Evaluating Soil Bacteria for the Development of New Biopreparations with Agricultural Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil and Harvest Residue Samples
2.2. Isolation and Identification of the Tested Strain
2.3. Determination of Optimal Growth Conditions
2.4. Screening of Enzymatic Activities
- —average diameter of clear/coloured zones around microbial colonies [mm].
- —average diameter of microbial colonies [mm].
2.5. Establishment of Post-Culture Filtrate
2.6. Hydrolytic Activities in Submerged Cultures
2.7. Total Reducing Sugars
- —absorbance of sample [-];
- —absorbance of control [-];
- a—standard curve slope index [-];
- V—volume of the liquid culture medium [mL], 50 mL;
- m—mass of the crop residue [g], 1 g.
2.8. Decomposition of Crop Residues in Horticultural Substrates
2.9. Antagonistic Properties Against Phytopathogens
2.10. Assessment of Phosphate Solubilization
2.11. Ability to Fix Atmospheric Nitrogen
2.12. Cytotoxicity Against Insect Cell Line—Cell Culture and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay
3. Results
3.1. Isolation and Identification of Soil Isolates
3.2. Biochemical Characterization of Soil Bacteria
3.2.1. Determination of Optimal Growth Conditions
3.2.2. Preliminary Assessment of the Enzymatic Activity of Soil Bacteria in Plate Assays
3.2.3. Extracellular Enzyme Activities of Isolated Bacteria Strains in Submerged Cultures
3.2.4. Total Sugar Produced by Soil Bacteria in Batch Cultures
3.3. Decomposition of Crop Residues
3.4. Antagonistic Properties Against Phytopathogens
3.5. Phosphate Solubilization and Ability to Fix Atmospheric Nitrogen
3.6. Cytotoxic Activity of Cell Culture Supernatants (Metabolites) of Soil Bacteria Against Insect Cell Line Sf-9
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TSA | Tryptic Soy Agar |
MALDI-TOF MS | Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry |
LB | Lysogeny Broth |
NA | Nutrient Broth Agar |
EAI | Enzymatic Activity Index |
TRS | Total reducing sugars |
TSB | Tryptic Soy Broth |
OGT | optimal growth temperature |
CMC | carboxymethyl cellulose |
SD | standard deviation |
PSMs | phosphate-solubilizing microorganisms |
References
- European Commission. European Commission COM(2019)640. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vl4cnhyp1ort (accessed on 14 July 2024).
- European Commission. European Commission COM(2020)380. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vl8tqb8jwtyy (accessed on 14 July 2024).
- European Commission. European Commission COM(2020)381. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vl8tofp7dtuc (accessed on 14 July 2024).
- Narwade, J.D.; Odaneth, A.A.; Lele, S.S. Solid-state fermentation in an earthen vessel: Trichoderma viride spore-based biopesticide production using maize cobs. Fungal Biol. 2023, 127, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Rowińska, P.; Gutarowska, B.; Janas, R.; Szulc, J. Biopreparations for the decomposition of crop residues. Microb. Biotechnol. 2024, 17, e14534. [Google Scholar] [CrossRef] [PubMed]
- Pylak, M.; Oszust, K.; Frąc, M. Review report on the role of bioproducts, biopreparations, biostimulants, and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 2019, 18, 597–616. [Google Scholar] [CrossRef]
- Toader, G.; Chiurciu, V.; Filip, V.; Burnichi, F.; Toader, E.V.; Enea, C.; Trifan, D.; Rîșnoveanu, L. Bacterial biopreparations-a ‘green revolution’ for agriculture. Res. J. Agric. Sci. 2020, 52, 198–205. [Google Scholar]
- Marwal, A.; Srivastava, A.K.; Gaur, R.K. Plant viruses as biopesticides. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–194. [Google Scholar] [CrossRef]
- Steglińska, A.; Bekhter, A.; Wawrzyniak, P.; Kunicka-Styczyńska, A.; Jastrząbek, K.; Fidler, M.; Śmigielski, K.; Gutarowska, B. Antimicrobial activities of plant extracts against Solanum tuberosum L. phytopathogens. Molecules 2022, 27, 1579. [Google Scholar] [CrossRef]
- Chakraborty, N.; Mitra, R.; Pal, S.; Ganguly, R.; Acharya, K.; Minkina, T.; Sarkar, A.; Keswani, C. Biopesticide consumption in India: Insights into the current trends. Agriculture 2023, 13, 557. [Google Scholar] [CrossRef]
- Divya, K.; Singh, R.; Thakur, I. Response of biofertilizers and foliar application of zinc on yield and economics of lentil (Lens culinaris, Fabaceae). Int. J. Environ. Clim. Change 2023, 13, 1040–1045. [Google Scholar] [CrossRef]
- Upadhyay, H.; Banik, D.; Aslam, M.; Singh, J. Beneficial microbiomes for sustainable agriculture: An ecofriendly approach. In Current Trends in Microbial Biotechnology for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 227–244. [Google Scholar] [CrossRef]
- Vishal, R.S.; Singh, A.P.; Pradhan, A. Influence of biofertilizers and nitrogen on yield and economics of barley (Hordeum vulgare L.). Int. J. Plant Soil Sci. 2023, 35, 196–202. [Google Scholar] [CrossRef]
- Anli, M.; Ait-El-Mokhtar, M.; Akensous, F.-Z.; Boutasknit, A.; Ben-Laouane, R.; Fakhech, A.; Ouhaddou, R.; Raho, O.; Meddich, A. Biofertilizers in date palm cultivation. In Date Palm; CABI: Wallingford, UK, 2023; pp. 266–296. [Google Scholar] [CrossRef]
- Bairwa, P.; Kumar, N.; Devra, V.; Abd-Elsalam, K.A. Nano-biofertilizers synthesis and applications in agroecosystems. Agrochemicals 2023, 2, 118–134. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, A.; Singh, R.; Pandey, K.D. Endophytic bacteria: A new source of bioactive compounds. 3 Biotech 2017, 7, 315. [Google Scholar] [CrossRef]
- Kumar, S.; Diksha; Sindhu, S.S.; Kumar, R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr. Res. Microbiol. 2022, 3, 100094. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, A.; De Luca, L.; Graziani, G.; Cepparulo, M.; El-Nakhel, C.; Giordano, M.; Rouphael, Y.; Ritieni, A.; Romano, R.; Di Vaio, C. Biostimulants application on Olea europaea L. in Mediterranean conditions increases the production and bioactive compounds of drupes and oil. Agriculture 2022, 12, 2173. [Google Scholar] [CrossRef]
- Halshoy, H.; Mahmood, A.; Tofiq, G. Effect of plant biostimulants on growth, yield, and some mineral composition of broccoli plants (Brassica oleracea var. italica). Tikrit J. Agric. Sci. 2023, 23, 130–140. [Google Scholar] [CrossRef]
- Malécange, M.; Sergheraert, R.; Teulat, B.; Mounier, E.; Lothier, J.; Sakr, S. Biostimulant properties of protein hydrolysates: Recent advances and future challenges. Int. J. Mol. Sci. 2023, 24, 9714. [Google Scholar] [CrossRef]
- Pérez-Aguilar, H.; Lacruz-Asaro, M.; Arán-Ais, F. Evaluation of biostimulants based on recovered protein hydrolysates from animal by-products as plant growth enhancers. J. Plant Sci. Phytopathol. 2023, 7, 42–47. [Google Scholar] [CrossRef]
- Madhavan, T.; Neethu, K.G.; Patel, T.K.; Vyas, T.K.; Ganesh, S. Exploring microbes for their cellulolytic and lignolytic enzyme activity for manure preparation. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3808–3816. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental factors affecting the mineralization of crop residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Maharjan, K.K.; Noppradit, P.; Techato, K. Suitability of vermicomposting for different varieties of organic waste: A systematic literature review (2012–2021). Org. Agric. 2022, 12, 581–602. [Google Scholar] [CrossRef]
- Pržulj, N.; Tunguz, V. Significance of harvest residues in sustainable management of arable land I. Decomposition of harvest residues. Arch. Tech. Sci. 2022, 1, 61–70. [Google Scholar] [CrossRef]
- Sánchez, G.; del Pino, A.; Hernández, J. Decomposition of Eucalyptus sp. and Pinus taeda harvest residues under controlled temperature and moisture conditions. Open J. For. 2018, 8, 87–104. [Google Scholar] [CrossRef]
- Hellequin, E.; Monard, C.; Quaiser, A.; Henriot, M.; Klarzynski, O.; Binet, F. Specific recruitment of soil bacteria and fungi decomposers following a biostimulant application increased crop residues mineralization. PLoS ONE 2018, 13, e0209089. [Google Scholar] [CrossRef] [PubMed]
- Setlow, P.; Christie, G. New thoughts on an old topic: Secrets of bacterial spore resistance slowly being revealed. Microbiol. Mol. Biol. Rev. 2023, 87, e0008022. [Google Scholar] [CrossRef] [PubMed]
- Szulc, J.; Okrasa, M.; Nowak, A.; Ryngajłło, M.; Nizioł, J.; Kuźniar, A.; Ruman, T.; Gutarowska, B. Uncontrolled Post-Industrial Land-Source of Metals, Potential Toxic Compounds, Dust, and Pathogens in Environment-A Case Study. Molecules 2024, 29, 1496. [Google Scholar] [CrossRef] [PubMed]
- Liszkowska, W.; Motyl, I.; Pielech-Przybylska, K.; Szulc, J.; Sypka, M.; Dziugan, P.; Berlowska, J. Plant biomass as a source of low-temperature yeasts. BioResources 2023, 18, 599–612. [Google Scholar] [CrossRef]
- Krakova, L.; Soltys, K.; Otlewska, A.; Pietrzak, K.; Purktrova, S.; Savicka, A.; Puskarova, A.; Buckova, M.; Szemes, T.; Budis, J.; et al. Comparison of methods for identification of microbial communities in book collections: Culture-dependent (sequencing and MALDI-TOF MS) and culture-independent (Illumina MiSeq). Int. Biodeterior. Biodegrad. 2017, 120, 32–38. [Google Scholar] [CrossRef]
- Gerlicz, W.; Sypka, M.; Jodłowska, I.; Białkowska, A.M. Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste. Molecules 2024, 29, 3380. [Google Scholar] [CrossRef]
- Steglińska, A.; Kołtuniak, A.; Motyl, I.; Berłowska, J.; Czyżowska, A.; Cieciura-Włoch, W.; Okrasa, M.; Kręgiel, D.; Gutarowska, B. Lactic acid bacteria as biocontrol agents against potato (Solanum tuberosum L.) pathogens. Appl. Sci. 2022, 12, 7763. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiology 1984, 17, 362–370. [Google Scholar]
- Pande, A.; Pandey, P.; Mehra, S.; Singh, M.; Kaushik, S. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J. Genet. Eng. Biotechnol. 2017, 15, 379–391. [Google Scholar] [CrossRef]
- Steglińska, A.; Nowak, A.; Janas, R.; Grzesik, M.; Śmigielski, K.; Kręgiel, D.; Gutarowska, B. Chitosan as an antimicrobial, anti-insect, and growth-promoting agent for potato (Solanum tuberosum L.) plants. Molecules 2024, 29, 3313. [Google Scholar] [CrossRef]
- Szulc, J.; Okrasa, M.; Majchrzycka, K.; Sulyok, M.; Nowak, A.; Szponar, B.; Górczyńska, A.; Ryngajłło, M.; Gutarowska, B. Microbiological and toxicological hazard assessment in a waste sorting plant and proper respiratory protection. J. Environ. Manag. 2022, 303, 114257. [Google Scholar] [CrossRef] [PubMed]
- Palekar, K.; Khandeparker, R.D.S. Saccharification of lignocellulosic biomass using an enzymatic cocktail from marine bacteria. Biofuels 2024, 16, 155–166. [Google Scholar] [CrossRef]
- Huang, Z.; Ni, G.; Zhao, X.; Wang, F.; Qu, M. Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws. J. Microbiol. Biotechnol. 2021, 31, 1446–1454. [Google Scholar] [CrossRef]
- Woźniak, M.; Ratajczak, I.; Wojcieszak, D.; Waśkiewicz, A.; Szentner, K.; Przybył, J.; Borysiak, S.; Goliński, P. Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications. Materials 2021, 14, 1527. [Google Scholar] [CrossRef]
- Devos, R.; Bender, L.; Lopes, S.; Cavanhi, V.; Colvero, G.; Rempel, A.; Harakava, R.; Alves, S.; Colla, L. Multienzyme production by Bacillus velezensis strains isolated from fruit residues in submerged fermentation using triticale and sugarcane bagasse in the cultivation media. Process Biochem. 2023, 141, 90–101. [Google Scholar] [CrossRef]
- Pronyk, C.; Mazza, G. Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresour. Technol. 2012, 106, 117–124. [Google Scholar] [CrossRef] [PubMed]
- FDA. 2025. Available online: https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory (accessed on 30 May 2025).
- EFSA. 2025. Available online: https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps (accessed on 30 May 2025).
- European Parliament and Council of the European Union. Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off. J. Eur. Communities 2000, L262, 21–45. [Google Scholar]
- Carroll, L.M.; Cheng, R.A.; Wiedmann, M.; Kovac, J. Keeping up with the Bacillus cereus group: Taxonomy through the genomics era and beyond. Crit. Rev. Food Sci. Nutr. 2022, 62, 7677–7702. [Google Scholar] [CrossRef]
- Manzulli, V.; Rondinone, V.; Buchicchio, A.; Serrecchia, L.; Cipolletta, D.; Fasanella, A.; Parisi, A.; Difato, L.; Iatarola, M.; Aceti, A.; et al. Discrimination of Bacillus cereus Group Members by MALDI-TOF Mass Spectrometry. Microorganisms 2021, 9, 1202. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7, 1–35. [Google Scholar] [CrossRef]
- Wielinga, P.R.; Hamidjaja, R.A.; Agren, J.; Knutsson, R.; Segerman, B.; Fricker, M.; Ehling-Schulz, M.; de Groot, A.; Burton, J.; Brooks, T.; et al. A multiplex real-time PCR for identifying and differentiating B. anthracis virulent types. Int. J. Food Microbiol. 2011, 145 (Suppl. S1), S137–S144. [Google Scholar] [CrossRef] [PubMed]
- Muigg, V.; Cuénod, A.; Purushothaman, S.; Siegemund, M.; Wittwer, M.; Pflüger, V.; Schmidt, K.M.; Weisser, M.; Ritz, N.; Widmer, A.; et al. Diagnostic challenges within the Bacillus cereus-group: Finding the beast without teeth. New Microbes New Infect. 2022, 49–50, 101040. [Google Scholar] [CrossRef] [PubMed]
- Jha, Y.; Yadav, K.A.; Mohamed, H.I. Plant growth-promoting bacteria and exogenous phytohormones alleviate the adverse effects of drought stress in pigeon pea plants. Plant Soil 2023, 505, 163–183. [Google Scholar] [CrossRef]
- Jha, Y.; Mohamed, H.I. Enhancement of disease resistance, growth potential, and biochemical markers in maize plants by inoculation with plant growth-promoting bacteria under biotic stress. J. Plant Pathol. 2023, 105, 729–748. [Google Scholar] [CrossRef]
- Mondal, S.; Santra, S.; Rakshit, S.; Kumar, S.; Hossain, M.; Chandra Mondal, K. Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum. Bioresour. Technol. 2022, 343, 126093. [Google Scholar] [CrossRef]
- Jeckelmann, J.-M.; Erni, B. Transporters of glucose and other carbohydrates in bacteria. Eur. J. Physiol. 2020, 472, 1129–1153. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, H.; Rahman, M.S.; Chen, X.; Zhang, J.; Liu, Y.; Qin, W. Biological pretreatment of corn stover for enhancing enzymatic hydrolysis using Bacillus sp. P3. Bioresour. Bioprocess. 2021, 8, 92. [Google Scholar] [CrossRef]
- Greff, B.; Szigeti, J.; Nagy, Á.; Lakatos, E.; Varga, L. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. J. Environ. Manag. 2022, 302, 114088. [Google Scholar] [CrossRef]
- Avdeeva, L.V.; Kharkhota, M.A.; Kharkhota, A.V. The decomposition of various types of crop residues by strains Bacillus subtilis IMB B-7516 and B. licheniformis IMB B-7515. Mikrobiol. Z. 2016, 78, 52–60. [Google Scholar] [CrossRef]
- Chhetri, R.B.; Silwal, P.; Jyapu, P.; Maharjan, Y.; Lamsal, T.; Basnet, A. Biodegradation of organic waste using Bacillus species isolated from soil. Int. J. Appl. Sci. Biotechnol. 2022, 10, 104–111. [Google Scholar] [CrossRef]
- Bhodiwal, S.; Barupal, T. Phosphate solubilizing microbes: An incredible role for plant supplements. MOJ Ecol. Environ. Sci. 2022, 7, 170–172. [Google Scholar] [CrossRef]
- Pang, F.; Li, Q.; Solanki, M.K.; Wang, Z.; Xing, Y.-X.; Dong, D.-F. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front. Microbiol. 2024, 15, 1383813. [Google Scholar] [CrossRef]
- Bedine, M.A.B.; Iacomi, B.; Nguemezi Tchameni, S.; Sameza, M.L.; Boyom Fekam, F. Harnessing the phosphate-solubilizing ability of Trichoderma strains to improve plant growth, phosphorus uptake, and photosynthetic pigment contents in common bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 2022, 45, 102510. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Oliveira, J.A.d.S.; Polonio, J.C.; Pamphile, J.A.; Azevedo, J.L. Recombinants of Alternaria alternata endophytes enhance inorganic phosphate solubilization and plant growth hormone production. Biocatal. Agric. Biotechnol. 2023, 51, 102784. [Google Scholar] [CrossRef]
- Cozzolino, M.E.; Córdoba, M.E.; Ramos, P.D.; Ferrari, S.G.; Silva, P.G. Phosphate solubilization by Bacillus isolates and its influence in a cyanobacterial co-culture. Malays. J. Microbiol. 2024, 20, 289–295. [Google Scholar] [CrossRef]
- Mosela, M.; Andrade, G.; Massucato, L.R.; Almeida, S.R.d.A.; Nogueira, A.F.; Lima Filho, R.B.d.; Zeffa, D.M.; Teixeira, G.M.; Shimizu, G.D.; Gonçalves, L.S.A. Bacillus velezenis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization, and growth promotion in maize and soybean crops. Sci. Rep. 2022, 12, 15284. [Google Scholar] [CrossRef]
- Zheng, B.X.; Ibrahim, M.; Zhang, D.P.; Bi, Q.F.; Li, H.Z.; Zhou, G.W.; Ding, K.; Peñuelas, J.; Zhu, Y.G.; Yang, X.R. Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 2018, 8, 47. [Google Scholar] [CrossRef]
- Wyciszkiewicz, M.; Saeid, A.; Chojnacka, K. In situ solubilization of phosphorus-bearing raw materials by Bacillus megaterium. Eng. Life Sci. 2017, 17, 749–758. [Google Scholar] [CrossRef]
- Wyciszkiewicz, M.; Sojka, M.; Saeid, A. Production of phosphorus biofertilizer based on the renewable materials in large laboratory scale. Open Chem. 2019, 17, 893–901. [Google Scholar] [CrossRef]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus solubilization by Bacillus species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Li, B.; Shan, C.; Ibrahim, M.; Jabeen, A.; Xie, G.; Sun, G. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr. J. Microbiol. Res. 2012, 6, 4567–4573. [Google Scholar] [CrossRef]
- Aberathna, A.A.A.U.; Satharasinghe, D.A.; Jayasooriya, A.P.; Jinadasa, R.N.; Manopriya, S.; Jayaweera, B.P.A.; Fernando, C.A.N.; Weerathilake, W.A.D.V.; Prathapasinghe, G.A.; Liyanage, J.A.; et al. Increasing the bioavailability of phosphate by using microorganisms. Int. J. Agron. 2022, 2022, 4305501. [Google Scholar] [CrossRef]
- Al Saffar, F.A. Effect of temperature on the ability of Pseudomonas stutzeri bacteria isolated from different sources to fix nitrogen. Res. Appl. Sci. Biotechnol. 2022, 1, 254–258. [Google Scholar] [CrossRef]
- Haskett, T.L.; Poole, P.S. A Simple Assay for Quantification of Plant-Associative Bacterial Nitrogen Fixation; Cold Spring Harbor Laboratory: Laurel Hollow, NY, USA, 2021. [Google Scholar] [CrossRef]
- Martinez-Vaz, B.M.; Denny, R.; Young, N.D.; Sadowsky, M.J. An alternative approach to “Identification of Unknowns”: Designing a protocol to verify the identities of nitrogen-fixing bacteria. J. Microbiol. Biol. Educ. 2015, 16, 247–253. [Google Scholar] [CrossRef]
- Javid, H.; ul Qadir, R.; Rashid, S.; Rashid, K.; Magray, J.A.; Islam, T.; Wani, B.A.; Gulzar, S.; Nawchoo, I.A. Biological nitrogen fixation. In Advances in Plant Nitrogen Metabolism; CRC Press: Boca Raton, FL, USA, 2022; pp. 129–141. [Google Scholar]
- Jain, S.; Varma, A.; Choudhary, D.K. Perspectives on nitrogen-fixing Bacillus species. In Advances in Plant Nitrogen Metabolism; CRC Press: Boca Raton, FL, USA, 2021; pp. 359–369. [Google Scholar] [CrossRef]
- Yousuf, J.; Thajudeen, J.; Rahiman, M.; Krishnankutty, S.P.; Alikunj, A.A.; Abdulla, M.H. Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions. J. Basic Microbiol. 2017, 57, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Cuong, P.V.; Hoa, N.P. Effect of culture conditions on nitrogen-fixing activity of bacteria isolated from cassava cultivated soils of Vietnam. Acad. J. Biol. 2021, 43, 27–35. [Google Scholar] [CrossRef]
- Weid, I.; Frois, G.; Duarte, J.; van Elsas, J.D.; Seldin, L. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int. J. Syst. Evol. Microbiol. 2002, 52, 2147–2153. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Liu, Z.; Zhao, D.; Liu, X.; Zhang, B.; Xie, J.; Hong, Y.; Li, P.; Chen, S.; et al. Correction: A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet. 2013, 9, e1003865. [Google Scholar] [CrossRef]
- Hazarika, D.J.; Goswami, G.; Gautom, T.; Parveen, A.; Das, P.; Barooah, M.; Boro, R.C. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol. 2019, 19, 71. [Google Scholar] [CrossRef]
- Jinal, N.H.; Amaresan, N. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Arch. Microbiol. 2020, 202, 1785–1794. [Google Scholar] [CrossRef]
- Kiesewalter, H.T.; Lozano-Andrade, C.N.; Wibowo, M.; Strube, M.L.; Maróti, G.; Snyder, D.; Jørgensen, T.S.; Larsen, T.O.; Cooper, V.S.; Weber, T.; et al. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems 2021, 6, e00770-20. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.S.M.; Moustafa, S.A.; Kamil, Z.; Rizk, M.; Saleh, M.; Moustafa, S. Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol. Glob. J. Mol. Sci. 2007, 2, 57–66. [Google Scholar]
- Slimene, I.B.; Tabbene, O.; Gharbi, D.; Mnasri, B.; Schmitter, J.M.; Urdaci, M.-C.; Limam, F. Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Appl. Biochem. Biotechnol. 2015, 175, 3494–3506. [Google Scholar] [CrossRef]
- Ling, L.; Cheng, W.; Jiang, K.; Jiao, Z.; Luo, H.; Yang, C.; Pang, M.; Lu, L. The antifungal activity of a serine protease and the enzyme production characteristics of Bacillus licheniformis TG116. Arch. Microbiol. 2022, 204, 601. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, L.; Zhang, W.; Chi, F.; Hao, X.; Bian, J.; Li, Y. Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of maize stalk rot caused by Fusarium graminearum. Egypt. J. Biol. Pest Control 2020, 30, 9. [Google Scholar] [CrossRef]
- Kim, J.-A.; Song, J.-S.; Kim, P.I.; Kim, D.-H.; Kim, Y. Bacillus velezensis TSA32-1 as a promising agent for biocontrol of plant pathogenic fungi. J. Fungi 2022, 8, 1053. [Google Scholar] [CrossRef]
- Agha, S.I.; Jahan, N.; Azeem, S.; Parveen, S.; Tabassum, B.; Raheem, A.; Ullah, H.; Khan, A. Characterization of broad-spectrum biocontrol efficacy of Bacillus velezenis against Fusarium oxysporum in Triticum aestivum L. Not. Bot. Horti Agrobot. 2022, 50, 12590. [Google Scholar] [CrossRef]
- Yu, C.; Chen, H.; Zhu, L.; Song, Y.; Jiang, Q.; Zhang, Y.; Ali, Q.; Gu, Q.; Gao, X.; Borriss, R.; et al. Profiling of Antimicrobial Metabolites Synthesized by the Endophytic and Genetically Amenable Biocontrol Strain Bacillus velezensis DMW1. Microbiol. Spectr. 2023, 11, e00038-23. [Google Scholar] [CrossRef]
- Diabankana, R.G.C.; Shulga, E.U.; Validov, S.Z.; Afordoanyi, D.M. Genetic characteristics and enzymatic activities of Bacillus velezenis KS04AU as a stable biocontrol agent against phytopathogens. Int. J. Plant Biol. 2022, 13, 201–222. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Radin Shafierul, R.Y.; Mohamad Malik Al-adil, B.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef]
- Xu, S.J.; Hong, S.J.; Choi, W.; Kim, B.S. Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi. Plant Pathol. J. 2014, 30, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Keleş Keyfoğlu, E.N.; Tufan Dülger, A.F.; Yörük, E. Investigation of the antifungal activity of Bacillus megaterium against Fusarium species. YYU J. Agric. Sci. 2023, 33, 183–191. [Google Scholar] [CrossRef]
- Xie, Y.; Qiuju, P.; Ji, Y.; Xie, A.; Yang, L.; Mu, S.; Li, Z.; He, T.; Yang, X.; Zhao, J.; et al. Isolation and Identification of Antibacterial Bioactive Compounds from Bacillus megaterium L2. Front. Microbiol. 2021, 12, 645484. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, P.B.; Bjørnvad, M.E.; Rasmussen, M.D.; Petersen, J.N. Cytotoxic potential of industrial strains of Bacillus sp. Regul. Toxicol. Pharmacol. 2002, 36, 155–161. [Google Scholar] [CrossRef]
- Madslien, E.H.; Rønning, H.T.; Lindbäck, T.; Hassel, B.; Andersson, M.A.; Granum, P.E. Lichenysin is produced by most Bacillus licheniformis strains. J. Appl. Microbiol. 2013, 115, 1068–1080. [Google Scholar] [CrossRef]
- Yeak, K.Y.C.; Perko, M.; Staring, G.; Fernandez-Ciruelos, B.M.; Wells, J.M.; Abee, T.; Wells-Bennik, M.H.J. Lichenysin Production by Bacillus licheniformis Food Isolates and Toxicity to Human Cells. Front. Microbiol. 2022, 13, 831033. [Google Scholar] [CrossRef]
- Iqbal, S.; Begum, F.; Rabaan, A.A.; Aljeldah, M.; Al Shammari, B.R.; Alawfi, A.; Alshengeti, A.; Sulaiman, T.; Khan, A. Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis group: A comprehensive review. Molecules 2023, 28, 927. [Google Scholar] [CrossRef]
- Mikkola, R.; Kolari, M.; Andersson, M.A.; Helin, J.; Salkinoja-Salonen, M. Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis. Eur. J. Biochem. 2000, 267, 4068–4074. [Google Scholar] [CrossRef]
- Galm, U.; Hager, M.H.; Van Lanen, S.G.; Ju, J.; Thorson, J.S.; Shen, B. Antitumor antibiotics: Bleomycin, enediynes, and mitomycin. Chem. Rev. 2005, 105, 739–758. [Google Scholar] [CrossRef]
- Nieminen, T.; Rintaluoma, N.; Andersson, M.; Taimisto, A.M.; Ali-Vehmas, T.; Seppälä, A.; Priha, O.; Salkinoja-Salonen, M. Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet. Microbiol. 2007, 124, 329–339. [Google Scholar] [CrossRef]
No. | WK No. | Identification (Percentage Compliance, %) |
---|---|---|
1 | WK-1 | Bacillus subtilis (99.8) A |
2 | WK-2 | Bacillus megaterium (99.5) A/B. megaterium/coagulans (92.0) M |
3 | WK-3 | Bacillus sp. (82.0) M |
4 | WK-4 | Bacillus circulans (87.0) A |
5 | WK-5 | Bacillus megaterium/coagulans (84.0) M/Priestia megaterium (99.9) S |
6 | WK-6 | Solibacillus silvestris (48.6) M |
7 | WK-7 | Bacillus lentus (99.8) A/B. megaterium/coagulans (88.0) M |
8 | WK-8 | Bacillus mycoides (83.9) A/B. cereus grup M (85.5) |
9 | WK-9 | Bacillus circulans (92.4) A/Paenibacillus sp. (50.0) M/Paenibacillus amylolyticus (99.9) S |
10 | WK-10 | Bacillus megaterium (99.8) A/B. megaterium/coagulans (92.0) M |
11 | WK-11 | Bacillus sp. (82.5) M |
12 | WK-12 | Bacillus licheniformis (98.8) A/B. licheniformis (80.4) M |
13 | WK-13 | Bacillus pumilus (99.9) A/Bacillus pumilus (83.1) M |
14 | WK-14 | Bacillus velezensis (99.9) S |
15 | WK-15 | Bacillus subtilis (99.9) S |
16 | WK-16 | Bacillus cereus (99.6) A |
17 | WK-17 | Bacillus megaterium (99.9) A/Bacillus megaterium/coagulans/amyloliquefaciens (92.0) M |
18 | WK-18 | Bacillus lentus (99.9) A/Bacillus megaterium/coagulans/amyloliquefaciens (88.0) M |
19 | WK-19 | Bacillus mycoides (63.7) A |
20 | WK-20 | Bacillus licheniformis (99.9) S |
21 | WK-21 | Bacillus cereus (94.3) A |
22 | WK-22 | Lysinibacillus fusiformis (55.1) M |
23 | WK-23 | Bacillus megaterium (98.6) A |
24 | WK-24 | Bacillus cereus (78.9) A/Bacillus wiehenstephanensis (86.4) M |
Bacteria | Fixation of Atmospheric Nitrogen | Phosphorus Liquefaction |
---|---|---|
Bacillus velezensis | + | + |
Bacillus subtilis | + | + |
Paenibacillus amylolyticus | + | + |
Priestia megaterium | + | + |
Bacillus licheniformis | + | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowińska, P.; Sypka, M.; Białkowska, A.M.; Stryjek, M.; Nowak, A.; Janas, R.; Gutarowska, B.; Szulc, J. Evaluating Soil Bacteria for the Development of New Biopreparations with Agricultural Applications. Appl. Sci. 2025, 15, 6400. https://doi.org/10.3390/app15126400
Rowińska P, Sypka M, Białkowska AM, Stryjek M, Nowak A, Janas R, Gutarowska B, Szulc J. Evaluating Soil Bacteria for the Development of New Biopreparations with Agricultural Applications. Applied Sciences. 2025; 15(12):6400. https://doi.org/10.3390/app15126400
Chicago/Turabian StyleRowińska, Patrycja, Marcin Sypka, Aneta M. Białkowska, Maria Stryjek, Adriana Nowak, Regina Janas, Beata Gutarowska, and Justyna Szulc. 2025. "Evaluating Soil Bacteria for the Development of New Biopreparations with Agricultural Applications" Applied Sciences 15, no. 12: 6400. https://doi.org/10.3390/app15126400
APA StyleRowińska, P., Sypka, M., Białkowska, A. M., Stryjek, M., Nowak, A., Janas, R., Gutarowska, B., & Szulc, J. (2025). Evaluating Soil Bacteria for the Development of New Biopreparations with Agricultural Applications. Applied Sciences, 15(12), 6400. https://doi.org/10.3390/app15126400