Correlating Boron Existence Morphologies with Electrocatalytic HER Activity in Ni-B Compounds Synthesized via High Pressure and High Temperature
Abstract
1. Introduction
2. Results and Discussion
2.1. Structures and Morphologies
2.2. HER Performance
3. Experimental Section
3.1. Chemicals and Material
3.2. Synthesized Single-Phase Ni-B Compounds
3.3. Materials Characterization
3.4. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H.M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef] [PubMed]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Fan, Y.; Liu, P.-F. Theoretical Insights into Heterogeneous Single-Atom Fe1 Catalysts Supported by Graphene-Based Substrates for Water Splitting. Appl. Surf. Sci. 2021, 540, 148245. [Google Scholar] [CrossRef]
- Dang, J.; Wang, Y.; Jin, R.; Xie, D.; Sajid, M.; Xu, W.; Zhang, X.; Li, W.; Zhang, J. DFT-Assisted Structural Design and Morphological Regulation of Co-Based Metal-Organic Frameworks Enable Highly Efficient Overall Water Splitting. J. Colloid. Interface Sci. 2026, 706, 139557. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, X.; Gu, Y.; Li, S.; Hu, Y.; Tang, Y.; Wang, M. Surface Reconstruction Engineering of Amorphous Ni-Fe Phosphate Electrocatalyst for Highly Stable Alkaline Water Splitting. J. Power Sources 2025, 637, 236560. [Google Scholar] [CrossRef]
- Li, T.; Wu, J.; Qiao, L.; Zhu, Q.; Fu, Z.; Lin, J.; Chen, J.; Peng, L.; Wang, B.; Chen, Z. Bimetallic Ni-Hf Tellurides as an Advanced Electrocatalyst for Overall Water Splitting with Layered g-C3N4 Modification. Mater. Today Energy 2022, 26, 101002. [Google Scholar] [CrossRef]
- Saruyama, M.; Pelicano, C.M.; Teranishi, T. Bridging Electrocatalyst and Cocatalyst Studies for Solar Hydrogen Production via Water Splitting. Chem. Sci. 2022, 13, 2824–2840. [Google Scholar] [CrossRef]
- Xie, Y.; Luo, F.; Yang, Z. Strategies for the Enhancements in Catalytic Performance and Stability of Anodic Electrocatalyst in PEM Water Splitting. Energy Rev. 2024, 3, 100103. [Google Scholar] [CrossRef]
- Liu, T.; Chen, C.; Pu, Z.; Huang, Q.; Jiang, J.; Han, M.; Chen, W.; Yu, G.; Sun, Y.; Huang, S.; et al. Ultrafast Synthesis of Nanoscale Metal Borides for Efficient Hydrogen Evolution. Angew. Chem. Int. Ed. 2025, 64, e202425257. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, J.; Chen, S.; Wang, Z.; Tan, X.; Wei, M.; Guo, Y. 3D Bifunctional Fe/NiWB Monolithic Electrocatalyst for Industrial Hectoampere-Level Current Anion Exchange Membrane Water Electrolysis. ACS Appl. Mater. Interfaces 2025, 17, 58136–58146. [Google Scholar] [CrossRef]
- Patil, S.S.; Khandekar, R.V.; Sutar, R.B.; Yadav, J.B. Recent Advances in Metal-Boride-Phosphide Electrocatalyst for Efficient Water Splitting- A Review. Int. J. Hydrogen Energy 2025, 189, 152144. [Google Scholar] [CrossRef]
- Wang, D.; Song, Y.; Zhang, H.; Yan, X.; Guo, J. Recent Advances in Transition Metal Borides for Electrocatalytic Oxygen Evolution Reaction. J. Electroanal. Chem. 2020, 861, 113953. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Zhang, M.; Bao, L. Theoretical and Experimental Studies for the Construction of Amorphous/Crystalline MoSx/MoB Heterostructures toward Efficient Hydrogen Evolution Reaction. J. Phys. Appl. Phys. 2025, 58, 415501. [Google Scholar] [CrossRef]
- Luo, P.; Wei, W.; Lan, G.; Yang, L.; Wang, Y.; Wu, X.; Du, X.; Guo, A.; Nong, J. Borophene-Assisted Selective Enhancement of Transmission through Metallic Nanoslits in Telecommunication Waveband. Opt. Commun. 2024, 554, 130162. [Google Scholar] [CrossRef]
- Jin, S.; Han, X.; Li, Y.; Jiang, L.; Kato, H.; Zhang, W. Self-Supported Heterointerface-Engineered Nanoporous CoNiFePCBO Electrocatalysts Derived from Dealloying for Efficient Bifunctional Water Splitting. J. Mater. Sci. Technol. 2026, 261, 171–183. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, J.; Jia, S.; Tian, P.; Han, C.; Wang, Y. Low Content of Pt Supported on Ni-MoCx/Carbon Black as a Highly Durable and Active Electrocatalyst for Methanol Oxidation, Oxygen Reduction and Hydrogen Evolution Reactions in Acidic Condition. Appl. Surf. Sci. 2017, 412, 327–334. [Google Scholar] [CrossRef]
- Liu, H.; He, P.; Wang, S.; Gao, J.; Zhou, L.; Li, C.; Zhang, Y.; Yang, D.; He, M.; Jia, L.; et al. Facile One-Step Fabrication of Bimetallic Co–Ni–P Hollow Nanospheres Anchored on Reduced Graphene Oxide as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2019, 44, 24140–24150. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, G.; Chen, W.; Liu, Y.; Li, G.-D.; Zhu, P.; Tao, Q.; Li, Q.; Liu, J.; Shen, X.; et al. Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2017, 139, 12370–12373. [Google Scholar] [CrossRef]
- Chen, Y.; Rong, J.; Wang, Z.; Tao, Q.; Gan, Q.; Wang, F.; Ye, Y.; Liu, X.; Cao, J.; Fan, H.; et al. Tailoring the D-Band Center by Borophene Subunits in Chromic Diboride toward the Hydrogen Evolution Reaction. Inorg. Chem. Front. 2021, 8, 5130–5138. [Google Scholar] [CrossRef]
- Yuan, W.; Zhao, X.; Hao, W.; Li, J.; Wang, L.; Ma, X.; Guo, Y. Performance of Surface-Oxidized Ni3 B, Ni2 B, and NiB2 Electrocatalysts for Overall Water Splitting. ChemElectroChem 2019, 6, 764–770. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Wu, L.; Huang, Z.; Yang, J.; Chen, C.; Deng, S.; Wang, L.; Chen, J.; Hao, W. In Situ Analysis of a Boron-Based Catalytic Electrode with Trace Platinum for Efficient Hydrogen Evolution in a Wide pH Range. J. Mater. Chem. A 2024, 12, 33649–33660. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Ma, S. Iron-Doped Bimetallic Boride Fe-Ni2 B/NF-x Nanoparticles toward Efficient Oxygen Evolution Reaction at a Large Current Density. Dalton Trans. 2023, 52, 9077–9083. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, K.; Ma, S.; Lian, M.; Zhao, X.; Huang, Y.; Cui, T. Rapid Synthesis and Properties Characterization of MoAlB Prepared by High Pressure and High Temperature Method. J. Alloys Compd. 2025, 1047, 185012. [Google Scholar] [CrossRef]
- Tao, Q.; Zhao, X.; Chen, Y.; Li, J.; Li, Q.; Ma, Y.; Li, J.; Cui, T.; Zhu, P.; Wang, X. Enhanced Vickers Hardness by Quasi-3D Boron Network in MoB2. RSC Adv. 2013, 3, 18317. [Google Scholar] [CrossRef]
- Zhigadlo, N.D. Discovery of a New Magnesium Iron Boride Mg4Fe1.1B13.9 in the Mg-Fe-B-N System. J. Cryst. Growth 2026, 673, 128406. [Google Scholar] [CrossRef]
- Chen, Y.; Rong, J.; Tao, Q.; Xing, C.; Lian, M.; Cheng, J.; Liu, X.; Cao, J.; Wei, M.; Lv, S.; et al. Modifying Microscopic Structures of MoS2 by High Pressure and High Temperature Used in Hydrogen Evolution Reaction. Electrochim. Acta 2020, 357, 136868. [Google Scholar] [CrossRef]
- Tao, Q.; Zheng, D.; Zhao, X.; Chen, Y.; Li, Q.; Li, Q.; Wang, C.; Cui, T.; Ma, Y.; Wang, X.; et al. Exploring Hardness and the Distorted Sp2 Hybridization of B–B Bonds in WB3. Chem. Mater. 2014, 26, 5297–5302. [Google Scholar] [CrossRef]
- Sun, G.; Zhao, X.; Chen, L.; Fu, Y.; Zhao, W.; Ye, M.; Wang, F.; Tao, Q.; Dong, S.; Zhu, P. Synthesis of Ni–B Compounds by High-Pressure and High-Temperature Method. ACS Omega 2023, 8, 9265–9274. [Google Scholar] [CrossRef]
- Lopez-Montelongo, J.R.; Becerril-Estrada, V.; Vazquez-Arenas, J.; Lara, R.H.; Arjona, N.; De Jesús Pérez-Bueno, J.; Díaz-Real, J.A.; Ortega, R.; Méndez-Albores, A.; Trejo, G. Electrodeposited NiB Films as Bifunctional Electrocatalysts in Alkaline Water Electrolizer. J. Electrochem. Soc. 2024, 171, 116501. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Li, H.; Yang, T.; Peng, S.; Kao, C.; Zhang, W. Ni-B Coupled with Borate-Intercalated Ni(OH)2 for Efficient and Stable Electrocatalytic and Photocatalytic Hydrogen Evolution under Low Alkalinity. Chem. Eng. J. 2020, 394, 124928. [Google Scholar] [CrossRef]
- Wang, H.; Feng, T.; Wang, L.; Hao, W. Quantum Dot-Doped CeOx–NiB with Modulated Electron Density as a Highly Efficient Bifunctional Electrocatalyst for Water Splitting. Nanoscale 2023, 15, 6321–6332. [Google Scholar] [CrossRef]
- Du, C.; Li, Y.; Wang, Z.; Shi, L.; Chen, X.; Chen, C.; Jia, M.; Shao, D.; Xie, L.; Ai, Y.; et al. Strain-Engineered Pt-Ni(OH)2 Catalyst via a Nickel Boride Intermediated Method for High-Current-Density Hydrogen Evolution Reaction. Mater. Today Sustain. 2025, 31, 101146. [Google Scholar] [CrossRef]
- Wan, S.; Bao, L.; Xiao, J.; He, J.; Gao, X.; Wang, H.; Cao, Y.; Ma, R. Constructing Self-Supported Anode and Cathode by Monolithic Fe2B for Highly Efficient Water Splitting. Phys. B Condens. Matter 2025, 717, 417812. [Google Scholar] [CrossRef]
- Thomas, S.; Anjali, R.; Paira, M.; Meghna, K.M.; Nair, B.V.M. Synergistic Boron-Doped Trimetallic Phosphide for Effectual Oxygen Evolution Reaction. J. Electroanal. Chem. 2026, 1000, 119599. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Liu, P.; Wang, H.-R.; Li, Y.-Y.; Zhang, L.; Liu, Q.-C.; Li, Z.-J.; Yao, H.-C. Efficient Photocatalytic Overall Water Vapor Splitting over Amorphous Ni(OH)2/Ni2B Heterojunctions. J. Colloid. Interface Sci. 2025, 695, 137716. [Google Scholar] [CrossRef]
- Pivkina, A.N.; Muravyev, N.V.; Monogarov, K.A.; Meerov, D.B.; Fomenkov, I.V.; Skryleva, E.A.; Presnyakov, M.Y.; Vasiliev, A.L.; Shishov, N.I.; Milekhin, Y.M. Comparative Analysis of Boron Powders Obtained by Various Methods. I. Microstructure and Oxidation Parameters during Heating. Combust. Explos. Shock. Waves 2018, 54, 450–460. [Google Scholar] [CrossRef]
- Xu, X.; Deng, Y.; Gu, M.; Sun, B.; Liang, Z.; Xue, Y.; Guo, Y.; Tian, J.; Cui, H. Large-Scale Synthesis of Porous Nickel Boride for Robust Hydrogen Evolution Reaction Electrocatalyst. Appl. Surf. Sci. 2019, 470, 591–595. [Google Scholar] [CrossRef]
- Han, C.; Li, W.; Wang, J.; Huang, Z. Boron Leaching: Creating Vacancy-Rich Ni for Enhanced Hydrogen Evolution. Nano Res. 2022, 15, 1868–1873. [Google Scholar] [CrossRef]
- Abeysinghe, J.P.; Kölln, A.F.; Gillan, E.G. Rapid and Energetic Solid-State Metathesis Reactions for Iron, Cobalt, and Nickel Boride Formation and Their Investigation as Bifunctional Water Splitting Electrocatalysts. ACS Mater. Au 2022, 2, 489–504. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, X.; Qin, J.; Liu, R. Enhancement of Hydrogen Evolution Reaction Performance of Graphitic Carbon Nitride with Nickel Boride Incorporated. ACS Sustain. Chem. Eng. 2018, 6, 16198–16204. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Liu, X.; Cao, J.; Yang, L.; Liu, H.; Zhu, P.; Zhou, Q.; Zhao, X.; Chen, Y.; et al. Unveiling the Stacking Faults in Fe2B Induces a High-Performance Oxygen Evolution Reaction. Catalysts 2025, 15, 89. [Google Scholar] [CrossRef]




| Samples | Overpotentials at 10 mA cm−2 (mV) Acidic/Alkaline | Tafel Slope (mV dec−1) | Double-Layer Capacitance (Cdl) (mF cm−2) | Electron Transfer Resistance (Rct) (Ω) |
|---|---|---|---|---|
| NiB | 182/234 | 93.2 | 0.59 | 18.71 |
| Ni2B | 357/360 | 130.5 | 0.18 | 21.99 |
| Ni4B3 | 330/285 | 120.6 | 0.32 | 19.12 |
| Catalyst | Electrolyte | Current Density, J (mA cm−2) | Overpotential at Corresponding J (mV) | Ref. |
|---|---|---|---|---|
| NiB | 0.5 M H2SO4 | 10 | 182 | This work |
| Ni2B | 0.5 M H2SO4 | 10 | 357 | This work |
| Ni4B3 | 0.5 M H2SO4 | 10 | 330 | This work |
| Ni3B-900 | 0.5 M H2SO4 | 10 | 175 | [41] |
| Ni2B | 0.5 M H2SO4 | 10 | 252 | [41] |
| Ni3B-950 | 0.5 M H2SO4 | 10 | 287 | [41] |
| NiB | 0.5 M H2SO4 | 50 | 290 | [13] |
| Ni3B-1000 | 0.5 M H2SO4 | 10 | 467 | [41] |
| NiB | 1 M KOH | 10 | 234 | This work |
| Ni2B | 1 M KOH | 10 | 360 | This work |
| Ni4B3 | 1 M KOH | 10 | 285 | This work |
| Ni2B | 1 M KOH | 10 | 262 | [42] |
| NiB | 1 M KOH | 10 | 307 | [43] |
| Ni2B | 1 M KOH | 10 | 707 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Guo, X.; Bao, R.; Lv, J.; Bai, L.; Sun, G.; Liu, H.; Zhu, P.; Chen, Y.; Wei, M.; Tao, Q. Correlating Boron Existence Morphologies with Electrocatalytic HER Activity in Ni-B Compounds Synthesized via High Pressure and High Temperature. Catalysts 2026, 16, 65. https://doi.org/10.3390/catal16010065
Guo X, Bao R, Lv J, Bai L, Sun G, Liu H, Zhu P, Chen Y, Wei M, Tao Q. Correlating Boron Existence Morphologies with Electrocatalytic HER Activity in Ni-B Compounds Synthesized via High Pressure and High Temperature. Catalysts. 2026; 16(1):65. https://doi.org/10.3390/catal16010065
Chicago/Turabian StyleGuo, Xinrong, Rui Bao, Jiawen Lv, Li Bai, Guiqian Sun, Huilian Liu, Pinwen Zhu, Yanli Chen, Maobin Wei, and Qiang Tao. 2026. "Correlating Boron Existence Morphologies with Electrocatalytic HER Activity in Ni-B Compounds Synthesized via High Pressure and High Temperature" Catalysts 16, no. 1: 65. https://doi.org/10.3390/catal16010065
APA StyleGuo, X., Bao, R., Lv, J., Bai, L., Sun, G., Liu, H., Zhu, P., Chen, Y., Wei, M., & Tao, Q. (2026). Correlating Boron Existence Morphologies with Electrocatalytic HER Activity in Ni-B Compounds Synthesized via High Pressure and High Temperature. Catalysts, 16(1), 65. https://doi.org/10.3390/catal16010065

