Design and Construction of a New Plasma Applicator for the Improved Disinfection and Activation of Large Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Configuration of the Plasma Applicator Head
2.2. Plasma Characterization
2.3. Water Contact Angle Analysis
2.4. Preparation of the E. coli Samples
3. Results and Discussion
3.1. The Plasma Generating Circuit
- (1)
- To generate a variable high voltage output signal which initiates the plasma.
- (2)
- To be built using only easily available and inexpensive electronic components.
- (3)
- To be very reliable and easy to service in case of any faults.
3.2. Plasma Operational Stability Diagram
3.3. Optical Emission Spectroscopy (OES) and Plasma Temperature
- (i)
- Atomic He from the plasma feed gas at the wavelengths 587.56 nm, 667.81 nm, 706.51 nm, and also 728.23 nm;
- (ii)
- Atomic emission lines of oxygen at 615.82 nm, 777.41 nm, and 844.52 nm;
- (iii)
- (Atomic emission line of hydrogen at 656.27 nm;
- (iv)
- (Molecular band of OH, N2, and N2+.
3.4. Plasma Electron Concentration and Plasma Current Density
3.5. Water Contact Angle Study
3.6. Microbiological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maho, T.; Binois, R.; Brulé-Morabito, F.; Demasure, M.; Douat, C.; Dozias, S.; Bocanegra, P.E.; Goard, I.; Hocqueloux, L.; Le Helloco, C.; et al. Anti-Bacterial Action of Plasma Multi-Jets in the Context of Chronic Wound Healing. Appl. Sci. 2021, 11, 9598. [Google Scholar] [CrossRef]
- Khanikar, R.R.; Kalita, M.; Kalita, P.; Kashyap, B.; Das, S.; Khan, M.R.; Bailung, H.; Sankaranarayanan, K. Cold Atmospheric Pressure Plasma for Attenuation of SARS-CoV-2 Spike Protein Binding to ACE2 Protein and the RNA Deactivation. RSC Adv. 2022, 12, 9466–9472. [Google Scholar] [CrossRef] [PubMed]
- Sakudo, A.; Yagyu, Y.; Onodera, T. Disinfection and Sterilization Using Plasma Technology: Fundamentals and Future Perspectives for Biological Applications. Int. J. Mol. Sci. 2019, 20, 5216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.; Salgado, B.; Hasan, M.I.; Sivertsvik, M.; Fernández, E.N.; Walsh, J.L. Influence of Potable Water Origin on the Physicochemical and Antimicrobial Properties of Plasma Activated Water. Plasma Chem. Plasma Process 2022, 42, 377–393. [Google Scholar] [CrossRef]
- Setiawan, U.H.; Nurcahyo, I.F.; Saraswati, T.E. Atmospheric Pressure Plasma Jet for Surface Material Modification: A Mini-Review. J. Phys. Conf. Ser. 2022, 2190, 012010. [Google Scholar] [CrossRef]
- Matsusaka, S. Control of Particle Charge by Atmospheric Pressure Plasma Jet (APPJ): A Review. Adv. Powder Technol. 2019, 30, 2851–2858. [Google Scholar] [CrossRef]
- Stegmaier, T.; Dinkelmann, A.; Von Arnim, V.; Rau, A. Corona and Dielectric Barrier Discharge Plasma Treatment of Textiles for Technical Applications; Woodhead Publishing Limited: Cambridge, UK, 2007; ISBN 9781845690731. [Google Scholar]
- Winter, J.; Brandenburg, R.; Weltmann, K.D. Atmospheric Pressure Plasma Jets: An Overview of Devices and New Directions. Plasma Sources Sci. Technol. 2015, 24, 64001. [Google Scholar] [CrossRef]
- Li, D.; Liu, D.; Chen, Z.; Rong, M.; Kong, M.G. A New Plasma Jet Array Source: Discharge Characteristics and Mechanism. IEEE Trans. Plasma Sci. 2016, 44, 2648–2652. [Google Scholar] [CrossRef]
- Available online: https://www.vetaphone.com/wp-content/uploads/2019/05/Vetaphone_Converting_ENG.pdf (accessed on 19 October 2022).
- Izdebska, J. Printing on Polymers: Fundamentals and Applications. Print. Polym. Fundam. Appl. 2015, 8, 123–143. [Google Scholar]
- Fiebrandt, M.; Lackmann, J.W.; Stapelmann, K. From Patent to Product? 50 Years of Low-Pressure Plasma Sterilization. Plasma Process Polym. 2018, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Konesky, G. Dwell Time Considerations for Large Area Cold Plasma Decontamination. Chem. Biol. Radiol. Nucl. Explos. Sens. X 2009, 7304, 73040N. [Google Scholar] [CrossRef]
- Tudoran, C. Universal Cold Plasma Applicator to Be Used in Surface Engineering, Romanian Patent Application RO133593A0,RO201800648A/2019-08-30. 2019. Available online: https://worldwide.espacenet.com/patent/search/family/067733552/publication/RO133593A0?q=pn%3DRO133593A0 (accessed on 19 August 2022).
- Tudoran, C.D. High Frequency Portable Plasma Generator Unit for Surface Treatment Experiments. Rom. Rep. Phys. 2011, 56, 103–108. [Google Scholar]
- Tudoran, C.D.; Surducan, V.; Anghel, S.D. High Frequency Atmospheric Cold Plasma Treatment System for Materials Surface Processing. AIP Conf. Proc. 2012, 1425, 106–109. [Google Scholar] [CrossRef]
- Qayyum, A.; Zeb, S.; Naveed, M.A.; Ghauri, S.A.; Zakaullah, M.; Waheed, A. Diagnostics of Nitrogen Plasma by Trace Rare-Gas-Optical Emission Spectroscopy. J. Appl. Phys. 2005, 98, 103303. [Google Scholar] [CrossRef]
- Park, J.; Henins, I.; Herrmann, H.W.; Selwyn, G.S.; Hicks, R.F. Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source. J. Appl. Phys. 2001, 89, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Laimer, J.; Haslinger, S.; Störi, H. Characterization of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Jet. Plasma Process Polym. 2007, 4, 487–492. [Google Scholar] [CrossRef]
- Moon, S.Y. Study on Discharge Modes and Characteristics of Large -Area Plasma Produced at Atmospheric Pressure. Ph.D. Thesis, Korea Advanced Institute of Science and Technology, Daejeon, Korea, 2006. [Google Scholar]
- Lamour, G.; Hamraoui, A.; Buvailo, A.; Xing, Y.; Keuleyan, S.; Prakash, V.; Eftekhari-Bafrooei, A.; Borguet, E. Contact Angle Measurements Using a Simplified Experimental Setup. J. Chem. Educ. 2010, 87, 1403–1407. [Google Scholar] [CrossRef]
- Patange, A.D.; Simpson, J.C.; Curtin, J.F.; Burgess, C.M.; Cullen, P.J.; Tiwari, B.K. Inactivation Efficacy of Atmospheric Air Plasma and Airborne Acoustic Ultrasound against Bacterial Biofilms. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Luo, H.; Wang, X.; Tie, J.; Ren, Z. Sterilizing Processes and Mechanisms for Treatment of Escherichia Coli with Dielectric-Barrier Discharge Plasma. Appl. Environ. Microbiol. 2020, 86, 1–10. [Google Scholar] [CrossRef]
- Chew, N.S.L.; Wong, K.S.; Chang, W.S.; Ooi, C.W.; Yeo, L.Y.; Tan, M.K. Nanoscale Plasma-Activated Aerosol Generation for in Situ Surface Pathogen Disinfection. Microsyst. Nanoeng. 2022, 8, 41. [Google Scholar] [CrossRef]
- Naeem, M.; Bashir, W.; Altaf, N.U.H.; Naz, M.Y.; Shukrullah, S.; Rehman, S.U.; Shahid, M. Effect of DC Micro-Plasma Treatment on Bacteria in Its Vegetative Bacteria. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kuantan, Malaysia, 1–2 October 2019; Volume863. [Google Scholar] [CrossRef]
- Katsigiannis, A.S.; Bayliss, D.L.; Walsh, J.L. Cold Plasma for the Disinfection of Industrial Food-Contact Surfaces: An Overview of Current Status and Opportunities. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1086–1124. [Google Scholar] [CrossRef]
- Dezest, M.; Bulteau, A.L.; Quinton, D.; Chavatte, L.; Le Bechec, M.; Cambus, J.P.; Arbault, S.; Nègre-Salvayre, A.; Cleâment, F.; Cousty, S. Oxidative Modification and Electrochemical Inactivation of Escherichia Coli upon Cold Atmospheric Pressure Plasma Exposure. PLoS ONE 2017, 12, e173618. [Google Scholar] [CrossRef]
- Choi, M.S.; Jeon, E.B.; Kim, J.Y.; Choi, E.H.; Lim, J.S.; Choi, J.; Park, S.Y. Application of Dielectric Barrier Discharge Plasma for the Reduction of Non-Pathogenic Escherichia Coli and E. coli O157: H7 and the Quality Stability of Fresh Oysters (Crassostrea Gigas). Lwt 2022, 154, 112698. [Google Scholar] [CrossRef]
- Nicol, M.K.J.; Brubaker, T.R.; Honish, B.J.; Simmons, A.N.; Kazemi, A.; Geissel, M.A.; Whalen, C.T.; Siedlecki, C.A.; Bilén, S.G.; Knecht, S.D.; et al. Antibacterial Effects of Low-Temperature Plasma Generated by Atmospheric-Pressure Plasma Jet Are Mediated by Reactive Oxygen Species. Sci. Rep. 2020, 10, 3066. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Hong, E.J.; Kim, S.B.; Ryu, S. The Effect of Gap Distance between a Pin and Water Surface on the Inactivation of Escherichia Coli Using a Pin-to-Water Plasma. Int. J. Mol. Sci. 2022, 23, 5423. [Google Scholar] [CrossRef]
- Niemira, B.A.; Boyd, G.; Sites, J. Cold Plasma Inactivation of Escherichia coli O157:H7 Biofilms. Front. Sustain. Food Syst. 2018, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Z.; Li, J.; Wang, Y.; Sun, Y.; Dou, D.; Liang, X.; Wu, J.; Wang, L.; Xu, Y.; et al. Inactivation of E Coli, S Aureus, and Bacteriophages in Biofilms by Humidified Air Plasma. Int. J. Mol. Sci. 2022, 23, 4856. [Google Scholar] [CrossRef]
Cold Plasma Applicator, 50 mm Wide Nozzle | |
---|---|
Nominal input power | 50 W |
Max. output voltage | 16 kV |
Pulse repetition frequency | up to 10 kHz |
Max. pulse energy | 60 mJ |
Plasma gas temperature | <50 °C at 50 W input |
Plasma electron concentration | 190 × 109 electrons/cm3 at 50 W input |
Plasma current density | 12 mA/cm2 |
Cold Atmospheric Pressure Plasma System | Power Settings | Gas | Inactivation Time (s) | Ref. |
---|---|---|---|---|
Dielectric Barrier Discharge | Frequency: 43 kHz; Peak voltage: 1 kV Operating power: - | N2 | 20 | [28] |
Low-Temperature Plasma Jet | Frequency: 5 kHz; Voltage: up to 20 kV Power consumption: 7.5–11 W | He, O2 | 30 | [29] |
Pin-to-Water Plasma | Frequency: 2 kHz Peak voltage: 22.5 kV Operating power: 12 W | air | 20 | [30] |
Plasma Jet | Frequencies: 23 to 48 kHz; Peak voltage: - Power consumption: 522 to 549 W | dried air | 15 | [31] |
Dielectric Barrier Discharge | Frequency: 10 kHz Voltage: 5.7 kV to 9.2 kV Discharge power: 460 W | humidified air | 10 | [32] |
Blown Cylindrical Dielectric Barrier Discharge | Frequency: up to 10 kHz; Max. output voltage: 16 kV Nominal input power: 50 W | He | 10 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudoran, C.D.; Coroș, M. Design and Construction of a New Plasma Applicator for the Improved Disinfection and Activation of Large Surfaces. Plasma 2022, 5, 436-450. https://doi.org/10.3390/plasma5040032
Tudoran CD, Coroș M. Design and Construction of a New Plasma Applicator for the Improved Disinfection and Activation of Large Surfaces. Plasma. 2022; 5(4):436-450. https://doi.org/10.3390/plasma5040032
Chicago/Turabian StyleTudoran, Cristian D., and Maria Coroș. 2022. "Design and Construction of a New Plasma Applicator for the Improved Disinfection and Activation of Large Surfaces" Plasma 5, no. 4: 436-450. https://doi.org/10.3390/plasma5040032
APA StyleTudoran, C. D., & Coroș, M. (2022). Design and Construction of a New Plasma Applicator for the Improved Disinfection and Activation of Large Surfaces. Plasma, 5(4), 436-450. https://doi.org/10.3390/plasma5040032