Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (163)

Search Parameters:
Keywords = simulation of bacterial growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2387 KiB  
Article
Application of Lactobacillus helveticus KLDS 1.1105 Postbiotics for Resisting Pathogenic Bacteria Infection in the Intestine
by Peng Du, Jiaying Liu, Chengwen Hu, Jianing Zhang, Miao Li, Yu Xin, Libo Liu, Aili Li and Chun Li
Foods 2025, 14(15), 2659; https://doi.org/10.3390/foods14152659 - 29 Jul 2025
Viewed by 242
Abstract
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total [...] Read more.
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total antioxidant capacity of Lactobacillus helveticus postbiotics (LHPs) and their impact on intestinal flora using the Simulator for Human Intestinal Microecology Simulation (SHIME). The results indicate that the primary components of postbiotics include polysaccharides, proteins, and organic acids. Furthermore, LHPs have a strong ability to inhibit the growth of harmful bacteria while promoting the growth of probiotics. Additionally, LHPs significantly increased the total antioxidant capacity in the intestine and regulated the balance of intestinal microbiota. Notably, there was also a significant increase in the content of short-chain fatty acids (SCFAs) in the intestine. Overall, LHPs have the potential to aid in the prevention and treatment of diseases by enhancing gut microbiology. Full article
Show Figures

Graphical abstract

24 pages, 6167 KiB  
Article
Bioreactor Design Optimization Using CFD for Cost-Effective ACPase Production in Bacillus subtilis
by Xiao Yu, Kaixu Chen, Chunming Zhou, Qiqi Wang, Jianlin Chu, Zhong Yao, Yang Liu and Yang Sun
Fermentation 2025, 11(7), 386; https://doi.org/10.3390/fermentation11070386 - 4 Jul 2025
Viewed by 672
Abstract
Acid phosphatase (ACPase) is an essential industrial enzyme, but its production via recombinant bacterial fermentation is often limited by insufficient dissolved oxygen control. This study optimized the aerobic fermentation of the ACPase-producing recombinant bacterium Bacillus subtilis 168/pMA5-Acp by refining the bioreactor’s aerodynamic [...] Read more.
Acid phosphatase (ACPase) is an essential industrial enzyme, but its production via recombinant bacterial fermentation is often limited by insufficient dissolved oxygen control. This study optimized the aerobic fermentation of the ACPase-producing recombinant bacterium Bacillus subtilis 168/pMA5-Acp by refining the bioreactor’s aerodynamic structure using computational fluid dynamics (CFD) simulations. This was combined with fermentation kinetics modeling to achieve precise process control. First, the gas distributor structure of the 5 L bioreactor was optimized using CFD simulation results. Optimal mass transfer conditions were identified through comprehensive analysis of KLa in different reactor regions (aeration ratio: 1.142 VVm, KLa = 264.2 h−1). The simulation results showed that the optimized oxygen transfer efficiency increased 2.49 fold compared to the prototype. Second, the process control issue was addressed by developing a BP (backpropagation) neural network model to predict KLa under alternative media conditions. The prediction error was less than 5%, and the model was combined with the logistic equation to construct the bacterial growth kinetic model (R2 > 0.99). The experiments demonstrated that using the optimized reactor with a molasses–urea medium (molasses 7.5 g/L; urea 15 g/L; K2HPO4 1.2 g/L; MgSO4·7H2O 0.25 g/L) reduced production costs while maintaining enzyme activity (215.99 U/mL) and biomass (OD600 = 101.67) by 90.03%. This study provides an efficient and cost-effective process solution for the industrial production of ACPase and a theoretical foundation for bioreactor design and scale-up. Full article
(This article belongs to the Special Issue Applied Microorganisms and Industrial/Food Enzymes, 2nd Edition)
Show Figures

Figure 1

15 pages, 1114 KiB  
Article
Listeria monocytogenes Under Acid and Antimicrobial Compounds Stress: Survival and Pathogenic Potential in Orange Juice
by Maria Belén Bainotti, Pilar Colás-Medà, Inmaculada Viñas and Isabel Alegre
Beverages 2025, 11(4), 96; https://doi.org/10.3390/beverages11040096 - 1 Jul 2025
Viewed by 422
Abstract
Listeria monocytogenes poses significant risks in acidic foods like unpasteurized fruit juices due to its capacity to survive under stressful conditions. This study evaluated L. monocytogenes survival in orange juice following acid adaptation and exposure to antimicrobial compounds. Acid adaptation was induced using [...] Read more.
Listeria monocytogenes poses significant risks in acidic foods like unpasteurized fruit juices due to its capacity to survive under stressful conditions. This study evaluated L. monocytogenes survival in orange juice following acid adaptation and exposure to antimicrobial compounds. Acid adaptation was induced using glucose-supplemented or citric acid-acidified media, followed by the evaluation of pathogen survival in orange juice stored at 4 °C, 15 °C, and 25 °C. While glucose adaptation reduced the medium pH to 4.5 and enabled bacterial growth (up to 7.5 total log CFU/mL), citric acid exposure caused around 1.4 log units of reduction. Contrary to expectations, the survival of acid-adapted cells was lower than that of non-acid-adapted cells, particularly in orange juice stored at 25 °C (around 4.8 vs. 1.4 log units of reduction after 6 days). The behaviour of non-acid-adapted cells was evaluated in response to different antimicrobial compounds (citral, coumaric acid, nisin, sinapic acid, and vanillin). Nisin was the most effective, achieving a reduction of about 3.5 log units with a dose of 2 mL/L. Nisin-treated cells also showed reduced survival during simulated gastrointestinal assays (around 1.5 log units of reduction). These results challenge the assumption that acid adaptation universally enhances survival in acidic matrices and highlight nisin’s dual role in microbial control and pathogenicity mitigation. This work underscores the need for tailored stress adaptation studies and natural antimicrobial applications to improve food safety in minimally processed fruit juices. Full article
Show Figures

Graphical abstract

12 pages, 1861 KiB  
Article
Metal–Phenolic Network-Directed Coating of Lactobacillus plantarum: A Promising Strategy to Increase Stability
by Haoxuan Zhang, Huange Zhang and Hao Zhong
Foods 2025, 14(13), 2277; https://doi.org/10.3390/foods14132277 - 26 Jun 2025
Viewed by 441
Abstract
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of [...] Read more.
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of metal–phenol networks (MPNs) fabricated via three polyphenols—tannic acid (TA), tea polyphenol (TP), and anthocyanin (ACN)—combined with Fe(III) coatings in protecting Lactobacillus plantarum during simulated digestion and storage. The results demonstrated that MPNs formed a protective film on the bacterial surface. While TA and ACN inhibited the growth of Lactobacillus plantarum YJ7, TP stimulated proliferation. Within the MPNs system, only Fe(III)-TA exhibited growth-inhibitory effects. Notably, ACN displayed the highest proliferation rate during the initial 2 h, followed by TP between 3 and 4 h. All MPN-coated groups maintained high bacterial viability at 25 °C and −20 °C, with TP-coated bacteria showing the highest viable cell count, followed by TA and ACN. In vitro digestion experiments further revealed that the Fe(III)-ACN group exhibited the strongest resistance to artificial gastric juice. In conclusion, tea polyphenol and anthocyanin demonstrate superior potential for probiotic encapsulation, offering both protective stability during digestion and enhanced viability under storage conditions. Full article
Show Figures

Figure 1

14 pages, 3788 KiB  
Article
Identification of Streptococcus pneumoniae Sortase A Inhibitors and the Interactive Mechanism
by Guizhen Wang, Jiahui Lu, Jingyao Wen, Yifan Duan, Hanbing Zhou, Xinli Peng and Zhandong Li
Crystals 2025, 15(7), 594; https://doi.org/10.3390/cryst15070594 - 24 Jun 2025
Viewed by 364
Abstract
Streptococcus pneumoniae (S. pneumoniae) Sortase A (SrtA) anchors virulence proteins to the surface of the cell wall by recognizing and cleaving the LPXTG motif. These toxins help bacteria adhere to and colonize host cells, promote biofilm formation, and trigger host inflammatory [...] Read more.
Streptococcus pneumoniae (S. pneumoniae) Sortase A (SrtA) anchors virulence proteins to the surface of the cell wall by recognizing and cleaving the LPXTG motif. These toxins help bacteria adhere to and colonize host cells, promote biofilm formation, and trigger host inflammatory responses. Therefore, SrtA is an ideal target for the development of new preparations for S. pneumoniae. In this study, we found that phloretin (pht) and phlorizin (phz) exhibited excellent affinities for SrtA based on virtual screening experiments. We analyzed the interactive mechanism between pht, phz, and alnusone (aln, a reported S. pneumoniae SrtA inhibitor) and SrtA based on molecular dynamics simulation experiments. The results showed that these inhibitors bound to the active pocket of SrtA, and the root mean square deviation (RMSD) and distance analyses showed that these compounds and SrtA maintained stable configuration and binding during the assay. The binding free energy analysis showed that both electrostatic forces (ele), van der Waals forces (vdw), and hydrogen bonds (Hbonds) promoted the binding between pht, phz, and SrtA; however, for the binding of aln and SrtA, the vdw force was much stronger than ele, and Hbonds were not found. The binding free energy decomposition showed that HIS141, ILE143, and PHE119 contributed more energy to promote pht and SrtA binding; ARG215, ASP188, and LEU210 contributed more energy to promote phz and SrtA binding; and HIS141, ASP209, and ARG215 contributed more energy to promote aln and SrtA binding. Finally, the transpeptidase activity of SrtA decreased significantly when treated with different concentrations of pht, phz, or aln, which inhibited S. pneumoniae biofilm formation and adhesion to A549 cells without affecting normal bacterial growth. These results suggest that pht, phtz, and aln are potential materials for the development of novel inhibitors against S. pneumoniae infection. Full article
Show Figures

Figure 1

16 pages, 1460 KiB  
Article
Assessing the Impact of Spraying an E. faecium Probiotic at Hatch and Supplementing Feed with a Triple-Strain Bacillus-Based Additive on BCO Lameness Incidence in Broiler Chickens
by Khawla Alharbi, Anh Dang Trieu Do, Abdulaziz Alqahtani, Ruvindu Perera, Alexa Thomas, Antoine Meuter and Adnan Ali Khalaf Alrubaye
Animals 2025, 15(12), 1765; https://doi.org/10.3390/ani15121765 - 15 Jun 2025
Viewed by 724
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) is a major cause of lameness in broiler chickens. This condition arises when bacteria from the gastrointestinal or aerosol tract migrate to infect bone microfractures, often exacerbated by rapid growth, reduced blood flow, and mechanical stress. As concerns [...] Read more.
Bacterial chondronecrosis with osteomyelitis (BCO) is a major cause of lameness in broiler chickens. This condition arises when bacteria from the gastrointestinal or aerosol tract migrate to infect bone microfractures, often exacerbated by rapid growth, reduced blood flow, and mechanical stress. As concerns about antibiotic resistance grow, probiotics have gained attention for their potential to improve gut health and reduce systemic bacterial load. This study evaluated the efficacy of a probiotic program comprising an Enterococcus faecium-based spray (2 × 109 CFU/bird at hatch) and a triple-strain Bacillus-based feed additive (B. subtilis 597, B. subtilis 600, and B. amyloliquefaciens 516 at 500 g/t feed from day 1 to 56), applied individually or in combination. A wire-flooring challenge model was used to simulate BCO transmission. A total of 1560 Cobb 500 broilers were randomly assigned to five groups: T1 (positive control), T2 (negative control), T3 (E. faecium spray only), T4 (Bacillus feed supplement only), and T5 (combined treatment). Lameness was evaluated daily from day 21 to 56 through clinical observation and necropsy. The challenge model was validated with >70% lameness in T1. All probiotic treatments significantly reduced lameness compared to T2 (p < 0.05): 35.4% in T3, 36.7% in T4, and 47.6% in T5. The combined treatment resulted in the statistically highest reduction in lameness incidence, indicating a synergistic rather than merely additive effect compared to individual treatments. These findings support the use of targeted probiotic strategies to reduce BCO lameness and enhance skeletal health and welfare in broilers. Full article
Show Figures

Figure 1

23 pages, 1701 KiB  
Article
Evaluating Soil Bacteria for the Development of New Biopreparations with Agricultural Applications
by Patrycja Rowińska, Marcin Sypka, Aneta M. Białkowska, Maria Stryjek, Adriana Nowak, Regina Janas, Beata Gutarowska and Justyna Szulc
Appl. Sci. 2025, 15(12), 6400; https://doi.org/10.3390/app15126400 - 6 Jun 2025
Viewed by 462
Abstract
This study evaluates various strains of soil bacterial for use in the development of new biopreparations. Mesophilic spore-forming bacteria were isolated from cultivated soil and analysed for their enzymatic activity, ability to decompose crop residues, and antagonistic properties towards selected phytopathogens. Notably, this [...] Read more.
This study evaluates various strains of soil bacterial for use in the development of new biopreparations. Mesophilic spore-forming bacteria were isolated from cultivated soil and analysed for their enzymatic activity, ability to decompose crop residues, and antagonistic properties towards selected phytopathogens. Notably, this is the first cytotoxicity assessment of soil bacterial metabolites on Spodoptera frugiperda Sf-9 (fall armyworm). Bacillus subtilis, Bacillus licheniformis, Bacillus velezensis, Paenibacillus amylolyticus, and Prestia megaterium demonstrated the highest hydrolytic potential for the degradation of post-harvest residues from maize, winter barley, and triticale. They exhibited antimicrobial activity against at least three of the tested phytopathogens and demonstrated the ability to solubilize phosphorus. Metabolites of B. licheniformis (IC50 = 8.3 mg/mL) and B. subtilis (IC50 = 144.9 mg/mL) were the most cytotoxic against Sf-9. We recommend the use of the tested strains in industrial practice as biocontrol agents, plant growth biostimulants, crop residue decomposition stimulants, and bioinsecticides. Future studies should focus on assessing the efficacy of using these strains under conditions simulating the target use, such as plant microcosms and greenhouses and the impact of these strains on the abundance and biodiversity of native soil microbiota. This research can serve as a model procedure for screening other strains of bacteria for agricultural purposes. Full article
Show Figures

Figure 1

13 pages, 1276 KiB  
Article
Evaluation of the Antimicrobial Capacity of a White Grape Marc Extract Through Gastrointestinal Digestion
by Lorena G. Calvo, María Celeiro, Rosa-Antía Villarino, Ana G. Abril, Sandra Sánchez, José Luis R. Rama and Trinidad de Miguel
Appl. Sci. 2025, 15(12), 6390; https://doi.org/10.3390/app15126390 - 6 Jun 2025
Viewed by 438
Abstract
Polyphenols are extensively studied for their antimicrobial and prebiotic properties, but concerns about their stability persist. In order to elucidate the antimicrobial stability of such molecules in the gastrointestinal environment and their potential effect as antimicrobials and microbiota modulators, a white grape marc [...] Read more.
Polyphenols are extensively studied for their antimicrobial and prebiotic properties, but concerns about their stability persist. In order to elucidate the antimicrobial stability of such molecules in the gastrointestinal environment and their potential effect as antimicrobials and microbiota modulators, a white grape marc extract from the variety Albariño has been exposed to simulated digestions. In vitro digestions were performed following the INFOGEST protocol and samples were taken after each digestive phase and submitted to bacterial resazurin viability assays. The results reveal that the extract presents a potential antimicrobial effect against foodborne pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella enterica, which is enhanced during the intestinal phase. Modulation of the bacterial growth at concentrations below 2% (v/v) of the extract against pathogenic bacteria was observed. Although gastrointestinal digestion reduces the extract’s polyphenolic content, with procyanidin and quercetin-3-glucoside identified as the most unstable compounds, cell viability assays confirmed that its antimicrobial efficacy is maintained. In conclusion, the Albariño marc extract demonstrates a promising microbial modulation capacity, which persists during the digestive process despite variations in the polyphenolic composition. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
Ruminal Yeast Strain with Probiotic Potential: Isolation and Characterization and Its Effect on Rumen Fermentation In Vitro
by Pin Song, Xiaoran Yang, Manman Hou, Yue Chen, Liping Liu, Yuyan Feng and Yingdong Ni
Microorganisms 2025, 13(6), 1270; https://doi.org/10.3390/microorganisms13061270 - 30 May 2025
Viewed by 521
Abstract
The objective of this study is to isolate, identify, and describe rumen yeast strains and assess their probiotic potentials and effects on ruminal fermentation in vitro. Yeasts were isolated from ruminal fluids, yielding 59 strains from nine distinct species. A number of tests [...] Read more.
The objective of this study is to isolate, identify, and describe rumen yeast strains and assess their probiotic potentials and effects on ruminal fermentation in vitro. Yeasts were isolated from ruminal fluids, yielding 59 strains from nine distinct species. A number of tests were conducted to assess their anaerobic traits, growth rate, acid tolerance, and lactate utilization ability, and a second screening in fresh ruminal fluid to evaluate in vitro pH and acid accumulation was conducted. The probiotic yeast Candida rugosa (NJ-5) was selected for in vitro culture studies on rumen fermentation. Finally, Candida rugosa (NJ-5) with good probiotic characteristics was chosen to investigate its effects on ruminal fermentation in vitro. The batch culture technique was used to explore the effects of Candida rugosa (NJ-5) yeast culture on rumen fermentation parameters. By altering the fermentation substrate to a concentrate-to-roughage ratio of 70:30, which simulated a high-concentration diet. The CON, LYC, MYC, and HYC groups were supplemented with 0%, 1%, 2%, and 5% Candida rugosa (NJ-5) yeast culture (dry matter basis), respectively. The pH value and volatile fatty acid (VFA) contents were determined at 6, 12, and 24 h after fermentation. The results showed that adding Candida rugosa (NJ-5) yeast culture successfully modulated in vitro rumen fermentation. Compared to the CON group, HYC had a significantly mitigated reduction in pH in fermentation, resulting in a significant increase in total VFAs and acetate levels (p < 0.05). Additionally, 16S rRNA sequencing revealed that Candida rugosa (NJ-5) yeast culture supplementation did not significantly alter ruminal bacterial alpha diversity (p > 0.05). At the phylum and genus taxonomic levels, Candida rugosa (NJ-5) yeast culture addition increased the relative abundance of several functionally important bacterial groups in the rumen microbial community. Compared to the CON group, the HYC group concurrently had an increased abundance of Desulfobacterota, Christensenellaceae_R-7_group, F082, and Ruminococcus (p < 0.05) but a significantly reduced abundance of Cyanobacteria, Bdellovibrionota, Succinivibrionaceae_UCG-002, Enterobacter, and Succinivibrio (p < 0.05). The in vitro fermentation experiment demonstrated that the optimal dry matter supplementation of Candida rugosa (NJ-5) into the basal diet was 5%, which could be effective for maintaining ruminal fermentation stability when ruminants were fed a high-concentrate diet. This study provides empirical support for the use of yeast as a nutritional supplement in ruminant livestock management, as well as a theoretical underpinning for further animal research. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

41 pages, 13934 KiB  
Article
Unveiling Palmitoyl Thymidine Derivatives as Antimicrobial/Antiviral Inhibitors: Synthesis, Molecular Docking, Dynamic Simulations, ADMET, and Assessment of Protein–Ligand Interactions
by Sarkar M. A. Kawsar, Samiah Hamad Al-mijalli, Gassoumi Bouzid, Emad M. Abdallah, Noimul H. Siddiquee, Mohammed A. Hosen, Mabrouk Horchani, Houcine Ghalla, Hichem B. Jannet, Yuki Fujii and Yasuhiro Ozeki
Pharmaceuticals 2025, 18(6), 806; https://doi.org/10.3390/ph18060806 - 27 May 2025
Viewed by 1865
Abstract
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and [...] Read more.
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and evaluate a series of 5′-O-(palmitoyl) derivatives (compounds 26), incorporating various aliphatic and aromatic acyl groups, for their potential antimicrobial activities. Methods: The structures of the synthesized derivatives were confirmed through physicochemical, elemental, and spectroscopic techniques. In vitro antibacterial efficacy was assessed, including minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determinations for the most active compounds (4 and 5). The antifungal activity was evaluated based on mycelial growth inhibition. Density functional theory (DFT) calculations were employed to investigate the electronic and structural properties, including the global reactivity, frontier molecular orbital (FMO), natural bond orbital (NBO), and molecular electrostatic potential (MEP). Molecular docking studies were conducted against the monkeypox virus and the Marburg virus. The top-performing compounds (3, 5, and 6) were further evaluated via 200 ns molecular dynamics (MD) simulations. ADMET predictions were performed to assess drug-likeness and pharmacokinetic properties. Results: Compounds 4 and 5 demonstrated remarkable antibacterial activity compared with the precursor molecule, while most derivatives inhibited fungal mycelial growth by up to 79%. Structure-activity relationship (SAR) analysis highlighted the enhanced antibacterial/antifungal efficacy with CH3(CH2)10CO– and CH3(CH2)12CO–acyl chains. In silico docking revealed that compounds 3, 5, and 6 had higher binding affinities than the other derivatives. MD simulations confirmed the stability of the protein-ligand complexes. ADMET analyses revealed favorable drug-like profiles for all the lead compounds. Conclusions: The synthesized compounds 3, 5, and 6 exhibit promising antimicrobial and antiviral activities. Supported by both in vitro assays and comprehensive in silico analyses, these derivatives have emerged as potential candidates for the development of novel therapeutics against bacterial, fungal, and viral infections, including monkeypox and Marburg viruses. Full article
Show Figures

Graphical abstract

27 pages, 11083 KiB  
Article
Biodegradation of Phenanthrene by Mycobacterium sp. TJFP1: Genetic Basis and Environmental Validation
by Shuyun Li, Jiazhen Liu and Ping Fang
Microorganisms 2025, 13(5), 1171; https://doi.org/10.3390/microorganisms13051171 - 21 May 2025
Viewed by 551
Abstract
The development of efficient bioremediation technologies for polycyclic aromatic hydrocarbons contamination is a hot research topic in the environmental field. In this study, we found that the Mycobacterium sp., TJFP1, has the function of degrading low molecular weight PAHs, and further investigated its [...] Read more.
The development of efficient bioremediation technologies for polycyclic aromatic hydrocarbons contamination is a hot research topic in the environmental field. In this study, we found that the Mycobacterium sp., TJFP1, has the function of degrading low molecular weight PAHs, and further investigated its degradation characteristics using the PAH model compound phenanthrene as a target pollutant. The optimal growth and degradation conditions were determined by single-factor experiments to be 37 °C, pH 9.0, and an initial concentration of 100 mg/L phenanthrene. Under this condition, the degradation efficiency of phenanthrene reached 100% after 106 h of incubation, and the average degradation rate could reach 24.48 mg/L/day. Combined with whole genome sequencing analysis, it was revealed that its genome carries a more complete phenanthrene degradation pathway, including functional gene clusters related to the metabolism of PAHs, such as phd and nid. Meanwhile, intermediates such as phthalic acid were detected; it was determined that TJFP1 metabolizes phenanthrene via the phthalic acid pathway. Simulated contaminated soil experiments were also conducted, and the results showed that the removal rate of phenanthrene from the soil after 20 days of inoculation with the bacterial strain was about 3.7 times higher than that of the control group (natural remediation). At the same time from the soil physical and chemical properties and soil microbial community structure of two levels to explore the changes in different means of remediation, indicating that it can be successfully colonized in the soil, and as a dominant group of bacteria to play the function of remediation, verifying the environmental remediation function of the strains, for the actual inter-soil remediation to provide theoretical evidence. This study provides efficient strain resources for the bioremediation of PAH contamination. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

23 pages, 19564 KiB  
Article
Simulation of Biofouling Caused by Bacillus halotolerans MCC1 on FeNP-Coated RO Membranes
by Maria Magdalena Armendáriz-Ontiveros, Teresa Romero-Cortes, Victor Hugo Pérez España, Jaime A. Cuervo-Parra, Martin Peralta-Gil, Maria del Rosario Martinez Macias and Gustavo Adolfo Fimbres Weihs
Processes 2025, 13(5), 1422; https://doi.org/10.3390/pr13051422 - 7 May 2025
Viewed by 573
Abstract
Reverse osmosis (RO) desalination technology offers a promising solution for mitigating water scarcity. However, one of the major challenges faced by RO membranes is biofouling, which significantly increases the desalination costs. Traditional simulation models often overlook environmental variability and do not incorporate the [...] Read more.
Reverse osmosis (RO) desalination technology offers a promising solution for mitigating water scarcity. However, one of the major challenges faced by RO membranes is biofouling, which significantly increases the desalination costs. Traditional simulation models often overlook environmental variability and do not incorporate the effects of membrane-surface modifications. This paper develops a bacterial growth model for the prediction of seawater desalination performance, applicable to commercial RO membranes, which can be either uncoated or coated with iron nanoparticles (FeNPs or nZVI). FeNPs were selected due to their known antimicrobial properties and potential to mitigate biofilm formation. The native seawater bacterium Bacillus halotolerans MCC1 was used as a model biofouling bacterium. Growth kinetics were determined at different temperatures (from 26 to 50 °C) and pH values (from 4 to 10) to obtain growth parameters. Microbial growth on RO membranes was modeled using the Monod equation. The desalination performance was evaluated in terms of hydraulic resistance and permeate flux under clean and biofouled conditions. The model was validated using desalination data obtained at the laboratory scale. Bacteria grew faster at 42 °C and pH 10. The pH had a more significant effect than temperature on the bacterial growth rate. The FeNP-coated membranes exhibited lower resistance and maintained a higher long-term water flux than the commercial uncoated membrane. This modeling approach is useful for improving the monitoring of feed water parameters and assessing the operational conditions for minimum biofouling of RO membranes. In addition, it introduces a novel integration of environmental parameters and membrane coating effects, offering a predictive tool to support operational decisions for improved RO performance. Full article
Show Figures

Figure 1

14 pages, 285 KiB  
Review
Pseudomonas in Meat Processing Environments
by Chloe Calhoun, Ifigenia Geornaras and Peipei Zhang
Foods 2025, 14(9), 1615; https://doi.org/10.3390/foods14091615 - 2 May 2025
Viewed by 1107
Abstract
Pseudomonas is often predominant and/or prevalent among the residential microbiota in food processing facilities and has the potential to enhance the survival of pathogenic bacteria in these environments. This review aims to discuss our current understanding of this bacterial genus in meat processing [...] Read more.
Pseudomonas is often predominant and/or prevalent among the residential microbiota in food processing facilities and has the potential to enhance the survival of pathogenic bacteria in these environments. This review aims to discuss our current understanding of this bacterial genus in meat processing environments. We specifically focus on the predominant species of Pseudomonas in meat and meat processing plants, their biofilm-forming abilities and affecting factors, and the interaction between Pseudomonas and foodborne pathogens in biofilms. Published accounts indicate Pseudomonas has more diversity within and between meat plants compared to that in meat products. Despite the competition between Pseudomonas and other bacteria, including pathogens, this genus can increase the survival of pathogenic bacteria in food processing-related environments by increasing the resistance of pathogens to antimicrobials when present in biofilms. Our understanding of the ecology of Pseudomonas in meat processing environments needs further exploration. Future studies should consider biofilms formed under dynamic conditions simulating meat plant operations, using species/strains that are more representative of the Pseudomonas populations found in meat processing environments, and with growth media that closely resemble the nutrients found on meat processing surfaces. Full article
(This article belongs to the Special Issue Microbiological Risks in Food Processing)
10 pages, 2517 KiB  
Communication
Stability of BTI Devices for Plasma Rich in Growth Factors (PRGF) Eye Drop Delivery Under Varying Storage and Handling Conditions
by Eduardo Anitua, Iraia Reparaz, María de la Fuente and Mohammad Hamdan Alkhraisat
Biomedicines 2025, 13(5), 1105; https://doi.org/10.3390/biomedicines13051105 - 1 May 2025
Viewed by 566
Abstract
Purpose: To evaluate the sterility and biological functionality of platelet lysate eye drops stored in BTI ophthalmic devices for PRGF delivery under different storage conditions and simulated use scenarios. Methods: Eye drops were prepared using platelet lysate and stored in BTI [...] Read more.
Purpose: To evaluate the sterility and biological functionality of platelet lysate eye drops stored in BTI ophthalmic devices for PRGF delivery under different storage conditions and simulated use scenarios. Methods: Eye drops were prepared using platelet lysate and stored in BTI tubes under three different conditions: ≤−15 °C, 2–8 °C, and room temperature (RT) for 72 h. Simulated use was performed for 72 h with controlled drop dispensing. Bacterial contamination was assessed according to European Pharmacopoeia sterility testing principles. The biological activity of the eye drops was assessed using in vitro proliferation assays with primary human keratocytes (HKs) and human corneal epithelial cells (HCEs). Statistical analyses were performed to compare the effects of different storage conditions and application scenarios. Results: No bacterial contamination was detected in platelet lysate eye drops stored under any of the conditions tested, regardless of simulated use. Proliferation assays showed that eye drops enhanced the growth of HK and HCE cells compared to the control medium. No significant differences in proliferation were observed between storage conditions. Conclusions: Platelet lysate eye drops maintain sterility and biological functionality when stored in BTI ophthalmic devices at ≤−15 °C, 2–8 °C and RT for up to 72 h of simulated use. These results support the feasibility of using BTI eye drop devices in clinical settings while ensuring safety and efficacy. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

8 pages, 699 KiB  
Brief Report
Suitability of Piperacillin–Tazobactam for Treating Dogs Infected with Extended-Spectrum β-Lactamase-Producing Enterobacterales: Pharmacokinetic and Pharmacodynamic Analysis
by Kazuki Harada, Hyo Harada, Yuka Kanao and Mizuki Kusumoto
Antibiotics 2025, 14(5), 425; https://doi.org/10.3390/antibiotics14050425 - 23 Apr 2025
Viewed by 755
Abstract
Background/Objectives: Piperacillin–tazobactam (TZP) is a potential alternative to carbapenems for the treatment of dogs infected with extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), but its efficacy remains unestablished. In this study, pharmacokinetic–pharmacodynamic (PK/PD) analysis was performed to estimate the clinical efficacy of TZP against ESBL-E [...] Read more.
Background/Objectives: Piperacillin–tazobactam (TZP) is a potential alternative to carbapenems for the treatment of dogs infected with extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), but its efficacy remains unestablished. In this study, pharmacokinetic–pharmacodynamic (PK/PD) analysis was performed to estimate the clinical efficacy of TZP against ESBL-E infections in dogs. Methods: We determined the minimum inhibitory concentrations (MICs) of TZP in canine ESBL-E isolates, including Escherichia coli (n = 62), Klebsiella pneumoniae (n = 89), and Enterobacter cloacae (n = 31), using agar dilution. Monte Carlo Simulation (MCS) was performed to estimate the probability of target attainment (PTA) based on the PK/PD characteristics of TZP. Results: The MICs that can inhibit the growth of 90% of the isolates for the three bacterial species were determined as 16/4 µg/mL. MCS analysis revealed that the piperacillin PK/PD cutoff values (highest MICs with a PTA ≥90%) were ≤0.031, ≤0.5, and ≤2 μg/mL at a bolus dose of 50 mg/kg TZP (44.4 mg/kg piperacillin) every 12, 8, and 6 h (q12h, q8h, and q6h), respectively. The cumulative fractions of response were ≤90% based on the MIC distribution of ESBL-producing E. coli, K. pneumoniae, and E. cloacae isolates from dogs: 1.60, 0.48, and 0.15% at q12h; 32.56, 14.57, and 9.65% at q8h; and 74.51, 45.85, and 43.92% at q6h, respectively. Conclusions: We believe that TZP is not recommended for the treatment of canine ESBL-E infections, except for cases with a lower MIC than the PK/PD cutoff values determined in this study. Full article
Show Figures

Figure 1

Back to TopTop