Listeria monocytogenes Under Acid and Antimicrobial Compounds Stress: Survival and Pathogenic Potential in Orange Juice
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Culture
2.2. Acid Adaptation and Its Effect in Orange Juice
2.2.1. Evaluation Methods for Obtaining Acid-Adapted Cells
2.2.2. Survival of Acid-Adapted and Non-Acid Adapted Pathogens in Orange Juice
2.3. Antimicrobial Compounds and Their Antimicrobial Effect Against Non-Acid-Adapted Cells in Orange Juice
2.3.1. Orange Juice Supplemented with Antimicrobial Compounds
2.3.2. Initial Selection of Antimicrobial Compounds and Corresponding Concentrations
2.3.3. Antimicrobial Activity of the Chosen Antimicrobials in Orange Juice
2.3.4. Impact of the Selected Antimicrobial on Bacterial Pathogenicity
2.4. Data Analysis
3. Results
3.1. Evaluation of Methods for Obtaining Acid-Adapted Cells
3.2. Acid-Adapted and Non-Acid Adapted Pathogen’s Survival in Orange Juice
3.3. Preliminary Selection of Antimicrobial Compounds and Their Concentrations
3.4. Antimicrobial Effect of the Selected Antimicrobials in Orange Juice
3.5. Impact of the Selected Antimicrobials on Bacterial Pathogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes—How This Pathogen Survives in Food-Production Environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef] [PubMed]
- Townsend, A.; Strawn, L.K.; Chapman, B.J.; Dunn, L.L. A Systematic Review of Listeria Species and Listeria monocytogenes Prevalence, Persistence, and Diversity throughout the Fresh Produce Supply Chain. Foods 2021, 10, 1427. [Google Scholar] [CrossRef] [PubMed]
- European Union Regulation (EC). No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- Ziegler, M.; Rüegg, S.; Stephan, R.; Guldimann, C. Growth Potential of Listeria monocytogenes in Six Different RTE Fruit Products: Impact of Food Matrix, Storage Temperature and Shelf Life. Ital. J. Food Saf. 2018, 7, 7581. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Zhou, B.; Zheng, J.; Nou, X. Growth and Survival of Salmonella enterica and Listeria monocytogenes on Fresh-Cut Produce and Their Juice Extracts: Impacts and Interactions of Food Matrices and Temperature Abuse Conditions. Food Control 2019, 100, 300–304. [Google Scholar] [CrossRef]
- Nangul, A.; Bozkurt, H.; Gupta, S.; Woolf, A.; Phan-thien, K.-y.; McConchie, R.; Fletcher, G.C. Decline of Listeria monocytogenes on Fresh Apples during Long-Term, Low-Temperature Simulated International Sea-Freight Transport. Int. J. Food Microbiol. 2021, 341, 109069. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska, E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front. Microbiol. 2021, 12, 710085. [Google Scholar] [CrossRef]
- Sibanda, T.; Buys, E.M. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022, 10, 1522. [Google Scholar] [CrossRef]
- Petruzzi, L.; Campaniello, D.; Speranza, B.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Compr. Rev. Food Sci. Food Saf. 2017, 16, 668–691. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An Overview of Natural Antimicrobials Role in Food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Ferreira, S.; Domingues, F. The Antimicrobial Action of Resveratrol against Listeria monocytogenes in Food-Based Models and Its Antibiofilm Properties. J. Sci. Food Agric. 2016, 96, 4531–4535. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Junior, A.A.; Silva de Araújo Couto, H.G.; Barbosa, A.A.T.; Carnelossi, M.A.G.; de Moura, T.R. Stability, Antimicrobial Activity, and Effect of Nisin on the Physico-Chemical Properties of Fruit Juices. Int. J. Food Microbiol. 2015, 211, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Usaga, J.; Acosta, Ó.; Churey, J.J.; Padilla-Zakour, O.I.; Worobo, R.W. Evaluation of High Pressure Processing (HPP) Inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Acid and Acidified Juices and Beverages. Int. J. Food Microbiol. 2021, 339, 109034. [Google Scholar] [CrossRef] [PubMed]
- Kawacka, I.; Olejnik-Schmidt, A.; Schmidt, M.; Sip, A. Natural Plant-Derived Chemical Compounds as Listeria monocytogenes Inhibitors In Vitro and in Food Model Systems. Pathogens 2020, 10, 12. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. GInaFiT, a Freeware Tool to Assess Non-Log-Linear Microbial Survivor Curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef]
- Álvarez-Ordóñez, A.; Fernández, A.; Bernardo, A.; López, M. Comparison of Acids on the Induction of an Acid Tolerance Response in Salmonella Typhimurium, Consequences for Food Safety. Meat Sci. 2009, 81, 65–70. [Google Scholar] [CrossRef]
- Foster, J.W.; Hall, H.K. Adaptive Acidification Tolerance Response of Salmonella Typhimurium. J. Bacteriol. 1990, 172, 771–778. [Google Scholar] [CrossRef]
- Wang, X.; Tian, S.; Wu, Y.; Li, H.; Bai, L.; Liu, H.; Zhang, X.; Dong, Q. Strain Variability in Growth and Thermal Inactivation Characteristics of Listeria monocytogenes Strains after Acid Adaptation. J. Food Prot. 2021, 84, 2229–2236. [Google Scholar] [CrossRef]
- Rolfe, C.A.; Anderson, N.M.; Black, D.G.; Lee, A. Barotolerance of Acid-Adapted and Cold-Adapted Bacterial Isolates of E. coli O157:H7, Salmonella spp., and L. monocytogenes in an Acidic Buffer Model. J. Food Prot. 2023, 86, 100116. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Dong, P.; Liang, R.; Mao, Y.; Yang, X.; Zhang, Y.; Luo, X. Acid Tolerance Response of Listeria monocytogenes in Various External PHs with Different Concentrations of Lactic Acid. Foodborne Pathog. Dis. 2020, 17, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Bainotti, M.B.; Colás-Medà, P.; Viñas, I.; Alegre, I. Effect of Antimicrobial Compounds on the Survival and Pathogenic Potential of Acid-Adapted Salmonella Enteritidis and Escherichia coli O157:H7 in Orange Juice. Antibiotics 2025, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Karabiyikli, Ş.; Değırmencı, H.; Karapinar, M. Inactivation of Listeria monocytogenes in Black Mulberry (Morus Nigra) Juice. J. Food Process. Preserv. 2017, 41, e12840. [Google Scholar] [CrossRef]
- Topalcengiz, Z.; Danyluk, M.D. Thermal Inactivation Responses of Acid Adapted and Non-Adapted Stationary Phase Shiga Toxin-Producing Escherichia coli (STEC), Salmonella spp. and Listeria monocytogenes in Orange Juice. Food Control 2017, 72, 73–82. [Google Scholar] [CrossRef]
- Arvaniti, M.; Tsakanikas, P.; Papadopoulou, V.; Giannakopoulou, A.; Skandamis, P. Listeria monocytogenes Sublethal Injury and Viable-but-Nonculturable State Induced by Acidic Conditions and Disinfectants. Microbiol. Spectr. 2021, 9, e01377-21. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial Response to Acid Stress: Mechanisms and Applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef]
- Kincses, A.; Ghazal, T.S.A.; Hohmann, J. Synergistic Effect of Phenylpropanoids and Flavonoids with Antibiotics against Gram-Positive and Gram-Negative Bacterial Strains. Pharm. Biol. 2024, 62, 659–665. [Google Scholar] [CrossRef]
- Kim, G.; Dasagrandhi, C.; Kang, E.H.; Eom, S.H.; Kim, Y.M. In Vitro Antibacterial and Early Stage Biofilm Inhibitory Potential of an Edible Chitosan and Its Phenolic Conjugates against Pseudomonas aeruginosa and Listeria monocytogenes. 3 Biotech 2018, 8, 439. [Google Scholar] [CrossRef]
- Zamuz, S.; Munekata, P.E.S.; Dzuvor, C.K.O.; Zhang, W.; Sant’Ana, A.S.; Lorenzo, J.M. The Role of Phenolic Compounds against Listeria Monocytogenes in Food. A Review. Trends Food Sci. Technol. 2021, 110, 385–392. [Google Scholar] [CrossRef]
- Moon, K.D.; Delaquis, P.; Toivonen, P.; Stanich, K. Effect of Vanillin on the Fate of Listeria monocytogenes and Escherichia coli O157:H7 in a Model Apple Juice Medium and in Apple Juice. Food Microbiol. 2006, 23, 169–174. [Google Scholar] [CrossRef]
- Ferrante, S.; Guerrero, S.; Alzamora, S.M. Combined Use of Ultrasound and Natural Antimicrobials To Inactivate Listeria monocytogenes in Orange Juice. J. Food Prot. 2007, 70, 1850–1856. [Google Scholar] [CrossRef] [PubMed]
- Silva-Angulo, A.B.; Zanini, S.F.; Rosenthal, A.; Rodrigo, D.; Klein, G.; Martínez, A. Comparative Study of the Effects of Citral on the Growth and Injury of Listeria innocua and Listeria monocytogenes Cells. PLoS ONE 2015, 10, e0114026. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, X.; Du, H.; Li, Y.; Wen, Y.; Zhu, Z. A Transparent P-Coumaric Acid-Grafted-Chitosan Coating with Antimicrobial, Antioxidant and Antifogging Properties for Fruit Packaging Applications. Carbohydr. Polym. 2024, 339, 122238. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Bai, M.; Fang, H.; Aziz, T.; Shami, A.; Al-Asmari, F.; Al-Joufi, F.A.; Alwethaynani, M.S.; Cui, H. Mechanistic Insights into Citral-Induced Cellular Damage and Its Antibacterial Efficacy against Listeria monocytogenes. Food Biosci. 2025, 68, 106435. [Google Scholar] [CrossRef]
- Pernin, A.; Guillier, L.; Dubois-Brissonnet, F. Inhibitory Activity of Phenolic Acids against Listeria monocytogenes: Deciphering the Mechanisms of Action Using Three Different Models. Food Microbiol. 2019, 80, 18–24. [Google Scholar] [CrossRef]
- de Souza, E.L.; da Cruz Almeida, E.T.; de Sousa Guedes, J.P. The Potential of the Incorporation of Essential Oils and Their Individual Constituents to Improve Microbial Safety in Juices: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 753–772. [Google Scholar] [CrossRef]
- Miyague, L.; Macedo, R.E.F.; Meca, G.; Holley, R.A.; Luciano, F.B. Combination of Phenolic Acids and Essential Oils against Listeria monocytogenes. LWT—Food Sci. Technol. 2015, 64, 333–336. [Google Scholar] [CrossRef]
- Prakash, A.; Vadivel, V. Citral and Linalool Nanoemulsions: Impact of Synergism and Ripening Inhibitors on the Stability and Antibacterial Activity against Listeria monocytogenes. J. Food Sci. Technol. 2020, 57, 1495–1504. [Google Scholar] [CrossRef]
- Luciano, W.A.; Pimentel, T.C.; Bezerril, F.F.; Barão, C.E.; Marcolino, V.A.; de Siqueira Ferraz Carvalho, R.; dos Santos Lima, M.; Martín-Belloso, O.; Magnani, M. Effect of Citral Nanoemulsion on the Inactivation of Listeria monocytogenes and Sensory Properties of Fresh-Cut Melon and Papaya during Storage. Int. J. Food Microbiol. 2023, 384, 109959. [Google Scholar] [CrossRef]
- Khan, F.; Singh, P.; Joshi, A.S.; Tabassum, N.; Jeong, G.J.; Bamunuarachchi, N.I.; Mijakovic, I.; Kim, Y.M. Multiple Potential Strategies for the Application of Nisin and Derivatives. Crit. Rev. Microbiol. 2023, 49, 628–657. [Google Scholar] [CrossRef]
- Lee, E.H.; Khan, I.; Oh, D.H. Evaluation of the Efficacy of Nisin-Loaded Chitosan Nanoparticles against Foodborne Pathogens in Orange Juice. J. Food Sci. Technol. 2018, 55, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Kalchayanand, N.; Hanlin, M.B.; Ray, B. Sublethal Injury Makes Gram-Negative and Resistant Gram-Positive Bacteria Sensitive to the Bacteriocins, Pediocin AcH and Nisin. Lett. Appl. Microbiol. 1992, 15, 239–243. [Google Scholar] [CrossRef]
- Akritidou, T.; Akkermans, S.; Gaspari, S.; Azraini, N.D.; Smet, C.; Van de Wiele, T.; Van Impe, J.F.M. Effect of Gastric PH and Bile Acids on the Survival of Listeria monocytogenes and Salmonella Typhimurium during Simulated Gastrointestinal Digestion. Innov. Food Sci. Emerg. Technol. 2022, 82, 103161. [Google Scholar] [CrossRef]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, Synthesis, Mechanism of Action and Resistance Development in Food Spoilage Causing Bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef]
- Horn, N.; Bhunia, A.K. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection. Front. Microbiol. 2018, 9, 382666. [Google Scholar] [CrossRef]
Statistical Indices | Weibull Model Parameter | |||
---|---|---|---|---|
RMSE | R2-adj | δ | p | |
OJ | * | * | * | * |
OJ 1 mL/L nisin | 0.698 | 0.503 | 16.50 ± 13.21 | 0.37 ± 0.23 |
OJ 2 mL/L nisin | 0.591 | 0.794 | 3.56 ± 2.51 | 0.41 ± 0.11 |
OJ 0.25 mL/L citral | 0.154 | 0.865 | 43.58 ± 1.83 | 1.66 ± 0.24 |
OJ 0.5 mL/L citral | 0.181 | 0.972 | 12.30 ± 1.26 | 0.76 ± 0.06 |
OJ 0.25 g/L coumaric acid | 0.173 | 0.850 | 44.67 ± 1.96 | 1.65 ± 0.27 |
OJ 0.5 g/L coumaric acid | 0.320 | 0.884 | 17.41 ± 3.18 | 0.74 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bainotti, M.B.; Colás-Medà, P.; Viñas, I.; Alegre, I. Listeria monocytogenes Under Acid and Antimicrobial Compounds Stress: Survival and Pathogenic Potential in Orange Juice. Beverages 2025, 11, 96. https://doi.org/10.3390/beverages11040096
Bainotti MB, Colás-Medà P, Viñas I, Alegre I. Listeria monocytogenes Under Acid and Antimicrobial Compounds Stress: Survival and Pathogenic Potential in Orange Juice. Beverages. 2025; 11(4):96. https://doi.org/10.3390/beverages11040096
Chicago/Turabian StyleBainotti, Maria Belén, Pilar Colás-Medà, Inmaculada Viñas, and Isabel Alegre. 2025. "Listeria monocytogenes Under Acid and Antimicrobial Compounds Stress: Survival and Pathogenic Potential in Orange Juice" Beverages 11, no. 4: 96. https://doi.org/10.3390/beverages11040096
APA StyleBainotti, M. B., Colás-Medà, P., Viñas, I., & Alegre, I. (2025). Listeria monocytogenes Under Acid and Antimicrobial Compounds Stress: Survival and Pathogenic Potential in Orange Juice. Beverages, 11(4), 96. https://doi.org/10.3390/beverages11040096