Ruminal Yeast Strain with Probiotic Potential: Isolation and Characterization and Its Effect on Rumen Fermentation In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Rumen Samples for Yeast Isolation and Identification
2.2. Selection of Yeasts with Probiotic Potential
2.3. The Preparation of Candida Rugosa (NJ-5) Yeast Culture
2.4. Experimental Design and In Vitro Culture Procedure
2.5. Assessment of VFAs
2.6. DNA Extraction and 16S rDNA Sequencing
2.7. Data Analysis
3. Results
3.1. Isolation and Identification of Yeast Strains
3.2. Anaerobic Capacity of Yeast Strains
3.3. Evaluation of Acid Tolerance of Yeast Strains
3.4. Evaluation of Lactate Utilization Capacity of Yeast Strains
3.5. Effect of Yeast Strains on VFA Production in In Vitro Rumen Fermentation
3.6. Preparation of Yeast Culture
3.7. Impact of Yeast Culture Supplementation on pH Value in In Vitro Fermentation
3.8. Effects of Yeast Culture on VFA Concentrations in In Vitro Fermentation
3.9. Impact of Yeast Culture on Bacterial Community in In Vitro Fermentation
3.9.1. Rumen Bacterial Diversity Analysis
3.9.2. Impact of Yeast Culture on Bacteria Abundance in In Vitro Fermentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campanile, G.; Zicarelli, F.; Vecchio, D.; Pacelli, C.; Neglia, G.; Balestrieri, A.; Di Palo, R.; Infascelli, F. Effects of Saccharomyces Cerevisiae on In Vivo Organic Matter Digestibility and Milk Yield in Buffalo Cows. Livest. Sci. 2008, 114, 358–361. [Google Scholar] [CrossRef]
- Mitchell, L.K.; Heinrichs, A.J. Feeding Various Forages and Live Yeast Culture on Weaned Dairy Calf Intake, Growth, Nutrient Digestibility, and Ruminal Fermentation. J. Dairy. Sci. 2020, 103, 8880–8897. [Google Scholar] [CrossRef]
- Wang, H.; Su, M.; Wang, C.; Li, D.; Li, Q.; Liu, Z.; Qi, X.; Wu, Y.; Zhao, Y.; Li, T.; et al. Yeast Culture Repairs Rumen Epithelial Injury by Regulating Microbial Communities and Metabolites in Sheep. Front. Microbiol. 2023, 14, 1305772. [Google Scholar] [CrossRef]
- Halfen, J.; Carpinelli, N.; Del Pino, F.A.B.; Chapman, J.D.; Sharman, E.D.; Anderson, J.L.; Osorio, J.S. Effects of Yeast Culture Supplementation on Lactation Performance and Rumen Fermentation Profile and Microbial Abundance in Mid-Lactation Holstein Dairy Cows. J. Dairy. Sci. 2021, 104, 11580–11592. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Guasch, I.; Elcoso, G.; Chaucheyras-Durand, F.; Castex, M.; Fàbregas, F.; Garcia-Fruitos, E.; Aris, A. Changes in Gene Expression in the Rumen and Colon Epithelia during the Dry Period through Lactation of Dairy Cows and Effects of Live Yeast Supplementation. J. Dairy. Sci. 2018, 101, 2631–2640. [Google Scholar] [CrossRef]
- Ghazanfar, S. Understanding the Mechanism of Action of Indigenous Target Probiotic Yeast: Linking the Manipulation of Gut Microbiota and Performance in Animals. In Saccharomyces; Peixoto Basso, T., Carlos Basso, L., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83968-789-1. [Google Scholar]
- Dias, J.D.L.; Silva, R.B.; Fernandes, T.; Barbosa, E.F.; Graças, L.E.C.; Araujo, R.C.; Pereira, R.A.N.; Pereira, M.N. Yeast Culture Increased Plasma Niacin Concentration, Evaporative Heat Loss, and Feed Efficiency of Dairy Cows in a Hot Environment. J. Dairy. Sci. 2018, 101, 5924–5936. [Google Scholar] [CrossRef]
- Kung, L.; Kreck, E.M.; Tung, R.S.; Hession, A.O.; Sheperd, A.C.; Cohen, M.A.; Swain, H.E.; Leedle, J.A.Z. Effects of a Live Yeast Culture and Enzymes on In Vitro Ruminal Fermentation and Milk Production of Dairy Cows. J. Dairy. Sci. 1997, 80, 2045–2051. [Google Scholar] [CrossRef] [PubMed]
- Bajagai, Y.S.; Klieve, A.; Dart, P.; Bryden, W. Probiotics in Animal Nutrition: Production, Impact and Regulation; FAO animal production and health paper; Food and Agricultural Organization of the United Nations: Rome, Italy, 2016; ISBN 978-92-5-109333-7. [Google Scholar]
- De Melo Pereira, G.V.; De Oliveira Coelho, B.; Magalhães Júnior, A.I.; Thomaz-Soccol, V.; Soccol, C.R. How to Select a Probiotic? A Review and Update of Methods and Criteria. Biotechnol. Adv. 2018, 36, 2060–2076. [Google Scholar] [CrossRef]
- Tunkala, B.Z.; DiGiacomo, K.; Alvarez Hess, P.S.; Gardiner, C.P.; Suleria, H.; Leury, B.J.; Dunshea, F.R. Evaluation of Legumes for Fermentability and Protein Fractions Using in Vitro Rumen Fermentation. Anim. Feed. Sci. Technol. 2023, 305, 115777. [Google Scholar] [CrossRef]
- Menke, H.H.; Steingass, H. Estimation of Energetic Feed Value Obtained from Chemical Analysis and in Vitro Gas Production Using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Sirisan, V.; Pattarajinda, V.; Vichitphan, K.; Leesing, R. Isolation, Identification and Growth Determination of Lactic Acid-Utilizing Yeasts from the Ruminal Fluid of Dairy Cattle. Lett. Appl. Microbiol. 2013, 57, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Marrero, Y.; Castillo, Y.; Ruiz, O.; Burrola, E.; Angulo, C. Feeding of Yeast (Candida Spp.) Improves in Vitro Ruminal Fermentation of Fibrous Substrates. J. Integr. Agric. 2015, 14, 514–519. [Google Scholar] [CrossRef]
- Ruiz, O.; Castillo, Y.; Arzola, C.; Burrola, E.; Salinas, J.; Corral, A.; Hume, M.E.; Murillo, M.; Itza, M. Effects of Candida norvegensis Live Cells on In Vitro Oat Straw Rumen Fermentation. Asian Australas. J. Anim. Sci. 2015, 29, 211–218. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Jin, W.; Mao, S. Isolation and Characterization of Ruminal Yeast Strain with Probiotic Potential and Its Effects on Growth Performance, Nutrients Digestibility, Rumen Fermentation and Microbiota of Hu Sheep. J. Fungi 2022, 8, 1260. [Google Scholar] [CrossRef]
- Ishaq, S.L.; AlZahal, O.; Walker, N.; McBride, B. An Investigation into Rumen Fungal and Protozoal Diversity in Three Rumen Fractions, During High-Fiber or Grain-Induced Sub-Acute Ruminal Acidosis Conditions, with or Without Active Dry Yeast Supplementation. Front. Microbiol. 2017, 8, 1943. [Google Scholar] [CrossRef] [PubMed]
- Angchuan, J.; Khunnamwong, P.; Wongpanit, K.; Limtong, S.; Srisuk, N. Yeasts Associated with the Small-Intestinal Contents and Epithelium of Pon Yang Kham (Charolais Crossbred) Fattening Beef Cattle. Microorganisms 2021, 9, 1444. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.; Carvalho, B.F.; Mantovani, H.C.; Schwan, R.F.; Ávila, C.L.S. Identification and Characterization of Yeasts from Bovine Rumen for Potential Use as Probiotics. J. Appl. Microbiol. 2019, 127, 845–855. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Ávila, C.L.S.; Bernardes, T.F.; Pereira, M.N.; Santos, C.; Schwan, R.F. Fermentation Profile and Identification of Lactic Acid Bacteria and Yeasts of Rehydrated Corn Kernel Silage. J. Appl. Microbiol. 2017, 122, 589–600. [Google Scholar] [CrossRef]
- Xue, Y.; Lin, L.; Hu, F.; Zhu, W.; Mao, S. Disruption of Ruminal Homeostasis by Malnutrition Involved in Systemic Ruminal Microbiota-Host Interactions in a Pregnant Sheep Model. Microbiome 2020, 8, 138. [Google Scholar] [CrossRef]
- Denman, S.E.; McSweeney, C.S. Development of a Real-Time PCR Assay for Monitoring Anaerobic Fungal and Cellulolytic Bacterial Populations within the Rumen: Real-Time PCR Assay of the Rumen Anaerobic Fungal Population. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Suntara, C.; Cherdthong, A.; Wanapat, M.; Uriyapongson, S.; Leelavatcharamas, V.; Sawaengkaew, J.; Chanjula, P.; Foiklang, S. Isolation and Characterization of Yeasts from Rumen Fluids for Potential Use as Additives in Ruminant Feeding. Vet. Sci. 2021, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Sales, G.F.C.; Carvalho, B.F.; Schwan, R.F.; Pereira, M.N.; Ávila, C.L.S. Diversity and Probiotic Characterisation of Yeast Isolates in the Bovine Gastrointestinal Tract. Antonie Van. Leeuwenhoek 2023, 116, 1123–1137. [Google Scholar] [CrossRef] [PubMed]
- Rahbar Saadat, Y.; Yari Khosroushahi, A.; Movassaghpour, A.A.; Talebi, M.; Pourghassem Gargari, B. Modulatory Role of Exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as Probiotic Yeasts from Dairy Products in Human Colon Cancer Cells. J. Funct. Foods 2020, 64, 103675. [Google Scholar] [CrossRef]
- Chelliah, R.; Ramakrishnan, S.R.; Prabhu, P.R.; Antony, U. Evaluation of Antimicrobial Activity and Probiotic Properties of Wild-strain Pichia kudriavzevii Isolated from Frozen Idli Batter. Yeast 2016, 33, 385–401. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Ishaq, S.L.; Rodriguez-Herrera, M.V.; Garcia-Hernandez, C.A.; Kawas, J.R.; Nagaraja, T.G. Review: Are There Indigenous Saccharomyces in the Digestive Tract of Livestock Animal Species? Implications for Health, Nutrition and Productivity Traits. Animal 2020, 14, 22–30. [Google Scholar] [CrossRef]
- Rafique, K.; Rahman, A.; Mahmood, M. Effect of Dietary Supplementation of Different Levels of Saccharomyces Cerevisiae on Growth Performance and Hematology in Broiler. Indian J. Anim. Res. 2020, 54, 59–64. [Google Scholar] [CrossRef]
- Wang, D.S.; Zhang, R.Y.; Zhu, W.Y.; Mao, S.Y. Effects of Subacute Ruminal Acidosis Challenges on Fermentation and Biogenic Amines in the Rumen of Dairy Cows. Livest. Sci. 2013, 155, 262–272. [Google Scholar] [CrossRef]
- Russell, J.B. The Importance of pH in the Regulation of Ruminal Acetate to Propionate Ratio and Methane Production In Vitro. J. Dairy. Sci. 1998, 81, 3222–3230. [Google Scholar] [CrossRef]
- Hou, M.; Song, P.; Chen, Y.; Yang, X.; Chen, P.; Cao, A.; Ni, Y. Bile Acids Supplementation Improves Colonic Mucosal Barrier via Alteration of Bile Acids Metabolism and Gut Microbiota Composition in Goats with Subacute Ruminal Acidosis (SARA). Ecotoxicol. Environ. Saf. 2024, 287, 117313. [Google Scholar] [CrossRef]
- Silberberg, M.; Chaucheyras-Durand, F.; Commun, L.; Mialon, M.M.; Monteils, V.; Mosoni, P.; Morgavi, D.P.; Martin, C. Repeated Acidosis Challenges and Live Yeast Supplementation Shape Rumen Microbiota and Fermentations and Modulate Inflammatory Status in Sheep. Animal 2013, 7, 1910–1920. [Google Scholar] [CrossRef]
- Thrune, M.; Bach, A.; Ruiz-Moreno, M.; Stern, M.D.; Linn, J.G. Effects of Saccharomyces Cerevisiae on Ruminal pH and Microbial Fermentation in Dairy Cows. Livest. Sci. 2009, 124, 261–265. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Shaver, R.D.; Bertics, S.J. Effect of Dietary Supplementation with Live-Cell Yeast at Two Dosages on Lactation Performance, Ruminal Fermentation, and Total-Tract Nutrient Digestibility in Dairy Cows. J. Dairy. Sci. 2012, 95, 4017–4028. [Google Scholar] [CrossRef]
- Bayat, A.R.; Kairenius, P.; Stefański, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K.J. Effect of Camelina Oil or Live Yeasts (Saccharomyces Cerevisiae) on Ruminal Methane Production, Rumen Fermentation, and Milk Fatty Acid Composition in Lactating Cows Fed Grass Silage Diets. J. Dairy. Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, H.; Wen, H.; Wan, H.; Wu, H.; Chen, Y.; Li, S.; Zhang, L.; Sun, X.; Li, B.; et al. Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview. J. Fungi 2022, 8, 1191. [Google Scholar] [CrossRef]
- Bass, B.E.; Tsai, T.-C.; Yang, H.; Perez, V.; Holzgraefe, D.; Chewning, J.; Frank, J.W.; Maxwell, C.V. Influence of a Whole Yeast Product (Pichia guilliermondii) Fed throughout Gestation and Lactation on Performance and Immune Parameters of the Sow and Litter. J. Anim. Sci. 2019, 97, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shah, A.M.; Wang, Z.; Fan, X. Potential Protective Effects of Thiamine Supplementation on the Ruminal Epithelium Damage During Subacute Ruminal Acidosis. Anim. Sci. J. 2021, 92, e13579. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Zhou, A.; Yang, H.; Kang, K.; Ahmed, S.; Li, B.; Farooq, U.; Hou, F.; Wang, C.; et al. Effects of Yeast Culture on in Vitro Ruminal Fermentation and Microbial Community of High Concentrate Diet in Sheep. AMB Express 2024, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-Analysis of the Influence of Saccharomyces Cerevisiae Supplementation on Ruminal Parameters and Milk Production of Ruminants. J. Dairy. Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef]
- Amin, A.B.; Mao, S. Influence of Yeast on Rumen Fermentation, Growth Performance and Quality of Products in Ruminants: A Review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J.; Wang, J. Effects of Saccharomyces Cerevisiae Fermentation Products on Performance and Rumen Fermentation and Microbiota in Dairy Cows Fed a Diet Containing Low Quality Forage. J. Anim. Sci. Biotechnol. 2017, 8, 36. [Google Scholar] [CrossRef]
- Han, G.; Gao, X.; Duan, J.; Zhang, H.; Zheng, Y.; He, J.; Huo, N.; Pei, C.; Li, H.; Gu, S. Effects of Yeasts on Rumen Bacterial Flora, Abnormal Metabolites, and Blood Gas in Sheep with Induced Subacute Ruminal Acidosis. Anim. Feed. Sci. Technol. 2021, 280, 115042. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy Contributions of Volatile Fatty Acids from the Gastrointestinal Tract in Various Species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Lettat, A.; Nozière, P.; Silberberg, M.; Morgavi, D.P.; Berger, C.; Martin, C. Experimental Feed Induction of Ruminal Lactic, Propionic, or Butyric Acidosis in Sheep. J. Anim. Sci. 2010, 88, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, Z.; Guan, L.L.; Yoon, I.; Plaizier, J.C.; Khafipour, E. Postbiotics from Saccharomyces Cerevisiae Fermentation Stabilize Microbiota in Rumen Liquid Digesta during Grain-Based Subacute Ruminal Acidosis (SARA) in Lactating Dairy Cows. J. Anim. Sci. Biotechnol. 2024, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Liu, Y.; Kong, F.; Guo, C.; Dong, C.; Xu, X.; Li, S.; Wang, W. Saccharomyces Cerevisiae Culture’s Dose–Response Effects on Ruminal Nutrient Digestibility and Microbial Community: An In Vitro Study. Fermentation 2023, 9, 411. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Li, Q.S.; Wang, R.; Ma, Z.Y.; Zhang, X.M.; Jiao, J.Z.; Zhang, Z.G.; Ungerfeld, E.M.; Le Yi, K.; Zhang, B.Z.; Long, L.; et al. Dietary Selection of Metabolically Distinct Microorganisms Drives Hydrogen Metabolism in Ruminants. ISME J. 2022, 16, 2535–2546. [Google Scholar] [CrossRef]
- Van Zijderveld, S.M.; Gerrits, W.J.J.; Apajalahti, J.A.; Newbold, J.R.; Dijkstra, J.; Leng, R.A.; Perdok, H.B. Nitrate and Sulfate: Effective Alternative Hydrogen Sinks for Mitigation of Ruminal Methane Production in Sheep. J. Dairy. Sci. 2010, 93, 5856–5866. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal Methane Production: Associated Microorganisms and the Potential of Applying Hydrogen-Utilizing Bacteria for Mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Schären, M.; Drong, C.; Kiri, K.; Riede, S.; Gardener, M.; Meyer, U.; Hummel, J.; Urich, T.; Breves, G.; Dänicke, S. Differential Effects of Monensin and a Blend of Essential Oils on Rumen Microbiota Composition of Transition Dairy Cows. J. Dairy. Sci. 2017, 100, 2765–2783. [Google Scholar] [CrossRef]
- Neves, A.L.A.; Li, F.; Ghoshal, B.; McAllister, T.; Guan, L.L. Enhancing the Resolution of Rumen Microbial Classification from Metatranscriptomic Data Using Kraken and Mothur. Front. Microbiol. 2017, 8, 2445. [Google Scholar] [CrossRef] [PubMed]
- Waters, J.L.; Ley, R.E. The Human Gut Bacteria Christensenellaceae Are Widespread, Heritable, and Associated with Health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ge, F.; Yao, X.; Guo, X.; Bao, P.; Ma, X.; Wu, X.; Chu, M.; Yan, P.; Liang, C. Microbiome and Metabolomics Reveal the Effects of Different Feeding Systems on the Growth and Ruminal Development of Yaks. Front. Microbiol. 2021, 12, 682989. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M.S.; Cormican, P.; Keogh, K.; O’Connor, A.; O’Hara, E.; Palladino, R.A.; Kenny, D.A.; Waters, S.M. Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle. PLoS ONE 2015, 10, e0133234. [Google Scholar] [CrossRef]
Diet Ingredients % | Nutritional Composition | ||
---|---|---|---|
Alfalfa | 70 | ME 2 (MJ/kg) | 8.81 |
Corn | 14 | CP (%) | 10.81 |
Soybean meal | 13 | NDF (%) | 44.82 |
Calcium hydrophosphate | 1.42 | ADF (%) | 23.89 |
Limestone | 0.58 | Starch (%) | 23.16 |
NaCl | 0.5 | Calcium (%) | 0.81 |
Premix 1 | 0.5 | Phosphorus (%) | 0.47 |
Total | 100 |
Yeast Species | Number of Isolates | Strain ID |
---|---|---|
Candida rugosa | 19 | NJ (1, 2, 5–9, 12, 18, 28–32, 36, 45, 55–57) |
Pichia kudriavzevii | 12 | NJ (3, 4, 14, 21, 33–35, 41, 44, 50, 58, 59) |
Trichosporon asahii | 9 | NJ (11, 15–17, 22, 38, 43, 46, 52) |
Candida tropicalis | 6 | NJ (13, 24, 40, 47, 49, 51) |
Magnusiomyces capitatus | 4 | NJ (19, 20, 25, 53) |
Candida pararugosa | 4 | NJ (10, 26, 27, 54) |
Meyerozyma caribbica | 3 | NJ (37, 39, 48) |
Sporidiobolus pararoseus | 1 | NJ (42) |
Yarrowia lipolytica | 1 | NJ (23) |
Culture Time (h) | Groups | SEM | p-Values | |||||
---|---|---|---|---|---|---|---|---|
CON | NJ-5 | NJ-12 | NJ-14 | NJ-36 | NJ-46 | |||
pH | 5.58 b | 5.65 a | 5.61 ab | 5.57 b | 5.61 ab | 5.58 b | 0.05 | 0.040 |
Total VFA, mmol/L | 100.13 bc | 101.02 ab | 100.82 abc | 101.41 a | 100.64 abc | 100.06 c | 0.28 | 0.003 |
Acetate (%) | 52.61 c | 53.34 a | 53.23 ab | 52.72 bc | 52.73 bc | 52.84 abc | 0.16 | 0.003 |
Propionate (%) | 27.7 c | 28.37 b | 28.39 ab | 28.81 a | 28.45 ab | 28.69 ab | 0.13 | 0.000 |
Butynate (%) | 13.87 | 13.52 | 13.56 | 13.47 | 13.66 | 13.40 | 0.17 | 0.155 |
Isobutyrate (%) | 1.62 a | 1.40 b | 1.38 b | 1.42 b | 1.45 b | 1.45 b | 0.05 | 0.002 |
Valerate (%) | 2.63 a | 1.98 c | 1.97 c | 2.08 bc | 2.19 b | 2.04 bc | 0.06 | 0.000 |
Isovalerate (%) | 1.56 | 1.51 | 1.51 | 1.50 | 1.52 | 1.50 | 0.04 | 0.654 |
Acetate/Propionate ratio | 1.90 a | 1.88 ab | 1.88 ab | 1.83 c | 1.85 bc | 1.84 bc | 0.01 | 0.000 |
Culture Time (h) | Groups | SEM | p-Values | |||
---|---|---|---|---|---|---|
CON | LYC | MYC | HYC | |||
6 | 5.89 b | 5.92 ab | 6.07 a | 6.03 a | 0.06 | 0.038 |
12 | 5.85 b | 5.84 b | 5.85 b | 6.00 a | 0.03 | 0.001 |
24 | 5.69 b | 5.84 a | 5.82 a | 5.88 a | 0.05 | 0.040 |
Culture Time (h) | Groups | SEM | p-Values | |||
---|---|---|---|---|---|---|
CON | LYC | MYC | HYC | |||
Total VFA, mmol/L | 75.69 b | 76.00 ab | 76.09 ab | 76.36 a | 0.16 | 0.018 |
Acetate (%) | 53.53 c | 54.56 b | 55.09 b | 56.01 a | 0.16 | 0.000 |
Propionate (%) | 28.62 a | 27.41 b | 27.19 b | 26.70 c | 0.10 | 0.000 |
Butynate (%) | 14.46 a | 14.62 a | 14.43 a | 14.09 b | 0.10 | 0.005 |
Isobutyrate (%) | 1.12 | 1.08 | 1.09 | 1.04 | 0.04 | 0.214 |
Valerate (%) | 1.20 | 1.29 | 1.21 | 1.12 | 0.05 | 0.090 |
Isovalerate (%) | 1.05 | 1.03 | 0.99 | 1.03 | 0.04 | 0.543 |
Acetate/Propionate ratio | 1.97 | 1.99 | 1.92 | 1.91 | 0.01 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Yang, X.; Hou, M.; Chen, Y.; Liu, L.; Feng, Y.; Ni, Y. Ruminal Yeast Strain with Probiotic Potential: Isolation and Characterization and Its Effect on Rumen Fermentation In Vitro. Microorganisms 2025, 13, 1270. https://doi.org/10.3390/microorganisms13061270
Song P, Yang X, Hou M, Chen Y, Liu L, Feng Y, Ni Y. Ruminal Yeast Strain with Probiotic Potential: Isolation and Characterization and Its Effect on Rumen Fermentation In Vitro. Microorganisms. 2025; 13(6):1270. https://doi.org/10.3390/microorganisms13061270
Chicago/Turabian StyleSong, Pin, Xiaoran Yang, Manman Hou, Yue Chen, Liping Liu, Yuyan Feng, and Yingdong Ni. 2025. "Ruminal Yeast Strain with Probiotic Potential: Isolation and Characterization and Its Effect on Rumen Fermentation In Vitro" Microorganisms 13, no. 6: 1270. https://doi.org/10.3390/microorganisms13061270
APA StyleSong, P., Yang, X., Hou, M., Chen, Y., Liu, L., Feng, Y., & Ni, Y. (2025). Ruminal Yeast Strain with Probiotic Potential: Isolation and Characterization and Its Effect on Rumen Fermentation In Vitro. Microorganisms, 13(6), 1270. https://doi.org/10.3390/microorganisms13061270