticity encompasses the stochastic motions of [...] Read more.
Proteins are generally characterized by three-dimensional structures that are well suited for their specific function. It is much less accepted that a particular flexibility or plasticity of a protein is essential for performing its function. The latter plasticity encompasses the stochastic motions of small protein sidechains on the picosecond timescale that serve as “lubricating grease”, allowing slower functionally relevant conformational changes. Some remarkable examples of potential correlations between protein dynamics and function were observed for pigment–protein complexes in photosynthesis. For example, electron transfer and protein plasticity are concurrently suppressed in Photosystem II upon decreases in temperature or hydration, thus suggesting a prominent functional role of protein dynamics. An unusual dynamics–function correlation was observed for the major light-harvesting complex II, where the dynamics of charged protein residues affect the pigment absorption frequencies in photosynthetic light-harvesting. Generally, proteins exhibit a wide variety of motions on multiple time and length scales. However, there is an approach to characterize the plasticity of a protein as a single effective force constant that permits a straightforward comparison between different protein systems. Within this review, we determine the latter effective force constant for three photosynthetic proteins in different functional and organizational states. The force constant values determined appear to be rather different for each protein and are consistent with the requirements imposed by the various functions. These findings highlight the individual character of a protein’s flexibility and the role(s) it is playing for the specific function. Full article
(This article belongs to the Section Bioorganic Chemistry)
16 pages, 4013 KB  
Review
Single-Atom Site Photocatalysts Boosting Organic Synthesis: The Integration of a Metal Active Site and Photosensitive Unit
by Haoyue Sun, Yu Yang, Yanchang Liu, Dongxue Yang, Yichang Liu and Zaicheng Sun
Nanomaterials 2026, 16(2), 129; https://doi.org/10.3390/nano16020129 - 19 Jan 2026
Abstract
Metallaphotoredox catalysis merges the powerful bond-forming abilities of transition metal catalysis with unique electron or energy transfer pathways accessible in photoexcited states, injecting new vitality into organic synthesis. However, most transition metal catalysts cannot be excited by visible light. Thus, prevalent metallaphotoredox catalytic [...] Read more.
Metallaphotoredox catalysis merges the powerful bond-forming abilities of transition metal catalysis with unique electron or energy transfer pathways accessible in photoexcited states, injecting new vitality into organic synthesis. However, most transition metal catalysts cannot be excited by visible light. Thus, prevalent metallaphotoredox catalytic systems require dual catalysts: a transition metal catalyst and a separate photosensitizer. This leads to inefficient electron transfer between these two low-concentration catalytic species, which often limits overall photocatalytic performance. Single-atom site catalysts (SASCs) offer a promising solution, wherein isolated and quasi-homogeneous transition metal sites are anchored on heterogeneous supports. When semiconductors are employed as the support, the photosensitive unit and transition metal catalytic site can be integrated into one system. This integration switches the electron transfer mode from intermolecular to intramolecular, thereby significantly enhancing photocatalytic efficiency. Furthermore, such heterogeneous catalysts are easier to separate and reuse. This review summarizes recent advances in the application of SASCs for photocatalytic organic synthesis, with a particular focus on elucidating structure–activity relationships of the single-atom sites. Full article
Show Figures

Graphical abstract

26 pages, 4292 KB  
Article
Mechanism of Long-Term Corrosion Protection for Silicone Epoxy Coatings Reinforced by BN-PDA-CeO2 Ternary Composites in Harsh Environments
by Xianlian Mu, Tao Jin, Pengfei Xie, Rongcao Yu, Bin Li and Xin Yuan
Nanomaterials 2026, 16(2), 121; https://doi.org/10.3390/nano16020121 - 16 Jan 2026
Viewed by 86
Abstract
Corrosion in harsh environments causes global economic losses exceeding 3 trillion US dollars annually. Traditional silicone epoxy (SE) coatings are prone to failure due to insufficient physical barrier properties and lack of active protection. In this study, cerium dioxide (CeO2) was [...] Read more.
Corrosion in harsh environments causes global economic losses exceeding 3 trillion US dollars annually. Traditional silicone epoxy (SE) coatings are prone to failure due to insufficient physical barrier properties and lack of active protection. In this study, cerium dioxide (CeO2) was in situ grown on the surface of hexagonal boron nitride (h-BN) mediated by polydopamine (PDA) to prepare BN-PDA-CeO2 ternary nanocomposites, which were then incorporated into SE coatings to construct a multi-scale synergistic corrosion protection system. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) confirmed the successful preparation of the composites, where PDA inhibited the agglomeration of h-BN and CeO2 was uniformly loaded. Electrochemical tests showed that the corrosion inhibition efficiency of the extract of this composite for 2024 aluminum alloy reached 99.96%. After immersing the composite coating in 3.5 wt% NaCl solution for 120 days, the coating resistance (Rc) and charge transfer resistance (Rct) reached 8.5 × 109 Ω·cm2 and 1.2 × 1010 Ω·cm2, respectively, which were much higher than those of pure SE coatings and coatings filled with single/binary fillers. Density functional theory (DFT) calculations revealed the synergistic mechanisms: PDA enhanced interfacial dispersion (adsorption energy of −0.58 eV), CeO2 captured Cl (adsorption energy of −4.22 eV), and Ce3+ formed a passive film. This study provides key technical and theoretical support for the design of long-term corrosion protection coatings in harsh environments such as marine and petrochemical industries. Full article
(This article belongs to the Special Issue Research and Applications of Anti-Corrosion Nanocoatings)
Show Figures

Figure 1

13 pages, 1929 KB  
Article
Scanning Electrochemical Microscopy of Nystatin-Treated Yeast Used for Biofuel Cells
by Katazyna Blazevic, Antanas Zinovicius, Juste Rozene, Tomas Mockaitis, Ingrida Bruzaite, Laisvidas Striska, Evaldas Balciunas, Arunas Ramanavicius, Almira Ramanaviciene and Inga Morkvenaite
Sensors 2026, 26(2), 605; https://doi.org/10.3390/s26020605 - 16 Jan 2026
Viewed by 91
Abstract
Biofuel cells (BFCs) generate electricity by converting chemical energy into electrical energy using biological systems. Saccharomyces cerevisiae (yeast) is an attractive biocatalyst for BFCs due to its robustness, low cost, and metabolic versatility; however, electron transfer from the intracellular reactions to the electrode [...] Read more.
Biofuel cells (BFCs) generate electricity by converting chemical energy into electrical energy using biological systems. Saccharomyces cerevisiae (yeast) is an attractive biocatalyst for BFCs due to its robustness, low cost, and metabolic versatility; however, electron transfer from the intracellular reactions to the electrode is limited by the cell membrane. Nystatin is an antifungal antibiotic that increases the permeability of fungal membranes. We hypothesized that sub-lethal nystatin treatment could enhance mediator-assisted electron transfer without compromising cell viability. In this work, yeast was treated with nystatin during cultivation at concentrations of up to 6 µg/mL and combined with a dual-mediator system consisting of a lipophilic mediator (9,10-phenanthrenequinone, PQ) and a hydrophilic mediator (potassium ferricyanide). Scanning electrochemical microscopy revealed that the dual-mediator system increased local current responses by approximately fivefold compared to a single mediator (from ~11 pA to ~59 pA), and that nystatin-treated yeast exhibited higher local electrochemical activity than untreated yeast (maximum currents of ~0.476 nA versus ~0.303 nA). Microbial fuel cell measurements showed that nystatin treatment increased the maximum power density from approximately 0.58 mW/m2 to approximately 0.62 mW/m2 under identical conditions. Nystatin concentrations between 4 and 5 µg/mL maintain yeast viability at near-control levels, while higher concentrations cause a decrease in viability. These results demonstrate that controlled, sub-lethal membrane permeabilization combined with a dual-mediator strategy can enhance electron transfer in yeast-based biofuel cells. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

21 pages, 8110 KB  
Article
Study on the Performance of Bi2O3/BiOBrγIx Adsorptive Photocatalyst for Removal of 2,4-Dichlorophenoxyacetic Acid
by Rixiong Mo, Yuanzhen Li, Bo Liu, Yi Yang, Yaoyao Zhou, Yuxi Cheng, Haorong Shi and Guanlong Yu
Separations 2026, 13(1), 30; https://doi.org/10.3390/separations13010030 - 14 Jan 2026
Viewed by 61
Abstract
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the [...] Read more.
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the photocatalyst were characterized through X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), Steady-state photoluminescence (PL), and Electrochemical Impedance Spectroscopy (EIS). The composite exhibits a 3D hierarchical morphology with increased specific surface area and optimized pore structure, enhancing pollutant adsorption and providing more active sites. Under visible light irradiation, BO0.9−BBI0.1 achieved a 92.4% removal rate of 2,4-D within 2 h, with a reaction rate constant 5.3 and 4.6 times higher than that of pure BiOBr and BiOI, respectively. Mechanism studies confirm that photogenerated holes (h+) and superoxide radicals (·O2) are the primary active species, and the Z-scheme charge transfer pathway significantly promotes the separation of electron-hole pairs while maintaining strong redox capacity. The catalyst also demonstrated good stability over multiple cycles. This work provides a feasible dual-modification strategy for designing efficient bismuth-based photocatalysts for pesticide wastewater treatment. Full article
Show Figures

Figure 1

23 pages, 1151 KB  
Article
CNN–BiLSTM–Attention-Based Hybrid-Driven Modeling for Diameter Prediction of Czochralski Silicon Single Crystals
by Pengju Zhang, Hao Pan, Chen Chen, Yiming Jing and Ding Liu
Crystals 2026, 16(1), 57; https://doi.org/10.3390/cryst16010057 - 13 Jan 2026
Viewed by 163
Abstract
High-precision prediction of the crystal diameter during the growth of electronic-grade silicon single crystals is a critical step for the fabrication of high-quality single crystals. However, the process features high-temperature operation, strong nonlinearities, significant time-delay dynamics, and external disturbances, which limit the accuracy [...] Read more.
High-precision prediction of the crystal diameter during the growth of electronic-grade silicon single crystals is a critical step for the fabrication of high-quality single crystals. However, the process features high-temperature operation, strong nonlinearities, significant time-delay dynamics, and external disturbances, which limit the accuracy of conventional mechanism-based models. In this study, mechanism-based models denote physics-informed heat-transfer and geometric models that relate heater power and pulling rate to diameter evolution. To address this challenge, this paper proposes a hybrid deep learning model combining a convolutional neural network (CNN), a bidirectional long short-term memory network (BiLSTM), and self-attention to improve diameter prediction during the shoulder-formation and constant-diameter stages. The proposed model leverages the CNN to extract localized spatial features from multi-source sensor data, employs the BiLSTM to capture temporal dependencies inherent to the crystal growth process, and utilizes the self-attention mechanism to dynamically highlight critical feature information, thereby substantially enhancing the model’s capacity to represent complex industrial operating conditions. Experiments on operational production data collected from an industrial Czochralski (Cz) furnace, model TDR-180, demonstrate improved prediction accuracy and robustness over mechanism-based and single data-driven baselines, supporting practical process control and production optimization. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 3068 KB  
Article
Modulating Reactivity and Stability of Graphene Quantum Dots with Boron Dopants for Mercury Ion Interaction: A DFT Perspective
by Joaquín Alejandro Hernández Fernández, Juan Jose Carrascal and Juan Sebastian Gómez Pérez
J. Compos. Sci. 2026, 10(1), 40; https://doi.org/10.3390/jcs10010040 - 12 Jan 2026
Viewed by 191
Abstract
The objective of this study was to use Density Functional Theory (DFT) calculations to examine how boron doping modulates the electronic properties of graphene quantum dots (GQDs) and their interaction with the Hg2+ ion. Boron doping decreases the HOMO-LUMO gap and increases [...] Read more.
The objective of this study was to use Density Functional Theory (DFT) calculations to examine how boron doping modulates the electronic properties of graphene quantum dots (GQDs) and their interaction with the Hg2+ ion. Boron doping decreases the HOMO-LUMO gap and increases the GQD’s electrophilic character, facilitating charge transfer to the metal ion. The adsorption energy results were negative, indicating electronic stabilization of the combined systems, without implying thermodynamic favorability, with the GQD@3B_Hg2+ system being the strongest at −349.52 kcal/mol. The analysis of global parameters (chemical descriptors) and the study of non-covalent interactions (NCIs) supported the affinity of Hg2+ for doped surfaces, showing that the presence of a single boron atom contributes to clear attractive interactions. In general, configurations doped with 1 or 2 boron atoms exhibit satisfactory performance, demonstrating that boron doping effectively modulates the reactivity and adsorption properties of GQD for efficient Hg2+ capture. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

19 pages, 3069 KB  
Article
Ab Initio Studies of Work Function Changes Induced by Single and Co-Adsorption of NO, CO, CO2, NO2, H2S, and O3 on ZnGa2O4(111) Surface for Gas Sensor Applications
by Jen-Chuan Tung, Guan-Yu Chen, Chao-Cheng Shen and Po-Liang Liu
Sensors 2026, 26(2), 415; https://doi.org/10.3390/s26020415 - 8 Jan 2026
Viewed by 179
Abstract
In this study, first-principles density functional theory (DFT) calculations were employed to investigate the effects of single and binary gas adsorption of NO, CO, CO2, NO2, H2S, and O3 on the ZnGa2O4(111) [...] Read more.
In this study, first-principles density functional theory (DFT) calculations were employed to investigate the effects of single and binary gas adsorption of NO, CO, CO2, NO2, H2S, and O3 on the ZnGa2O4(111) surface. For single-gas adsorption, O3 adsorbed on surface Ga sites induces a pronounced work-function increase of 0.97 eV, whereas H2S adsorption at surface O sites yields the strongest adsorption energy (−1.21 eV), highlighting their distinct electronic interactions with the surface. For binary co-adsorption, the NO2-O3 pair adsorbed at Ga-coordinated sites produces the largest work-function shift (1.88 eV), while adsorption at Zn sites results in the most stable configuration, with an adsorption energy reaching −3.98 eV. These results indicate that co-adsorption of highly electronegative gases can significantly enhance charge transfer and sensing response. In contrast, mixed oxidizing–reducing gas pairs, such as NO2-H2S, lead to a markedly suppressed work-function variation (−0.02 eV), suggesting reduced sensor sensitivity due to compensating charge-transfer effects. Overall, this work demonstrates that gas-sensing behavior on ZnGa2O4(111) is governed not only by individual gas–surface interactions but also by cooperative and competitive effects arising from binary co-adsorption, providing insights into realistic multi-gas sensing environments. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

12 pages, 1980 KB  
Article
Correlating Boron Existence Morphologies with Electrocatalytic HER Activity in Ni-B Compounds Synthesized via High Pressure and High Temperature
by Xinrong Guo, Rui Bao, Jiawen Lv, Li Bai, Guiqian Sun, Huilian Liu, Pinwen Zhu, Yanli Chen, Maobin Wei and Qiang Tao
Catalysts 2026, 16(1), 65; https://doi.org/10.3390/catal16010065 - 6 Jan 2026
Viewed by 344
Abstract
Nickel boride compounds have attracted considerable attention in the field of electrocatalysis due to their unique electronic structures and excellent chemical stability. However, the difficulty in obtaining single-phase products under traditional experimental conditions hinders the analysis of their intrinsic catalytic performance. Herein, we [...] Read more.
Nickel boride compounds have attracted considerable attention in the field of electrocatalysis due to their unique electronic structures and excellent chemical stability. However, the difficulty in obtaining single-phase products under traditional experimental conditions hinders the analysis of their intrinsic catalytic performance. Herein, we report the successful synthesis of three single-phase nickel boride compounds (Ni2B, Ni4B3, and NiB) via a high pressure and high temperature (HPHT) method. The configurations of B in their respective structures are distinct. Their electrocatalytic hydrogen evolution reaction (HER) performance was systematically evaluated. The results demonstrate that NiB exhibits the lowest overpotentials of 182 mV (in acidic electrolyte) and 234 mV (in alkaline electrolyte) at a current density of 10 mA cm−2, accompanied by the smallest Tafel slope, the lowest electron transfer resistance (Rct), and the largest double-layer capacitance (Cdl). This superior HER activity is primarily attributed to the presence of strong B-B covalent bonds in NiB, which weaken the Ni-B interaction and reduce the orbital hybridization between Ni 3d and B 2p orbitals. Consequently, the hydrogen adsorption intermediate (H*) achieves the optimal adsorption strength on the NiB surface. This work provides a novel insight for the design of high-performance transition metal boride electrocatalysts. Full article
(This article belongs to the Special Issue 15th Anniversary of Catalysts: Feature Papers in Electrocatalysis)
Show Figures

Graphical abstract

17 pages, 2370 KB  
Article
Kinetic and Potentiometric Characteristics of Ferredoxin: NADP+ Oxidoreductase from Chlorobaculum tepidum
by Dominykas Laibakojis, Daisuke Seo, Narimantas Čėnas and Mindaugas Lesanavičius
Int. J. Mol. Sci. 2026, 27(1), 481; https://doi.org/10.3390/ijms27010481 - 2 Jan 2026
Viewed by 238
Abstract
Chlorobaculum tepidum ferredoxin: NADP+ oxidoreductase (CtFNR) is a dimeric thioredoxin reductase (TrxR)-type FNR, whose mechanism and redox properties are poorly characterized. In this work, we focused on the reoxidation mechanisms of its flavin adenine dinucleotide (FAD) cofactor using quinones (Q), [...] Read more.
Chlorobaculum tepidum ferredoxin: NADP+ oxidoreductase (CtFNR) is a dimeric thioredoxin reductase (TrxR)-type FNR, whose mechanism and redox properties are poorly characterized. In this work, we focused on the reoxidation mechanisms of its flavin adenine dinucleotide (FAD) cofactor using quinones (Q), nitroaromatics (ArNO2), and other nonphysiological oxidants with different single-electron reduction midpoint potentials (E71) and electrostatic charge. Like in other FNRs, the rate-limiting step of the reaction is the reoxidation of FAD semiquinone (FADH). However, only one FAD per dimer functions in CtFNR due to some nonequivalence of the NADP(H) binding domains in separate subunits. The reactivity of Q increases with increasing E71, while ArNO2 form another analogous series of lower reactivity. The compounds are reduced in a dominant single-electron way. These data are consistent with an “outer sphere” electron transfer mechanism. On the basis of reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of FAD at pH 7.0 is −0.282 V. In CtFNR, 11% FADH was stabilized at equilibrium. Calculated electron transfer distances in reactions with Q and ArNO2 were in the range of 2.6–3.4 Å. Taken together with previous studies of Rhodopseudomonas palustris and Bacillus subtilis FNRs, this work allows us to generalize the information on the catalytic ant thermodynamic properties of TrxR-type FNRs. In addition, our data may be valuable from an applied perspective, e.g., the use of redox mediators in photobioelectrochemical systems or microbial cells based on anoxygenic phototrophic bacteria. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Figure 1

20 pages, 5227 KB  
Article
Hydrazine-Induced Sulfur Vacancies Promote Interfacial Charge Redistribution in ZnS/Gel-Derived TiO2 for Enhanced CO2 Activation and Methanation
by Zhongwei Zhang, Shuai Liu, Jiefeng Yan, Yang Meng, Dongming Hu and Fuyan Gao
Gels 2026, 12(1), 39; https://doi.org/10.3390/gels12010039 - 31 Dec 2025
Viewed by 239
Abstract
Defect engineering in semiconductor heterojunctions offers a promising route for enhancing the selectivity of photocatalytic CO2 conversion. In this work, a ZnS/gel-derived TiO2 photocatalyst featuring sulfur vacancies introduced via hydrazine hydrate (N2H4) treatment is developed. XRD, HRTEM, [...] Read more.
Defect engineering in semiconductor heterojunctions offers a promising route for enhancing the selectivity of photocatalytic CO2 conversion. In this work, a ZnS/gel-derived TiO2 photocatalyst featuring sulfur vacancies introduced via hydrazine hydrate (N2H4) treatment is developed. XRD, HRTEM, and XPS analyses confirm the formation of a crystalline heterointerface and a defect-rich ZnS surface, enabling effective interfacial electronic modulation. The optimized ZnS/gel-derived TiO2-0.48 composite achieves CH4 and CO yields of 6.76 and 14.47 μmol·g−1·h−1, respectively, with a CH4 selectivity of 31.8% and an electron selectivity of 65.1%, clearly outperforming pristine TiO2 and the corresponding single-component catalysts under identical conditions. Photoluminescence quenching, enhanced photocurrent response, and reduced charge-transfer resistance indicate significantly improved interfacial charge separation. Mott–Schottky analysis combined with optical bandgap measurements reveals pronounced interfacial charge redistribution in the composite system. Considering the intrinsic band structure of ZnS and gel-derived TiO2, a Z-scheme-compatible interfacial charge migration model is proposed, in which photogenerated electrons with strong reductive power are preferentially retained on ZnS, while holes with strong oxidative capability remain on gel-derived TiO2. This charge migration pathway preserves high redox potentials, facilitating multi-electron CO2 methanation and water oxidation. Density functional theory calculations further demonstrate that sulfur vacancies stabilize *COOH and *CO intermediates and reduce the energy barrier for *COOH formation from +0.51 eV to +0.21 eV, thereby promoting CO2 activation and CH4 formation. These results reveal that sulfur vacancies not only activate CO2 molecules but also regulate interfacial charge migration behavior. This work provides a synergistic strategy combining defect engineering and interfacial electronic modulation to enhance selectivity and mechanistic understanding in CO2-to-CH4 photoconversion. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

17 pages, 3803 KB  
Article
Three Key Aspects of Electron Transfer Behavior in Single-Electrode Triboelectric Nanogenerators for Sensing Optimization
by Dazheng Shi, Jingkai Xi, Yu Hou, Siyu Qu and Ding Li
Sensors 2026, 26(1), 56; https://doi.org/10.3390/s26010056 - 21 Dec 2025
Viewed by 385
Abstract
With the rapid development of the Internet of Things, self-powered sensing technology has become a crucial solution for scenarios where an external power supply is inconvenient or unavailable, such as wild monitoring and flexible wearables. The triboelectric nanogenerator (TENG)—an excellent self-powered sensor, particularly [...] Read more.
With the rapid development of the Internet of Things, self-powered sensing technology has become a crucial solution for scenarios where an external power supply is inconvenient or unavailable, such as wild monitoring and flexible wearables. The triboelectric nanogenerator (TENG)—an excellent self-powered sensor, particularly in the single-electrode mode—demonstrates broad application prospects due to its simple structure and ease of integration. However, a comprehensive understanding of the electron transfer behavior of TENGs for performance optimization remains insufficient. Here, we investigate such behaviors from three key aspects—the polymer functional groups, the configurations of TENGs, and corona polarization. It is found that polymer functional groups critically determine electron transfer ability, with fluorinated polymers exhibiting superior performance across all configurations. Moreover, the configuration significantly influences electron transfer efficiency, where the sliding configuration vastly outperforms contact–separation configurations. Furthermore, the effect of corona polarization is highly configuration-dependent, improving performance in contact–separation configurations while generally reducing it in sliding configuration. These findings provide valuable theoretical guidance and practical strategies for optimizing the design and selecting appropriate materials and configurations of TENG-based self-powered sensors. They also pave the way for a new generation of highly efficient, miniaturized, and adaptive self-powered systems. Full article
(This article belongs to the Special Issue Wearable Electronics and Self-Powered Sensors)
Show Figures

Figure 1

30 pages, 3804 KB  
Article
Evidence Supporting the Hydrophobic-Mismatch Model for Cytochrome b6f-Driven State Transitions in the Cyanobacterium Synechocystis Species PCC 6803
by Terezia Kovacs, Laszlo Kovacs, Mihaly Kis, Michito Tsuyama, Sindhujaa Vajravel, Eva Herman, Nia Petrova, Anelia Dobrikova, Tomas Zakar, Svetla Todinova, Sashka Krumova, Zoltan Gombos and Radka Vladkova
Membranes 2025, 15(12), 383; https://doi.org/10.3390/membranes15120383 - 17 Dec 2025
Viewed by 381
Abstract
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, [...] Read more.
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, we provide the first direct functional evidence for cytb6f using single-point mutation data. We introduced a PetD-Phe124Ala substitution in the cyanobacterium Synechocystis sp. PCC 6803 to test the key predictions of the hydrophobic-mismatch (HMM) model for cytb6f-driven STs in all oxygenic photosynthetic species. These predictions concern the role of the Phe/Tyr124fg-loop-PetD and the extent and kinetic characteristics of STs. The effects of PetD-F124A mutation on STs were monitored using 77K and Pulse-Amplitude-Modulated (PAM) fluorescence. For comparison, we employed a phycobilisome (PBS)-less Synechocystis mutant and wild-type (WT) strain, as well as the stn7 mutant and WT of Arabidopsis plant. The PetD-F124A mutation reduced the extent of STs and selectively affected the two-exponential kinetics components of the transitions. Under State 1 conditions, the mutant exhibited ~60% less energetic decoupling of PBS from photosystem I (PSI) compared to the WT. It is explainable by the HMM model with the inability of the PetD-F124A mutant, during the induction phase of the State 2→State 1 transition to adopt the cytb6f conformation with minimal hydrophobic thickness. PAM-derived parameters indicated that PSII electron transport function is not inhibited, and no detectable effect on cyclic electron transport around PSI was observed under low-light conditions. Circular dichroism and differential scanning calorimetry confirmed that both the PSI trimer/monomer ratio and the structural integrity of the PBSs are preserved in the mutant. The compensatory response to the mutation includes decreased PSI content and an increase in PBS rod size. In conclusion, (1) cytb6f is involved in cyanobacterial STs; (2) evidence is provided supporting the HMM model; (3) the electron transfer and signal transduction functions of cytb6f are separated into distinct domains; and (4) the signaling pathway regulating STs and pigment-protein composition in Synechocystis involves PetD-Phe124. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

31 pages, 1574 KB  
Review
Nanoparticle-Based Assays for Antioxidant Capacity Determination
by Jolanta Flieger, Natalia Żuk, Ewelina Grabias-Blicharz, Piotr Puźniak and Wojciech Flieger
Antioxidants 2025, 14(12), 1506; https://doi.org/10.3390/antiox14121506 - 15 Dec 2025
Viewed by 630
Abstract
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation [...] Read more.
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation of other molecules during processing and storage. There are many classical methods for assessing antioxidant capacity/activity, which are based on mechanisms such as hydrogen atom transfer (HAT), single electron transfer (SET), electron transfer with proton conjugation (HAT/SET mixed mode assays) or the chelation of selected transition metal ions (e.g., Fe2+ or Cu1+). The antioxidant capacity (AOxC) index value can be expressed in terms of standard AOs (e.g., Trolox or ascorbic acid) equivalents, enabling different products to be compared. However, there is currently no standardized method for measuring AOxC. Nanoparticle sensors offer a new approach to assessing antioxidant status and can be used to analyze environmental samples, plant extracts, foodstuffs, dietary supplements and clinical samples. This review summarizes the available information on nanoparticle sensors as tools for assessing antioxidant status. Particular attention has been paid to nanoparticles (with a size of less than 100 nm), including silver (AgNPs), gold (AuNPs), cerium oxide (CeONPs) and other metal oxide nanoparticles, as well as nanozymes. Nanozymes belong to an advanced class of nanomaterials that mimic natural enzymes due to their catalytic properties and constitute a novel signal transduction strategy in colorimetric and absorption sensors based on the localized surface plasmon resonance (LSPR) band. Other potential AOxC sensors include quantum dots (QDs, <10 nm), which are particularly useful for the sensitive detection of specific antioxidants (e.g., GSH, AA and baicalein) and can achieve very good limits of detection (LOD). QDs and metallic nanoparticles (MNPs) operate on different principles to evaluate AOxC. MNPs rely on optical changes resulting from LSPR, which are monitored as changes in color or absorbance during synthesis, growth or aggregation. QDs, on the other hand, primarily utilize changes in fluorescence. This review aims to demonstrate that, thanks to its simplicity, speed, small sample volumes and relatively inexpensive instrumentation, nanoparticle-based AOxC assessment is a useful alternative to classical approaches and can be tailored to the desired aim and analytes. Full article
Show Figures

Figure 1

24 pages, 2759 KB  
Review
Harnessing High-Valent Metals for Catalytic Oxidation: Next-Gen Strategies in Water Remediation and Circular Chemistry
by Muhammad Qasim, Sidra Manzoor, Muhammad Ikram Nabeel, Sabir Hussain, Raja Waqas, Collin G. Joseph and Jonathan Suazo-Hernández
Catalysts 2025, 15(12), 1168; https://doi.org/10.3390/catal15121168 - 15 Dec 2025
Cited by 1 | Viewed by 789
Abstract
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review [...] Read more.
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review discusses recent advances in the synthesis, stabilization, and catalytic applications of high-valent metals in aqueous environments. This study highlights their dual functionality, not only as conventional oxidants but also as mechanistic mediators within redox cycles that underpin next-generation AOPs. In this review, the formation mechanisms of these species in various oxidant systems are critically evaluated, highlighting the significance of ligand design, supramolecular confinement, and single-atom engineering in enhancing their stability. The integration of high-valent metal-based AOPs into photocatalysis, sonocatalysis, and electrochemical regeneration is explored through a newly proposed classification framework, highlighting their potential in the development of energy efficient hybrid systems. In addition, this work addresses the critical yet underexplored area of environmental fate, elucidating the post-oxidation transformation pathways of high-valent species, with particular attention to their implications for metal recovery and nutrient valorization. This review highlights the potential of high-valent metal-based AOPs as a promising approach for zero wastewater treatment within circular economies. Future frontiers, including bioinspired catalyst design, machine learning-guided optimization, and closed loop reactor engineering, will bridge the gap between laboratory research and real-world applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

Back to TopTop