Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = single dielectric barrier discharge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2993 KiB  
Article
Ultra-Trace Monitoring of Methylene Blue Degradation via AgNW-Based SERS: Toward Sustainable Advanced Oxidation Water Treatment
by Isabela Horta, Nilton Francelosi Azevedo Neto, Letícia Terumi Kito, Felipe Miranda, Gilmar Thim, André Luis de Jesus Pereira and Rodrigo Pessoa
Sustainability 2025, 17(10), 4448; https://doi.org/10.3390/su17104448 - 14 May 2025
Viewed by 661
Abstract
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically [...] Read more.
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically failing to detect MB below ~10−7 M. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) platform based on silver nanowire (AgNW) substrates that enables MB detection over an unprecedented dynamic range—from 1.5 × 10−4 M down to 1.5 × 10−16 M. Raman mapping confirmed the presence of individual signal hot spots at the lowest concentration, consistent with the theoretical number of analyte molecules in the probed area, thereby demonstrating near-single-molecule detection capability. The calculated enhancement factors reached up to 1.90 × 1012, among the highest reported for SERS-based detection platforms. A semi-quantitative calibration curve was established spanning twelve orders of magnitude, and this platform was successfully applied to monitor MB degradation during two advanced oxidation processes (AOPs): TiO2 nanotube-mediated photocatalysis under UV irradiation and atmospheric-pressure dielectric barrier discharge (DBD) plasma treatment. While UV–Vis and fluorescence techniques rapidly lost sensitivity during the degradation process, the SERS platform continued to detect the characteristic MB Raman peak at ~1626 cm−1 throughout the entire treatment duration. These persistent SERS signals revealed the presence of residual MB or partially degraded aromatic intermediates that remained undetectable by conventional optical methods. The results underscore the ability of AgNW-based SERS to provide ultra-sensitive, molecular-level insights into pollutant transformation pathways, enabling time-resolved tracking of degradation kinetics and validating treatment efficiency. This work highlights the importance of integrating SERS with AOPs as a powerful complementary strategy for advanced environmental monitoring and water purification technologies. By delivering an ultra-sensitive, low-cost sensor (<USD 0.16 per test) and promoting reagent-free treatment methods, this study directly advances SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

12 pages, 5416 KiB  
Article
Nitrogen Fixation via Catalyst-Free Water-Falling Film Dielectric Barrier Discharge Plasma: A Novel and Simple Strategy to Enhance Ammonia Selectivity
by Xu Yang, Yashuai Zhang, Honghua Liao, Congkui Tian, Jingwen Cui and Zhuo Liu
Appl. Sci. 2025, 15(3), 1410; https://doi.org/10.3390/app15031410 - 30 Jan 2025
Viewed by 1229
Abstract
Plasma–liquid reactions represent an emerging green chemical process for nitrogen fixation; however, these processes generally exhibit low selectivity for ammonium (NH4+). This limitation highlights the need to explore simple methods to increase NH4+; selectivity. In this study, [...] Read more.
Plasma–liquid reactions represent an emerging green chemical process for nitrogen fixation; however, these processes generally exhibit low selectivity for ammonium (NH4+). This limitation highlights the need to explore simple methods to increase NH4+; selectivity. In this study, a catalyst-free falling film dielectric barrier discharge plasma system was employed for the selective synthesis of NH4+. By manipulating the flow state of the discharge gas, NH4+ selectivity was found to increase by 138.4% in the sealed gas flow state compared to the flowing gas state. Furthermore, an increase in the discharge voltage positively influenced the NH4+ selectivity. This phenomenon can be attributed to higher energy input and longer reaction times, which facilitate the formation of nitrogen molecular ions, a critical intermediate in ammonia synthesis. The reaction products were analyzed by UV spectrophotometry and emission spectroscopy to investigate the underlying mechanisms of ammonia synthesis. This study reveals the highest reaction rate reported to date for ammonia synthesis via single-system plasma gas–liquid reactions and offers a novel way to improve both the yield and selectivity of ammonium synthesis via non-thermal plasma gas–liquid interactions. Full article
Show Figures

Figure 1

14 pages, 2316 KiB  
Article
AgIn5S8/g-C3N4 Composite Photocatalyst Coupled with Low-Temperature Plasma-Enhanced Degradation of Hydroxypropyl-Guar-Simulated Oilfield Wastewater
by Xiang Li, Yuhang Zhang, Yiling Wang, Li Zhu, Yuhang Liu and Lingxing Wang
Molecules 2024, 29(12), 2862; https://doi.org/10.3390/molecules29122862 - 16 Jun 2024
Viewed by 1011
Abstract
The effective treatment and recovery of fracturing wastewater has always been one of the difficult problems to be solved in oilfield wastewater treatment. Accordingly, in this paper, photocatalytic-coupled low-temperature plasma technology was used to degrade the simulated wastewater containing hydroxypropyl guar, the main [...] Read more.
The effective treatment and recovery of fracturing wastewater has always been one of the difficult problems to be solved in oilfield wastewater treatment. Accordingly, in this paper, photocatalytic-coupled low-temperature plasma technology was used to degrade the simulated wastewater containing hydroxypropyl guar, the main component of fracturing fluid. Results indicated that hydroxypropyl-guar wastewater could be degraded to a certain extent by either photocatalytic technology or plasma technology; the chemical oxygen demand and viscosity of the treated wastewater under two single-technique optimal conditions were 781 mg·L−1, 0.79 mPa·s−1 and 1296 mg·L−1, 1.01 mPa·s−1, respectively. Furthermore, the effective coupling of AgIn5S8/gC3N4 photocatalysis and dielectric-barrier discharge–low-temperature plasma not only enhanced the degradation degree of hydroxypropyl guar but also improved its degradation efficiency. Under the optimal conditions of coupling treatment, the hydroxypropyl-guar wastewater achieved the effect of a single treatment within 6 min, and the chemical oxygen demand and viscosity of the treated wastewater reduced to below 490 mg·L−1 and 0.65 mPa·s−1, respectively. In the process of coupled treatment, the AgIn5S8/gC3N4 could directly absorb the light and strong electric field generated by the system discharge and play an important role in the photocatalytic degradation, thus effectively improving the energy utilization rate of the discharge system and enhancing the degradation efficiency of hydroxypropyl guar. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Figure 1

12 pages, 7509 KiB  
Article
In-Situ Metabolic Profiling of Different Kinds of Rheum palmatum L. by Laser Desorption–Dielectric Barrier Discharge Ionization Mass Spectrometry Imaging
by Xue Xiao, Xiaokang Guan, Zhouyi Xu and Qiao Lu
Metabolites 2024, 14(3), 131; https://doi.org/10.3390/metabo14030131 - 21 Feb 2024
Cited by 5 | Viewed by 2048
Abstract
With its high resolving power and sensitivity, mass spectrometry is considered the most informative technique for metabolite qualitation and quantification in the plant sciences. However, the spatial location information, which is crucial for the exploration of plant physiological mechanisms, is lost. Mass spectrometry [...] Read more.
With its high resolving power and sensitivity, mass spectrometry is considered the most informative technique for metabolite qualitation and quantification in the plant sciences. However, the spatial location information, which is crucial for the exploration of plant physiological mechanisms, is lost. Mass spectrometry imaging (MSI) is able to visualize the spatial distribution of a large number of metabolites from the complex sample surface in a single experiment. In this paper, a flexible and low-cost laser desorption–dielectric barrier discharge ionization-MSI (LD-DBDI-MSI) platform was constructed by combining an LD system with an in-line DBDI source, a high-precision sample translation stage, and an ambient mass spectrometer. It can be operated at a spatial resolution of 20 μm in an atmospheric environment and requires minimal sample preparation. This study presents images of in-situ metabolic profiling of two kinds of plants from different origins, a wild and a farmed Rheum palmatum L. From the screen of these two root sections, the wild one presented five more endogenous molecules than the farmed one, which provides information about the differences in metabolomics. Full article
Show Figures

Figure 1

12 pages, 2442 KiB  
Article
Dielectric Barrier Discharge Plasma Coupled with Cobalt Oxyhydroxide for Methylene Blue Degradation
by Xiaomei Yao, Yingbo Fang, Xiaochen Cui, Xian Cheng and Zixia Cheng
Toxics 2023, 11(9), 763; https://doi.org/10.3390/toxics11090763 - 8 Sep 2023
Cited by 2 | Viewed by 1480
Abstract
In this study, the coupled use of a double dielectric barrier discharge (DDBD) and CoOOH catalyst was investigated for the degradation of methylene blue (MB). The results indicated that the addition of CoOOH significantly promoted MB degradation performance compared to the DDBD system [...] Read more.
In this study, the coupled use of a double dielectric barrier discharge (DDBD) and CoOOH catalyst was investigated for the degradation of methylene blue (MB). The results indicated that the addition of CoOOH significantly promoted MB degradation performance compared to the DDBD system alone. In addition, both the removal rate and energy efficiency increased with an increase in CoOOH dosage and discharge voltage. After 30 min of discharge treatment in the coupled system (with CoOOH of 150 mg), the removal rate reached 97.10% when the discharge voltage was 12 kV, which was 1.92 times that in the single DDBD system. And when the discharge time was 10 min, the energy efficiency could reach 0.10 g (k·Wh)−1, which was 3.19 times better than the one in the single DDBD system. Furthermore, the addition of CoOOH could also significantly enhance the TOC and COD removal rates of MB. In the DDBD-coupled-with-CoOOH system, TOC and COD were 1.97 times and 1.99 times those of the single DDBD system after 20 min of discharge treatment with a discharge voltage of 12 kV and 100 mg of CoOOH. The main active substances detected in the coupled system indicated the conversion of the active species H2O2 and O3 into a more oxidizing ·OH was enhanced through the addition of a CoOOH catalyst, resulting in the more effective decomposition of MB and intermediate molecules. Full article
Show Figures

Figure 1

13 pages, 23963 KiB  
Article
Characteristics of Double-Layer, Large-Flow Dielectric Barrier Discharge Plasma Source for Toluene Decomposition
by Mao Xu, Yohei Fukuyama, Kazuki Nakai, Zhizhi Liu, Yuki Sumiya and Akitoshi Okino
Plasma 2023, 6(2), 212-224; https://doi.org/10.3390/plasma6020016 - 3 Apr 2023
Cited by 5 | Viewed by 3603
Abstract
The direct decomposition of toluene-containing humidified air at large flow rates was studied in two types of reactors with dielectric barrier discharge (DBD) features in ambient conditions. A scalable large-flow DBD reactor (single-layer reactor) was designed to verify the feasibility of large-flow plasma [...] Read more.
The direct decomposition of toluene-containing humidified air at large flow rates was studied in two types of reactors with dielectric barrier discharge (DBD) features in ambient conditions. A scalable large-flow DBD reactor (single-layer reactor) was designed to verify the feasibility of large-flow plasma generation and evaluate its decomposition characteristics with toluene-containing humidified air, which have not been investigated. In addition, another large-flow DBD reactor with a multilayer structure (two-layer reactor) was developed as an upscale version of the single-layer reactor, and the scalability and superiority of the features of the multilayer structure were validated by comparing the decomposition characteristics of the two reactors. Consequently, the large-flow DBD reactor showed similar decomposition characteristics to those of the small-flow DBD reactor regarding applied voltage, flow velocity, flow rate, and discharge length, thus justifying the feasibility of large-flow plasma generation. Additionally, the two-layer reactor is more effective than the single-layer reactor, suggesting multilayer configuration is a viable scheme for further upscaled DBD systems. A high decomposition rate of 59.5% was achieved at the considerably large flow rate of 110 L/min. The results provide fundamental data and present guidelines for the implementation of the DBD plasma-based system as a solution for volatile organic compound abatement. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

15 pages, 5899 KiB  
Article
Changing the IgE Binding Capacity of Tropomyosin in Shrimp through Structural Modification Induced by Cold Plasma and Glycation Treatment
by Feng-Qi Wang, Jun-Hu Cheng and Kevin M. Keener
Foods 2023, 12(1), 206; https://doi.org/10.3390/foods12010206 - 3 Jan 2023
Cited by 15 | Viewed by 2790
Abstract
Tropomyosin (TM) is the major allergen of shrimp (Penaeus chinensis). Previous studies showed that separate cold plasma or glycation have their drawback in reducing allergenicity of TM, including effectiveness and reliability. In the current study, a new processing combining cold plasma [...] Read more.
Tropomyosin (TM) is the major allergen of shrimp (Penaeus chinensis). Previous studies showed that separate cold plasma or glycation have their drawback in reducing allergenicity of TM, including effectiveness and reliability. In the current study, a new processing combining cold plasma (CP) and glycation was proposed and its effect on changing IgE binding capacity of TM from shrimp was investigated. Obtained results showed the IgE binding capacity of TM was reduced by up to 40% after CP (dielectric barrier discharge, 60 kV, 1.0 A) combined with glycation treatment (4 h, 80 °C), compared with the less than 5% reduction after single CP or glycation treatment. Notably, in contrast to the general way of CP prompting glycation, this study devised a new mode of glycation with ribose after CP pretreatment. The structural changes of TM were explored to explain the decreased IgE binding reactivity. The results of multi-spectroscopies showed that the secondary and tertiary structures of TM were further destroyed after combined treatment, including the transformation of 50% α-helix to β-sheet and random coils, the modification and exposure of aromatic amino acids, and the increase of surface hydrophobicity. The morphology analysis using atomic force microscope revealed that the combined processing made the distribution of TM particles tend to disperse circularly, while it would aggregate after either processing treatment alone. These findings confirmed the unfolding and reaggregation of TM during combined processing treatment, which may result in the remarkable reduction of IgE binding ability. Therefore, the processing of CP pretreatment combined with glycation has the potential to reduce or even eliminate the allergenicity of seafood. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 4004 KiB  
Article
Catalytic Hydrogen Evolution from H2S Cracking over CrxZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor
by Saba Afzal, Humaira Hussain, Muhammad Yasin Naz, Shazia Shukrullah, Irshad Ahmad, Muhammad Irfan, Salim Nasar Faraj Mursal, Stanislaw Legutko, Izabela Kruszelnicka and Dobrochna Ginter-Kramarczyk
Materials 2022, 15(21), 7426; https://doi.org/10.3390/ma15217426 - 23 Oct 2022
Cited by 3 | Viewed by 2164
Abstract
The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by [...] Read more.
The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was produced by using a co-impregnation method and characterized for its structural and photocatalytic characteristics. The discharge column of the DBD system was filled with this catalyst and fed with hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively. Full article
Show Figures

Figure 1

15 pages, 2723 KiB  
Article
Design and Construction of a New Plasma Applicator for the Improved Disinfection and Activation of Large Surfaces
by Cristian D. Tudoran and Maria Coroș
Plasma 2022, 5(4), 436-450; https://doi.org/10.3390/plasma5040032 - 21 Oct 2022
Cited by 4 | Viewed by 3639
Abstract
This paper describes the design and operation of a low-cost plasma applicator based on a patented, swirled-type dielectric barrier discharge configuration with a treatment width up to 300 mm. Differences from earlier plasma applicators include: blown cylindrical dielectric barrier discharge, combining the functional [...] Read more.
This paper describes the design and operation of a low-cost plasma applicator based on a patented, swirled-type dielectric barrier discharge configuration with a treatment width up to 300 mm. Differences from earlier plasma applicators include: blown cylindrical dielectric barrier discharge, combining the functional properties of the plasma jet systems, arc and corona discharge blown in a single type of universal applicator, and the possibility of treating large areas of samples with cold plasma generated in a certain type of specific process gas mixture chosen according to the type of desired effect. We tested the effect of the plasma on a few materials such as cotton and linen fabrics, glass wafers and printing cardboard, proving that the generated plasma can easily make hydrophilic or hydrophobic surfaces. We also tried the plasma’s sterilizing effect on Escherichia coli (E. coli) bacteria. The results suggest that our plasma system can be successfully applied to medical and biological fields as well, where the removal of bacteria and their fragments is required. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

16 pages, 7024 KiB  
Article
Mechanism of Thrust–Power Ratio Improvement Using Plasma Actuator with Discretized Encapsulated Electrodes
by Yoshiki Shima, Ryuya Imai, Hitoshi Ishikawa and Takehiko Segawa
Actuators 2022, 11(10), 296; https://doi.org/10.3390/act11100296 - 14 Oct 2022
Cited by 9 | Viewed by 3094
Abstract
Plasma actuators (PA) can be utilized as fluid control devices without moving parts, but further improvement in drive efficiency is necessary. Herein, string-type PAs with up to 12 insulated conductive wires were evaluated to replace sheet-type PAs having a single encapsulated electrode. The [...] Read more.
Plasma actuators (PA) can be utilized as fluid control devices without moving parts, but further improvement in drive efficiency is necessary. Herein, string-type PAs with up to 12 insulated conductive wires were evaluated to replace sheet-type PAs having a single encapsulated electrode. The thrust–power ratio of string-type PAs with eight or more wires is nine times that of a single-wire PA. This is due to the substantial increase in the width of the encapsulated electrode and the discrete arrangement of conductors in the streamwise direction. To determine the factors influencing the performance of PAs with discrete encapsulated electrodes, sheet-type PAs with and without discretized encapsulated electrodes and with the same configuration as string-type PAs were characterized. The measurement results revealed that no significant difference exists in the plasma extension length (LDBD) between sheet-type PAs without and with discretization under the same applied voltage, but 25% and 45% decreases in the thrust and power consumption, respectively, were observed compared to those of string-type PAs. The discretization of the encapsulated electrodes in the sheet-type plasma actuator increased the thrust–power ratio by 30%. Efficient non-mechanical fluid control using dielectric barrier discharge is therefore possible with string-type PAs with discrete electrodes. Full article
(This article belongs to the Special Issue Dielectric Barrier Discharge Plasma Actuator for Active Flow Control)
Show Figures

Figure 1

13 pages, 6505 KiB  
Article
Foundation of the Manipulation Technology for Tiny Objects Based on the Control of the Heterogeneity of Electric Fields
by Isao Shirota and Keiichiro Yoshida
Energies 2022, 15(13), 4513; https://doi.org/10.3390/en15134513 - 21 Jun 2022
Cited by 1 | Viewed by 1343
Abstract
Effective sorting and extraction of tiny plastic objects is becoming increasingly important for manufacturing high-quality recycled plastics. Herein, we designed a manipulation device for tiny objects that can drive multiple target objects individually. This type of device has a potential to sort tiny [...] Read more.
Effective sorting and extraction of tiny plastic objects is becoming increasingly important for manufacturing high-quality recycled plastics. Herein, we designed a manipulation device for tiny objects that can drive multiple target objects individually. This type of device has a potential to sort tiny pieces of a wide variety of materials, not strongly depending on their physical properties, by combining different detection meanings. In this study, two types of devices were tested as the basic components of the proposed device. One of them had a single object-holding point and the other had two of them. These holding points consisted of strip-shaped electrodes facing each other. The high voltage applied to the facing electrodes created forces heading toward the object-holding points caused by the heterogeneity of the electric field in the devices. The forces created in these devices were determined from the motion analysis of a glass sphere, which is a model for target objects, and a numerical simulation. The results indicate that dielectrophoretic forces are dominant at locations that are sufficiently remote from the holding point, and the Coulombic force caused by dielectric barrier discharge is dominant near the high-voltage electrodes with the holding point. Moreover, the transfer of a glass sphere from one holding point to an adjacent point was successfully demonstrated. Full article
Show Figures

Figure 1

12 pages, 2456 KiB  
Article
Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method
by Yu Li, Jialin Lv, Qi Xu, Yalan Cai, Hailong Yang, Yingying Li, Yanyan Yao, Wenjuan Wang and Nan Liu
Atmosphere 2022, 13(4), 622; https://doi.org/10.3390/atmos13040622 - 13 Apr 2022
Cited by 6 | Viewed by 2849
Abstract
Volatile organic compounds (VOCs) from the pharmaceutical and chemical industries have been a matter of concern for some years in China. Achieving efficient degradation of chlorobenzene (CB) in waste gas is difficult because of its high volatility and molecular stability. A DBD (dielectric [...] Read more.
Volatile organic compounds (VOCs) from the pharmaceutical and chemical industries have been a matter of concern for some years in China. Achieving efficient degradation of chlorobenzene (CB) in waste gas is difficult because of its high volatility and molecular stability. A DBD (dielectric barrier discharge) biological method was proposed to treat chlorobenzene, aiming to control high operating costs and prevent secondary pollution. In this investigation, a DBD biological method was introduced to deal with chlorobenzene by optimization of process parameters. The results showed that the degradation efficiency of chlorobenzene was close to 80% at a hydraulic retention time (HRT) of 85 s when the inlet concentration was 700 mg·m−3 for the biological method. The degradation efficiency of chlorobenzene reached 80% under a discharge voltage of 7 kV, an inlet concentration of 700 mg·m−3 and an HRT of 5.5 s. The degradation efficiency of an integrated system can be increased by 15–20% compared with that of a single biological system. Therefore, this method can be used as a new way to address chlorobenzene pollution in the pharmaceutical and chemical industries. Full article
(This article belongs to the Special Issue Emissions, Control, and Utilization Technology of Particulate Matters)
Show Figures

Figure 1

13 pages, 8201 KiB  
Article
SDBD Flexible Plasma Actuator with Ag-Ink Electrodes: Experimental Assessment
by Viktoras Papadimas, Christos Doudesis, Panagiotis Svarnas, Polycarpos K. Papadopoulos, George P. Vafakos and Panayiotis Vafeas
Appl. Sci. 2021, 11(24), 11930; https://doi.org/10.3390/app112411930 - 15 Dec 2021
Cited by 11 | Viewed by 3909
Abstract
In the present work, a single dielectric barrier discharge (SDBD)-based actuator is developed and experimentally tested by means of various diagnostic techniques. Flexible dielectric barriers and conductive paint electrodes are used, making the design concept applicable to surfaces of different aerodynamic profiles. A [...] Read more.
In the present work, a single dielectric barrier discharge (SDBD)-based actuator is developed and experimentally tested by means of various diagnostic techniques. Flexible dielectric barriers and conductive paint electrodes are used, making the design concept applicable to surfaces of different aerodynamic profiles. A technical drawing of the actuator is given in detail. The plasma is sustained by audio frequency sinusoidal high voltage, while it is probed electrically and optically. The consumed electric power is measured, and the optical emission spectrum is recorded in the ultraviolet–near infrared (UV–NIR) range. High-resolution spectroscopy provides molecular rotational distributions, which are treated appropriately to evaluate the gas temperature. The plasma-induced flow field is spatiotemporally surveyed with pitot-like tube and schlieren imaging. Briefly, the actuator consumes a mean power less than 10 W and shows a fair stability over one day, the average temperature of the gas above its surface is close to 400 K, and the fluid speed rises to 4.5 m s−1. A long, thin layer (less than 1.5 mm) of laminar flow is unveiled on the actuator surface. This thin layer is interfaced with an outspread turbulent flow field, which occupies a centimeter-scale area. Molecular nitrogen-positive ions appear to be part of the charged heavy species in the generated filamentary discharge, which can transfer energy and momentum to the surrounding air molecules. Full article
(This article belongs to the Special Issue Recent Advances in Atmospheric-Pressure Plasma Technology)
Show Figures

Figure 1

20 pages, 9407 KiB  
Article
Dynamic Burst Actuation to Enhance the Flow Control Authority of Plasma Actuators
by Takuto Ogawa, Kengo Asada, Satoshi Sekimoto, Tomoaki Tatsukawa and Kozo Fujii
Aerospace 2021, 8(12), 396; https://doi.org/10.3390/aerospace8120396 - 13 Dec 2021
Cited by 12 | Viewed by 3883
Abstract
A computational study was conducted on flows over an NACA0015 airfoil with dielectric barrier discharge (DBD) plasma. The separated flows were controlled by a DBD plasma actuator installed at the 5% chord position from the leading edge, where operated AC voltage was modulated [...] Read more.
A computational study was conducted on flows over an NACA0015 airfoil with dielectric barrier discharge (DBD) plasma. The separated flows were controlled by a DBD plasma actuator installed at the 5% chord position from the leading edge, where operated AC voltage was modulated with the duty cycle not given a priori but dynamically changed based on the flow fluctuations over the airfoil surface. A single-point pressure sensor was installed at the 40% chord position of the airfoil surface and the DBD plasma actuator was activated and deactivated based on the strength of the measured pressure fluctuations. The Reynolds number was set to 63,000 and flows at angles of attack of 12 and 16 degrees were considered. The three-dimensional compressible Navier–Stokes equations including the DBD plasma actuator body force were solved using an implicit large-eddy simulation. Good flow control was observed, and the burst frequency proven to be effective in previous fixed burst frequency studies is automatically realized by this approach. The burst frequency is related to the characteristic pressure fluctuation; our approach was improved based on the findings. This improved approach realizes the effective burst frequency with a lower control cost and is robust to changing the angle of attack. Full article
(This article belongs to the Special Issue Large Eddy Simulation in Aerospace Engineering)
Show Figures

Figure 1

22 pages, 7716 KiB  
Article
Current Filaments in Asymmetric Surface Dielectric Barrier Discharge
by Cecilia Piferi, Ruggero Barni, H. Eduardo Roman and Claudia Riccardi
Appl. Sci. 2021, 11(5), 2079; https://doi.org/10.3390/app11052079 - 26 Feb 2021
Cited by 19 | Viewed by 4214
Abstract
In this study, we examine the statistical properties of asymmetric surface dielectric barrier discharges (SDBD) produced by applying a periodic high voltage between two conducting displaced electrodes, located at the opposite sides of a flat dielectric panel. Here, the asymmetry refers to the [...] Read more.
In this study, we examine the statistical properties of asymmetric surface dielectric barrier discharges (SDBD) produced by applying a periodic high voltage between two conducting displaced electrodes, located at the opposite sides of a flat dielectric panel. Here, the asymmetry refers to the fact that the lower electrode is fully covered with an insulating material, while the upper one, glued onto the dielectric surface, is otherwise left exposed to the air. Such a configuration allows the formation of a thin layer of plasma above the insulating surface. A single cycle signal consists of two well-separated half-cycle patterns, denoted as forward and backward strokes, corresponding to positive and negative voltages, respectively. They display a quite complex discharge pattern constituted by a sequence of individual peaks (bursts) of varying current and time duration. Specifically, we find that backward stroke bursts carry a positive mean charge Q0.3 nC and mean current I35 mA, with a mean duration τ15 ns, while forward stroke bursts have a negative mean charge Q0.1 nC, a mean current I20 mA, and a mean duration τ11 ns. The statistical analysis suggests that power injection can be tailored to produce the active agents in the plasma needed for a particular application. We also determined discharge spatial correlation patterns from measurements of the associated stimulated optical emission. The optical excitations occur as a result of the ionizing effect of the electromagnetic waves which ignite the discharge, followed by the electric current flow. In particular, we point out that one of the phases of the discharge is compatible with a cathode directed streamer phenomenon (backward stroke), while the mechanism acting for a forward stroke has a different structure. Full article
Show Figures

Figure 1

Back to TopTop