Current Filaments in Asymmetric Surface Dielectric Barrier Discharge
Abstract
:1. Introduction
2. Recent Works on SDBD Microdischarges
3. Plasma Device Setup
4. Plasma Diagnostics
4.1. Rogowski Coil
4.2. Photomultiplier Tube
5. Experimental Results
5.1. Rogowski Coil
5.1.1. Phase Analysis
5.1.2. Charge Analysis
5.1.3. Burst Time Duration Analysis
5.1.4. Current Analysis
5.1.5. Correlations between BS
5.2. Photomultiplier Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DBD | Dielectric barrier discharge |
SDBD | Surface dielectric barrier discharge |
UV | Ultraviolet |
FS | Forward stroke |
BS | Backward stroke |
AC | Alternating current |
HV | High voltage |
DC | Direct current |
FFT | Fast Fourier transform |
OES | Optical emission spectroscopy |
PMT | Photomultiplier tube |
RW | Random walk |
References
- Eliasson, B.; Kogelschatz, U. Modeling and applications of silent discharge plasmas. IEEE Trans. Plasma Sci. 1991, 19, 309–323. [Google Scholar] [CrossRef]
- Raizer, Y.P. Gas Discharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Kogelschatz, U. Filamentary, patterned, and diffuse barrier discharges. IEEE Trans. Plasma Sci. 2002, 30, 1400–1408. [Google Scholar] [CrossRef]
- Becker, K.H.; Kogelschatz, U.; Schoenbach, K.H.; Barker, R. Non-Equilibrium Air Plasmas at Atmospheric Pressure; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Fridman, A.; Kennedy, L.A. Plasma Physics and Engineering; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kogelschatz, U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Fridman, A.; Chirokov, A.; Gutsol, A. Non-thermal atmospheric pressure discharges. J. Phys. Appl. Phys. 2005, 38, R1. [Google Scholar] [CrossRef]
- Esena, P.; Zanini, S.; Riccardi, C. Plasma processing for surface optical modifications of PET films. Vacuum 2007, 82, 232. [Google Scholar] [CrossRef]
- Zanini, S.; Grimoldi, E.; Citterio, A.; Riccardi, C. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture. Appl. Surf. Sci. 2015, 349, 235. [Google Scholar] [CrossRef]
- Napartovich, A.P. Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas Polym. 2001, 6, 1–14. [Google Scholar] [CrossRef]
- Siliprandi, R.; Zanini, S.; Grimoldi, E.; Fumagalli, F.; Barni, R.; Riccardi, C. Atmospheric pressure plasma discharge for polysiloxane thin films deposition and comparison with low pressure process. Plasma Chem. Plasma Process. 2011, 31, 353–372. [Google Scholar] [CrossRef]
- Massines, F.; Gherardi, N.; Sommer, F. Silane-based coatings on polypropylene, deposited by atmospheric pressure glow discharge plasmas. Plasmas Polym. 2000, 5, 151–172. [Google Scholar] [CrossRef]
- Zanini, S.; Citterio, A.; Leonardi, G.; Riccardi, C. Characterization of atmospheric pressure plasma treated wool/cashmere textiles: Treatment in nitrogen. Appl. Surf. Sci. 2018, 427, 90. [Google Scholar] [CrossRef]
- Zanini, S.; Freti, S.; Citterio, A.; Riccardi, C. Characterization of hydro- and oleo-repellent pure cashmere and wool/nylon textiles obtained by atmospheric pressure plasma pre-treatment and coating with a fluorocarbon resin. Surf. Coat. Technol. 2016, 292, 155. [Google Scholar] [CrossRef]
- Dell’Orto, E.C.; Vaccaro, A.; Riccardi, C. Morphological and chemical analysis of PP film treated by Dielectric Barrier Discharge (Conference Paper). J. Phys. Conf. Ser. 2014, 550, 012032. [Google Scholar]
- Barni, R.; Riccardi, C. Perspective of NOx removal from numerical simulation of non-thermal atmospheric pressure plasma chemical kinetics. High Temp. Mater. Process. 2010, 14, 205. [Google Scholar]
- Corke, T.C.; Post, M.C.; Orlov, D.M. SDBD plasma enhanced aerodynamics: Concepts, optimization and applications. Prog. Aerosp. Sci. 2007, 43, 193–217. [Google Scholar] [CrossRef]
- Enloe, C.L.; McLaughlin, T.E.; VanDyken, R.D.; Kachner, K.D.; Jumper, E.J.; Corke, T.C. Mechanisms and responses of a single dielectric barrier plasma actuator: Plasma morphology. AIAA J. 2004, 42, 589–594. [Google Scholar] [CrossRef]
- Pons, J.; Moreau, E.; Touchard, G. Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: Electrical properties and induced airflow characteristics. J. Phys. Appl. Phys. 2005, 38, 3635. [Google Scholar] [CrossRef]
- Caruana, D. Plasmas for aerodynamic control. Plasma Phys. Control. Fusion 2010, 52, 124045. [Google Scholar] [CrossRef]
- Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 2010, 42, 505–529. [Google Scholar] [CrossRef]
- Biganzoli, I.; Barni, R.; Riccardi, C.; Gurioli, A.; Pertile, R. Optical and electrical characterization of a surface dielectric barrier discharge plasma actuator. Plasma Sources Sci. Technol. 2013, 22, 025009. [Google Scholar] [CrossRef]
- Roth, J.R.; Sherman, D.M.; Wilkinson, S.P. Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J. 2000, 38, 1166–1172. [Google Scholar] [CrossRef]
- Post, M.L.; Corke, T.C. Separation control on high angle of attack airfoil using plasma actuators. AIAA J. 2004, 42, 2177–2184. [Google Scholar] [CrossRef]
- Siliprandi, R.A.; Roman, H.E.; Barni, R.; Riccardi, C. Characterization of the streamer regime in dielectric barrier discharges. J. Appl. Phys. 2008, 104, 063309. [Google Scholar] [CrossRef]
- Orlov, D.M.; Font, G.I.; Edelstein, D. Characterization of discharge modes of plasma actuators. AIAA J. 2008, 46, 3142–3148. [Google Scholar] [CrossRef]
- Dedrick, J.; Boswell, R.W.; Audier, P.; Rabat, H.; Hong, D.; Charles, C. Plasma propagation of a 13.56 MHz asymmetric surface barrier discharge in atmospheric pressure air. J. Phys. Appl. Phys. 2011, 44, 205202. [Google Scholar] [CrossRef]
- Biganzoli, I.; Barni, R.; Gurioli, A.; Pertile, R.; Riccardi, C. Experimental investigation of filamentary and non-filamentary regimes in a surface dielectric barrier plasma actuator. J. Phys. Conf. Ser. 2014, 550, 012038. [Google Scholar] [CrossRef]
- Biganzoli, I.; Barni, R.; Riccardi, C. Temporal evolution of a surface dielectric barrier discharge for different groups of plasma microdischarges. J. Phys. Appl. Phys. 2012, 46, 025201. [Google Scholar] [CrossRef]
- Raizer, Y.P.; Mokrov, M.S. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types. Phys. Plasmas 2013, 20, 1091604. [Google Scholar] [CrossRef]
- Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Roman, H.E.; Goldreich, Y.; Schellnhuber, H.-J. Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett. 1998, 81, 729. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Roman, H.E.; Greiner, M. Discrete wavelet approach to multifractality. Phys. Stat. Mech. Its Appl. 1995, 220, 219–238. [Google Scholar] [CrossRef]
- Barni, R.; Biganzoli, I.; Dell’Orto, E.C.; Riccardi, C. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges. J. Appl. Phys. 2015, 118, 143301. [Google Scholar] [CrossRef]
- Unfer, T.; Boeuf, J.P. Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control. Plasma Phys. Control. Fusion 2010, 52, 124019. [Google Scholar] [CrossRef]
- Likhanskii, A.V.; Shneider, M.N.; Macheret, S.O.; Miles, R.B. Modeling of dielectric barrier discharge plasma actuator in air. J. Appl. Phys. 2008, 103, 053305. [Google Scholar] [CrossRef]
- Hoskinson, A.R.; Hershkowitz, N. Modelling of dielectric barrier discharge plasma actuators with thick electrodes. J. Phys. Appl. Phys. 2011, 44, 085202. [Google Scholar] [CrossRef]
- Nishida, H.; Abe, T. Numerical analysis of plasma evolution on dielectric barrier discharge plasma actuator. J. Appl. Phys. 2011, 110, 013302. [Google Scholar] [CrossRef]
- Barni, R.; Esena, P.; Riccardi, C. Chemical kinetics simulation for atmospheric pressure air plasmas in a streamer regime. J. Appl. Phys. 2005, 97, 073301. [Google Scholar] [CrossRef]
- Shang, J.S.; Huang, P.G. Surface plasma actuators modeling for flow control. Prog. Aerosp. Sci. 2014, 67, 29–50. [Google Scholar] [CrossRef]
- Shang, K.; Wang, M.; Peng, B.; Li, J.; Lu, N.; Wu, Y. Characterization of a novel volume-surface DBD reactor: Discharge characteristics, ozone production and benzene degradation. J. Phys. Appl. Phys. 2019, 53, 065201. [Google Scholar] [CrossRef]
- Doležalová, E.; Prukner, V.; Kuzminova, A.; Simek, M. On the inactivation of Bacillus subtilis spores by surface streamer discharge in humid air caused by reactive species. J. Phys. Appl. Phys. 2020, 53, 245203. [Google Scholar] [CrossRef]
- Wei, W.; He, S.; Yang, Z.; Wang, S.; Mei, G.; Gao, G.; Wu, G. Electromechanical efficiency improvement of the surface DBD by composite dielectric. AIP Adv. 2019, 9, 045127. [Google Scholar] [CrossRef] [Green Version]
- Argüeso, M.; Robles, G.; Sanz, J. Implementation of a Rogowski coil for the measurement of partial discharges. Rev. Sci. Instrum. 2005, 76, 065107. [Google Scholar] [CrossRef]
- Biganzoli, I.; Barni, R.; Riccardi, C. Note: On the use of Rogowski coils as current probes for atmospheric pressure dielectric barrier discharges. Rev. Sci. Instrum. 2013, 84, 016101. [Google Scholar] [CrossRef] [PubMed]
- Laux, C.O.; Spence, T.G.; Kruger, C.H.; Zare, R.N. Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci. Technol. 2003, 12, 125. [Google Scholar] [CrossRef]
- Hoder, T.; Brandenburg, R.; Basner, R.; Weltmann, K.-D.; Kozlov, K.V.; Wagner, H.-E. A comparative study of three different types of barrier discharges in air at atmospheric pressure by cross-correlation spectroscopy. J. Phys. Appl. Phys. 2010, 43, 124009. [Google Scholar] [CrossRef]
- Barni, R.; Biganzoli, I.; Riccardi, C. Spatial and temporal evolution of microdischarges in Surface Dielectric Barrier Discharges for aeronautical applications plasmas. J. Phys. Conf. Ser. 2014, 550, 012036. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piferi, C.; Barni, R.; Roman, H.E.; Riccardi, C. Current Filaments in Asymmetric Surface Dielectric Barrier Discharge. Appl. Sci. 2021, 11, 2079. https://doi.org/10.3390/app11052079
Piferi C, Barni R, Roman HE, Riccardi C. Current Filaments in Asymmetric Surface Dielectric Barrier Discharge. Applied Sciences. 2021; 11(5):2079. https://doi.org/10.3390/app11052079
Chicago/Turabian StylePiferi, Cecilia, Ruggero Barni, H. Eduardo Roman, and Claudia Riccardi. 2021. "Current Filaments in Asymmetric Surface Dielectric Barrier Discharge" Applied Sciences 11, no. 5: 2079. https://doi.org/10.3390/app11052079
APA StylePiferi, C., Barni, R., Roman, H. E., & Riccardi, C. (2021). Current Filaments in Asymmetric Surface Dielectric Barrier Discharge. Applied Sciences, 11(5), 2079. https://doi.org/10.3390/app11052079