Three Key Aspects of Electron Transfer Behavior in Single-Electrode Triboelectric Nanogenerators for Sensing Optimization
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
| Material (Abbreviation) | Thickness (µm) | Supplier |
|---|---|---|
| Polyethylene (PE) | 300 | Shunmao Plastic Co., Ltd. (Shenzhen, Guangdong, China) |
| Polypropylene (PP) | 300 | Shunmao Plastic Co., Ltd. (Shenzhen, Guangdong, China) |
| Polyvinyl alcohol (PVA) | 80 | Li Yun Factory Store (Suzhou, Jiangsu, China) |
| Polyvinyl chloride (PVC) | 100 | Shunmao Plastic Co., Ltd. (Shenzhen, Guangdong, China) |
| Ethylene tetrafluoroethylene copolymer (ETFE) | 50 | Weitelang Technology Co., Ltd. (Shanghai, China) |
| Polytetrafluoroethylene (PTFE) | 50 | Colleague Hardware Flagship Store(Suzhou, Jiangsu, China) |
| Fluorinated ethylene propylene copolymer (FEP) | 50 | Weitelang Technology Co., Ltd. (Shanghai, China) |
| Polychlorotrifluoroethylene (PCTFE) | 50 | Weitelang Technology Co., Ltd. (Shanghai, China) |
2.2. Fabrication of TENGs as Probes for Electron Transfer Investigation
2.3. Characterization of Electron Transfer Using TENG as a Probe
3. Results
3.1. Working Principles of the Three Configurations
3.2. Electrical Output Signals and Analysis
3.3. Investigation of Output Characteristics for Three-Configuration Systems
3.4. Proposed Mechanism
3.5. Electron Transfer Characteristics of Eight Polymer Films in Three Configurations
3.6. Electron Transfer Characteristics of Corona-Polarized Eight Polymer Films in Three Configurations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khlaifi, H.; Zrelli, A.; Ezzedine, T. Vehicles detection through wireless sensors networks and optical fiber sensors. Sci. Rep. 2025, 15, 27121. [Google Scholar] [CrossRef]
- Farooq, A.; Alquaity, A.B.; Raza, M.; Nasir, E.F.; Yao, S.; Ren, W. Laser sensors for energy systems and process industries: Perspectives and directions. Prog. Energ. Combust. 2022, 91, 100997. [Google Scholar] [CrossRef]
- Aslam, N.; Zhou, H.; Urbach, E.K.; Turner, M.J.; Walsworth, R.L.; Lukin, M.D.; Park, H. Quantum sensors for biomedical applications. Nat. Rev. Phys. 2023, 5, 157–169. [Google Scholar] [CrossRef]
- Huang, Y.C.; Liu, Y.; Ma, C.; Cheng, H.C.; He, Q.; Wu, H.; Wang, C.; Lin, C.Y.; Huang, Y.; Duan, X. Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 2020, 3, 59–69. [Google Scholar] [CrossRef]
- Kuzubasoglu, B.A.; Bahadir, S.K. Flexible temperature sensors: A review. Sens. Actuators A Phys. 2020, 315, 112282. [Google Scholar] [CrossRef]
- Sis, S.A.; Dikerler Kozar, Y. Implementation of an SS-Compensated LC-Thermistor Topology for Passive Wireless Temperature Sensing. Sensors 2025, 25, 6316. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Tai, H. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 2021, 9, 14963–14980. [Google Scholar] [CrossRef]
- Ruth, S.R.A.; Feig, V.R.; Tran, H.; Bao, Z. Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 2020, 30, 2003491. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Yang, S.; Xu, Y.; Wang, J.; Liu, X.; Wang, L.; Ding, Y. Impact of Microstructure on Sensing Performance of Fiber-Based Iontronic Pressure Sensors: A Comparative Study. Sensors 2025, 25, 6711. [Google Scholar] [CrossRef]
- Abdullah, A.N.; Kamarudin, K.; Mamduh, S.M.; Adom, A.H.; Juffry, Z.H.M. Effect of environmental temperature and humidity on different metal oxide gas sensors at various gas concentration levels. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864, 012152. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water 2020, 12, 510. [Google Scholar] [CrossRef]
- Yu, A.; Zhu, M.; Chen, C.; Li, Y.; Cui, H.; Liu, S.; Zhao, Q. Implantable flexible sensors for health monitoring. Adv. Healthc. Mater. 2024, 13, 2302460. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, S.; Zhang, Y.; Zhang, M.; Wang, H.; Liang, X.; Lu, H.; Zhang, Y. A Self-Powered, Shapeable, and Wearable Sensor for Effective Hazard Prevention and Biomechanical Monitoring. SmartSys 2025, 1, e3. [Google Scholar] [CrossRef]
- Sun, Z.; He, T.; Ren, Z.; Wang, C.; Liu, X.; Zhang, Z.; Zhou, J.; Guo, X.; Yang, Y.; Lee, C. Moving Toward Human-Like Perception and Sensation Systems—From Integrated Intelligent Systems to Decentralized Smart Devices. SmartSys 2025, 1, e4. [Google Scholar] [CrossRef]
- Nalakurthi, N.V.S.R.; Abimbola, I.; Ahmed, T.; Anton, I.; Riaz, K.; Ibrahim, Q.; Banerjee, A.; Tiwari, A.; Gharbia, S. Challenges and opportunities in calibrating low-cost environmental sensors. Sensors 2024, 24, 3650. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Shen, J.; Li, B.; Yang, Y.; Yang, Z.; Liu, X.; Lim, K.C.; Chen, J.; Ji, L.; Lin, Z.H.; Cheng, J. Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 2022, 216, 114595. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Shaukat, R.A.; Chougale, M.Y.; Khan, M.U.; Kim, J.; Bae, J. Particle triboelectric nanogenerator (P-TENG). Nano Energy 2022, 100, 107475. [Google Scholar] [CrossRef]
- Li, H.; Sun, Y.; Su, Y.; Li, R.; Jiang, H.; Xie, Y.; Ding, X.; Wu, X.; Tang, Y. Multi-scale metal mesh based triboelectric nanogenerator for mechanical energy harvesting and respiratory monitoring. Nano Energy 2021, 89, 106423. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, X.; Jiang, T.; Wang, Z.L. Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring. Engineering 2024, 33, 204–224. [Google Scholar] [CrossRef]
- Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z.L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199. [Google Scholar] [CrossRef]
- Liu, L.; Hu, T.; Zhao, X.; Lee, C. Recent Progress in Blue Energy Harvesting Based on Triboelectric Nanogenerators. Nanoenergy Adv. 2024, 4, 156–173. [Google Scholar] [CrossRef]
- Jiang, D.; Lian, M.; Xu, M.; Sun, Q.; Xu, B.B.; Thabet, H.K.; El-Bahy, S.M.; Ibrahim, M.M.; Huang, M.; Guo, Z. Advances in triboelectric nanogenerator technology—Applications in self-powered sensors, Internet of things, biomedicine, and blue energy. Adv. Compos. Hybrid Mater. 2023, 6, 57. [Google Scholar] [CrossRef]
- Li, D.; Xu, C.; Liao, Y.; Cai, W.; Zhu, Y.; Wang, Z.L. Interface inter-atomic electron-transition induced photon emission in contact-electrification. Sci. Adv. 2021, 7, eabj0349. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Xu, C.; Xu, L.; Wang, Z.L. The overlapped electron-cloud model for electron transfer in contact electrification. Adv. Funct. Mater. 2020, 30, 1909724. [Google Scholar] [CrossRef]
- Xu, C.; Wang, A.C.; Zou, H.; Zhang, B.; Zhang, C.; Zi, Y.; Pan, L.; Wang, P.; Feng, P.; Lin, Z.; et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 2018, 30, 1803968. [Google Scholar] [CrossRef]
- Li, S.; Nie, J.; Shi, Y.; Tao, X.; Wang, F.; Tian, J.; Lin, S.; Chen, X.; Wang, Z.L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yuan, K.; Chen, S.; Huang, Y.; Askari, H.; Yu, N.; Mo, J.; Xu, N.; Wu, M.; Chen, H.; et al. Triboelectric nanogenerator sensors for intelligent steering wheel aiming at automated driving. Nano Energy 2023, 113, 108575. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, H.; Wang, W.; Li, Z.; Chen, F.; Jiang, X.; Lu, X.; Hu, Y.; Li, L.; Zhang, J.; et al. Real-time non-driving behavior recognition using deep learning-assisted triboelectric sensors in conditionally automated driving. Adv. Funct. Mater. 2023, 33, 2210580. [Google Scholar] [CrossRef]
- Baburaj, A.; Jayadevan, S.; Aliyana, A.K.; Sk, N.K.; Stylios, G.K. AI-Driven TENGs for Self-Powered Smart Sensors and Intelligent Devices. Adv. Sci. 2025, 12, 2417414. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Sun, D.; Guo, H.; Wang, Y.; Shi, J.; Zhang, H.; Wang, W.; Zhang, F.; Gao, M. LDIPRS: A novel longitudinal driving intention prior recognition technique empowered by TENG and deep learning. Nano Energy 2024, 129, 110087. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Wei, Y.; Wang, Y.; Feng, Z.; Cheng, L.; Huo, Z.; Lei, Y.; Sun, Q. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329. [Google Scholar] [CrossRef]
- Pang, Y.; Zhu, X.; Lee, C.; Liu, S. Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system. Nano Energy 2022, 97, 107219. [Google Scholar] [CrossRef]
- Xu, N.; Han, J.; Xiong, Y.; Wang, Z.L.; Sun, Q. TENG applications in transportation and surrounding emergency management. Adv. Sustain. Syst. 2022, 6, 2200267. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.S.; Zhang, H.; Liu, Y.; Lee, S.; Wang, Z.L. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 2013, 25, 6594–6601. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Tang, W.; Too, Z.H.; Zhang, X.; Han, M.; Liu, W.; Zhang, H. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energ. Environ. Sci. 2013, 6, 3235–3240. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Wang, S.; Lin, L.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, L.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z.L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, B.; Wang, A.C.; Zou, H.; Liu, G.; Ding, W.; Wu, C.; Ma, M.; Feng, P.; Lin, Z.; et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano 2019, 13, 2034–2041. [Google Scholar] [CrossRef] [PubMed]






| Material | Specification | Supplier |
|---|---|---|
| Copper foil | Double-sided conductive, 100 µm thick | linxin Adhesive Products Co., Ltd. (Shenzhen, Guangdong, China) |
| Planar acrylic plate | 200 µm thick | Yongsheng Acrylic Wholesale Co., Ltd. (Suzhou, Jiangsu, China) |
| Curved acrylic plate | Height: 8 cm; inner radius: 9 cm; outer radius: 9.2 cm; arc angle: π/3 rad | Yongsheng Acrylic Wholesale Co., Ltd. (Suzhou, Jiangsu, China) |
| Polymer | Repeat Unit Structure | C:F | Planar Qsc (nC) | Curved Qsc (nC) | Sliding Qsc (nC) |
|---|---|---|---|---|---|
| PE | N/A | 1.2 | 1.7 | 30.8 | |
| PP | N/A | 1.4 | 1.7 | 40.6 | |
| PVA | N/A | 5.3 | 5.9 | 12.1 | |
| PVC | N/A | 6.0 | 7.6 | 52.9 | |
| PCTFE | 1:1 | 8.4 | 8.3 | 67.3 | |
| ETFE | 1:1 | 5.4 | 5.5 | 61.5 | |
| PTFE | 1:2 | 7.5 | 9.0 | 34.0 | |
| FEP | 1:2 | 9.3 | 11.0 | 68.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shi, D.; Xi, J.; Hou, Y.; Qu, S.; Li, D. Three Key Aspects of Electron Transfer Behavior in Single-Electrode Triboelectric Nanogenerators for Sensing Optimization. Sensors 2026, 26, 56. https://doi.org/10.3390/s26010056
Shi D, Xi J, Hou Y, Qu S, Li D. Three Key Aspects of Electron Transfer Behavior in Single-Electrode Triboelectric Nanogenerators for Sensing Optimization. Sensors. 2026; 26(1):56. https://doi.org/10.3390/s26010056
Chicago/Turabian StyleShi, Dazheng, Jingkai Xi, Yu Hou, Siyu Qu, and Ding Li. 2026. "Three Key Aspects of Electron Transfer Behavior in Single-Electrode Triboelectric Nanogenerators for Sensing Optimization" Sensors 26, no. 1: 56. https://doi.org/10.3390/s26010056
APA StyleShi, D., Xi, J., Hou, Y., Qu, S., & Li, D. (2026). Three Key Aspects of Electron Transfer Behavior in Single-Electrode Triboelectric Nanogenerators for Sensing Optimization. Sensors, 26(1), 56. https://doi.org/10.3390/s26010056

