Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267)

Search Parameters:
Keywords = simulated human digestion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1266 KiB  
Systematic Review
A Systematic Review on Contamination of Marine Species by Chromium and Zinc: Effects on Animal Health and Risk to Consumer Health
by Alexandre Mendes Ramos-Filho, Paloma de Almeida Rodrigues, Adriano Teixeira de Oliveira and Carlos Adam Conte-Junior
J. Xenobiot. 2025, 15(4), 121; https://doi.org/10.3390/jox15040121 - 1 Aug 2025
Abstract
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of [...] Read more.
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of chromium and zinc in aquatic biota and seafood consumers. Based on the PRISMA protocol, 67 articles were selected for this systematic review. The main results point to a wide distribution of these elements, which have familiar emission sources in the aquatic environment, especially in highly industrialized regions. Significant concentrations of both have been reported in different fish species, which sometimes represent a non-carcinogenic risk to consumer health and a carcinogenic risk related to Cr exposure. New studies should be encouraged to fill gaps, such as the characterization of the toxicity of these essential elements through fish consumption, determination of limit concentrations updated by international regulatory institutions, especially for zinc, studies on the influence of abiotic factors on the toxicity and bioavailability of elements in the environment, and those that evaluate the bioaccessibility of these elements in a simulated digestion system when in high concentrations. Full article
Show Figures

Figure 1

34 pages, 4518 KiB  
Article
Spent Hop (Humulus lupulus L.) Extract and Its Flaxseed Polysaccharide-Based Encapsulates Attenuate Inflammatory Bowel Diseases Through the Nuclear Factor-Kappa B, Extracellular Signal-Regulated Kinase, and Protein Kinase B Signalling Pathways
by Miłosz Caban, Katarzyna Owczarek, Justyna Rosicka-Kaczmarek, Karolina Miśkiewicz, Joanna Oracz, Wojciech Pawłowski, Karolina Niewinna and Urszula Lewandowska
Cells 2025, 14(14), 1099; https://doi.org/10.3390/cells14141099 - 17 Jul 2025
Viewed by 428
Abstract
The treatment of inflammatory bowel diseases (IBDs), particularly ulcerative colitis and Crohn’s disease, remains a challenge. As the available therapeutic options have limited efficacy and various side effect, there is a need to identify new inflammatory modulators that can influence IBD. Natural polyphenols [...] Read more.
The treatment of inflammatory bowel diseases (IBDs), particularly ulcerative colitis and Crohn’s disease, remains a challenge. As the available therapeutic options have limited efficacy and various side effect, there is a need to identify new inflammatory modulators that can influence IBD. Natural polyphenols and polyphenol-rich extracts have been found to have preventive and therapeutic potential, including various anti-inflammatory effects. In this study, the inhibition of the formation of mediators associated with intestinal inflammation, remodelling, and angiogenesis by the spent hop extract (SHE), a polyphenol-rich extract from Humulus lupulus L., and its flaxseed polysaccharide-based encapsulates was examined using tumour necrosis factor alpha (TNF-α)-stimulated human small intestinal epithelial (HIEC-6) and large intestinal epithelial (CCD841CoN) cells. Also, we assessed the activity of the tested agents after in the vitro-simulated gastrointestinal digestion process. SHE strongly inhibited the expression of pro-inflammatory cytokines, mainly IL-1β and TNF-α, as well as the expression and activity of type IV collagenases (MMP-2 and MMP-9); these effects resulted from the suppression of NF-κB, ERK and Akt signalling pathways. We also proved the protective effect of encapsulation process against the reduction in the bioaccessibility of SHE, observed under the influence of digestion process. Our results provide initial evidence on the potential utility of SHE and its encapsulates in IBD. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives Against Human Disease)
Show Figures

Graphical abstract

12 pages, 1861 KiB  
Article
Metal–Phenolic Network-Directed Coating of Lactobacillus plantarum: A Promising Strategy to Increase Stability
by Haoxuan Zhang, Huange Zhang and Hao Zhong
Foods 2025, 14(13), 2277; https://doi.org/10.3390/foods14132277 - 26 Jun 2025
Viewed by 441
Abstract
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of [...] Read more.
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of metal–phenol networks (MPNs) fabricated via three polyphenols—tannic acid (TA), tea polyphenol (TP), and anthocyanin (ACN)—combined with Fe(III) coatings in protecting Lactobacillus plantarum during simulated digestion and storage. The results demonstrated that MPNs formed a protective film on the bacterial surface. While TA and ACN inhibited the growth of Lactobacillus plantarum YJ7, TP stimulated proliferation. Within the MPNs system, only Fe(III)-TA exhibited growth-inhibitory effects. Notably, ACN displayed the highest proliferation rate during the initial 2 h, followed by TP between 3 and 4 h. All MPN-coated groups maintained high bacterial viability at 25 °C and −20 °C, with TP-coated bacteria showing the highest viable cell count, followed by TA and ACN. In vitro digestion experiments further revealed that the Fe(III)-ACN group exhibited the strongest resistance to artificial gastric juice. In conclusion, tea polyphenol and anthocyanin demonstrate superior potential for probiotic encapsulation, offering both protective stability during digestion and enhanced viability under storage conditions. Full article
Show Figures

Figure 1

19 pages, 1601 KiB  
Article
Isolation and Characterization of Lactic Acid Bacteria from an Italian Traditional Raw Milk Cheese: Probiotic Properties and Technological Performance of Selected Strains
by Marianna Roselli, Federica Colafranceschi, Valentina Cipriani, Alessandra Valle, Paola Zinno, Barbara Guantario, Emily Schifano, Daniela Uccelletti and Chiara Devirgiliis
Microorganisms 2025, 13(6), 1368; https://doi.org/10.3390/microorganisms13061368 - 12 Jun 2025
Viewed by 617
Abstract
The increasing interest in fermented foods stems from their health benefits, mediated by foodborne microorganisms. This study aimed to characterize the fermentative microbiota of Pecorino di Picinisco, a traditional Italian cheese made from ovine raw milk, and to evaluate the probiotic and technological [...] Read more.
The increasing interest in fermented foods stems from their health benefits, mediated by foodborne microorganisms. This study aimed to characterize the fermentative microbiota of Pecorino di Picinisco, a traditional Italian cheese made from ovine raw milk, and to evaluate the probiotic and technological potential of selected lactic acid bacteria strains. Three strains representative of the different species found (Lactococcus lactis, Lactiplantibacillus plantarum and Latilactobacillus curvatus) were chosen and analyzed. All three strains were able to adhere to human intestinal Caco-2 cells, were resistant to simulated in vitro digestion and significantly prolonged the lifespan of Caenorhabditis elegans, used as a simplified in vivo model, with respect to the commercial probiotic strain Lacticaseibacillus rhamnosus GG. The L. plantarum Pic37.4 strain was particularly promising; therefore, its cell-free supernatant was employed to evaluate the antimicrobial activity against indicator strains of foodborne and intestinal pathogens or spoilage bacteria. The results demonstrated the effectiveness of the supernatant against all strains tested, with the strongest effect on the intestinal pathogen enterotoxigenic Escherichia coli K88. In addition, the inhibitory effect on pathogen adhesion to intestinal mucosa was investigated on Caco-2 cells, resulting in a significant reduction in adhesion mediated by the L. plantarum Pic37.4 supernatant. The antimicrobial properties of the L. plantarum strain were confirmed in vivo in C. elegans. These promising results lay the ground for further investigations aimed at substantiating the probiotic and technological potential of the L. plantarum Pic37.4 investigated in this work. Full article
Show Figures

Graphical abstract

30 pages, 2856 KiB  
Article
Comprehensive Risk Assessment of Metals and Minerals in Seafood Using Bioaccessibility Correction
by Ștefania-Adelina Milea, Ira-Adeline Simionov, Nina-Nicoleta Lazăr, Cătălina Iticescu, Mihaela Timofti, Puiu-Lucian Georgescu and Caterina Faggio
J. Xenobiot. 2025, 15(3), 92; https://doi.org/10.3390/jox15030092 - 12 Jun 2025
Viewed by 1829
Abstract
Evaluating the bioaccessibility and health risks of seafood is extremely important because, although it is a significant source of vital minerals, it may also contain potentially toxic elements. This study aimed to determine the content of metals and minerals in different seafood species [...] Read more.
Evaluating the bioaccessibility and health risks of seafood is extremely important because, although it is a significant source of vital minerals, it may also contain potentially toxic elements. This study aimed to determine the content of metals and minerals in different seafood species before and after thermal processing. Also, given the risk of overestimating the actual final concentration available in the body, a study was carried out to determine the bioaccessibility of these elements by simulating the digestion process in the gastrointestinal tract. Assessment of the potential toxic effects on consumer health in terms of exposure to heavy metals was carried out through risk analysis by Estimated Daily Intake, Hazard Index, and Cancer Risk parameters. Three bivalve mollusks, one gastropod mollusk, four cephalopod mollusks, and one crustacean species were analyzed in terms of minerals (P, S, K, Ca, and Se) and heavy metals (Cd, Pb, Ni, Cr, Fe, Zn, Co, Mn, and As) content. The lead (Pb) concentration recorded the strongest bioaccessibility increase, even reaching 100% in P. vannamei. Generally, the bioaccessibility of all metalloids dropped below 100%, which suggests that only a part of the amount of metal in the initially ingested sample can be absorbed by the human organism. Potassium and sulfur registered the greatest value, up to 23% for minerals’ bioaccessibility in the same samples. The highest intake rate of metals occurred after the consumption of M. gigas, which registered the highest Estimated Daily Intake for Cr (chromium) (0.321 mg kg−1 d−1), Cu (copper) (10.15 mg kg−1 d−1), and Zn (zinc) (12.67 mg kg−1 d−1). The Hazard Index values indicated no significant risk of poisoning. All calculated Cancer Risk scores remained below the acceptable threshold. Moreover, the Pearson coefficient revealed a positive correlation between the Hazard Index and the most abundant elements in the samples, Cr, Zn, and Cu. This study could provide a framework for evaluating both the nutritional benefits and toxicological concerns of seafood intake in public health applications. Full article
Show Figures

Graphical abstract

26 pages, 4640 KiB  
Article
Simulated Gastrointestinal Digestion and In Vitro Fecal Fermentation of Purified Pyracantha fortuneana (Maxim.) Li Fruit Pectin
by Qingrui Xu, Yiyi Lv, Xiaohui Yuan, Guichun Huang, Zhongxia Guo, Jiana Tan, Shuyi Qiu, Xiaodan Wang and Chaoyang Wei
Foods 2025, 14(9), 1529; https://doi.org/10.3390/foods14091529 - 27 Apr 2025
Viewed by 616
Abstract
Pyracantha fortuneana, an underutilized wild plant, has been found to have a high nutritional value. This study used simulated digestion and fecal fermentation models to investigate the digestive properties of the purified acidic pectin polysaccharide of Pyracantha fortuneana and its impact on [...] Read more.
Pyracantha fortuneana, an underutilized wild plant, has been found to have a high nutritional value. This study used simulated digestion and fecal fermentation models to investigate the digestive properties of the purified acidic pectin polysaccharide of Pyracantha fortuneana and its impact on the gut microbiota and metabolites. Pyracantha fortuneana polysaccharide (PFP) is mainly composed of rhamnose (Rha), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara), with a molecular weight (Mw) of 851.25 kDa. Following simulated digestion, the Mw of PFP remained consistent. The reduced sugar content showed minimal change, suggesting that PFP exhibits resistance to gastrointestinal digestion and can effectively reach the colon. Following fecal fermentation, the molecular weight, monosaccharide, and carbohydrate contents of PFP decreased, while the short-chain fatty acid content increased. This suggests that PFP is susceptible to degradation by microorganisms and can be metabolized into acetic acid and n-butyric acid, contributing to the regulation of intestinal health. Meanwhile, PFP promotes the reproduction of beneficial bacteria such as Bacteroides, Dialister, and Dysgonomonas, inhibits the growth of harmful bacteria like Proteus, and generates metabolites such as thiamine, leonuriside A, oxoadipic acid, S-hydroxymethylglutathione, and isonicotinic acid, which exert beneficial effects on human health. These results indicate that PFP has great potential in regulating the gut microbiota and generating beneficial metabolites to promote intestinal functional health and can be used as a prebiotic to prevent diseases by improving intestinal health. Full article
Show Figures

Graphical abstract

24 pages, 339 KiB  
Review
Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine
by Sergei Konstantinovich Shebeko, Heorhii Yurievich Drobot, Andrey Georgievich Koshchaev, Svetoslav Dimitrov Todorov and Alexey Mikhailovich Ermakov
Animals 2025, 15(9), 1222; https://doi.org/10.3390/ani15091222 - 26 Apr 2025
Viewed by 861
Abstract
Artificial gastrointestinal tract models have become essential tools in veterinary medicine, providing alternatives to in vivo studies, which are labor-intensive, costly, and under certain circumstances even ethically challenging. These in vitro models facilitate the study of digestion, enable disease and host–pathogen interaction modeling, [...] Read more.
Artificial gastrointestinal tract models have become essential tools in veterinary medicine, providing alternatives to in vivo studies, which are labor-intensive, costly, and under certain circumstances even ethically challenging. These in vitro models facilitate the study of digestion, enable disease and host–pathogen interaction modeling, and allow for the investigation of nutrient absorption, microbiota, and pharmacokinetics. Considering the One Health concept, the application of gastrointestinal tract systems in investigations for animals can clearly reflect human health, and thus, it is pointing to the relevance of the adaptation of already existing models and the development of new models to meet the needs of veterinary and animal farming practices. This review explores and compares the various types of gastrointestinal tract models, including static and dynamic systems, and their applications across different animal species. Specific technical and methodological considerations are discussed for core animal-developed and -tested artificial systems and their integration with common ‘omics’ techniques. Dynamic models, such as RUSITEC and PolyFermS, more accurately simulate in vivo processes, including peristalsis, enzymatic activity, and microbial fermentation. The studies employing tools for ‘omics’ approaches have been conducted with more understanding analysis and comprehensive discussion and results. Full article
(This article belongs to the Section Veterinary Clinical Studies)
14 pages, 760 KiB  
Article
In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources
by Elmira Kelidkazeran, Meriam Bouri Yildiz and Fikrettin Sahin
Microorganisms 2025, 13(5), 970; https://doi.org/10.3390/microorganisms13050970 - 24 Apr 2025
Viewed by 674
Abstract
Probiotic species have garnered significant attention for their health benefits extending beyond gastrointestinal health. This study investigated the biological and enzymatic functions of selected probiotic species, specifically Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus), Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), Lactobacillus acidophilus, and [...] Read more.
Probiotic species have garnered significant attention for their health benefits extending beyond gastrointestinal health. This study investigated the biological and enzymatic functions of selected probiotic species, specifically Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus), Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), Lactobacillus acidophilus, and Lactobacillus delbrueckii, among others, through in vitro experiments. Enzymatic activities, including hemolytic, lipase, esterase, and protease functions, were evaluated. Antioxidant capacity was assessed using DPPH radical scavenging assays, while antimicrobial efficacy was tested against common pathogenic bacteria. Antibiotic-resistance patterns were analyzed to ascertain their safety for human consumption. Furthermore, simulated digestive fluid tolerance experiments were conducted to evaluate survival in the gastrointestinal tract. The findings indicate that these probiotic strains exhibit diverse functionalities beyond intestinal health, with potential roles in digestion, oxidative stress reduction, and immune support. This study provides valuable insights into the functional diversity of probiotics, suggesting their broader applications in health and nutrition. Future research should focus on in vivo validation, mechanism elucidation, and clinical studies to determine optimal dosages and strain-specific benefits. Full article
(This article belongs to the Collection Feature Papers in Gut Microbiota Research)
Show Figures

Figure 1

22 pages, 7929 KiB  
Article
Transcriptome Sequencing Reveals Survival Strategies and Pathogenic Potential of Vibrio parahaemolyticus Under Gastric Acid Stress
by Shiying Ji, Jinlin Jiang, Zhiyong Song, Yu Zhou, Lu Chen, Shiying Tang, Yingjie Pan, Yong Zhao and Haiquan Liu
Biology 2025, 14(4), 396; https://doi.org/10.3390/biology14040396 - 10 Apr 2025
Viewed by 640
Abstract
As a common food-borne pathogen, Vibrio parahaemolyticus comes into direct or indirect contact with gastric acid after ingestion. However, the mechanisms by which Vibrio parahaemolyticus passes through the gastric acid barrier, recovers, and causes pathogenicity remain unclear. In this study, static in vitro [...] Read more.
As a common food-borne pathogen, Vibrio parahaemolyticus comes into direct or indirect contact with gastric acid after ingestion. However, the mechanisms by which Vibrio parahaemolyticus passes through the gastric acid barrier, recovers, and causes pathogenicity remain unclear. In this study, static in vitro digestion simulation experiments showed that some strains can pass through the gastric acid barrier by utilizing microacid tolerance mechanisms and altering their survival state. Food digestion simulation experiments showed that food matrices could help bacteria escape gastric acid stress, with significantly different survival rates observed for bacteria in various food matrices after exposure to gastric acid. Interestingly, surviving Vibrio parahaemolyticus showed a significantly shorter growth lag time (LT) during recovery. Transcriptome sequencing (RNA-seq) analyses indicated that the bacteria adapted to gastric acid stress by regulating the two-component system through stress proteins secreted via the ribosomal pathway. Pathogenic Vibrio parahaemolyticus that successfully passes through the gastric acid barrier potentially exhibits enhanced pathogenicity during recovery due to the significant upregulation of virulence genes such as tdh and yscF. This study provides a scientific basis for revealing the tolerance mechanisms of food-borne pathogens represented by Vibrio parahaemolyticus in the human body. Full article
Show Figures

Figure 1

24 pages, 3625 KiB  
Article
Comparative Study on the Effects of Selenium-Enriched Yeasts with Different Selenomethionine Contents on Gut Microbiota and Metabolites
by Zijian Zhang, Li Zhu, Hongtao Zhang, Dan Yu, Zhongwei Yin and Xiaobei Zhan
Int. J. Mol. Sci. 2025, 26(7), 3315; https://doi.org/10.3390/ijms26073315 - 2 Apr 2025
Viewed by 855
Abstract
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer’s yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health [...] Read more.
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer’s yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health research. Selenomethionine (SeM) is an important indicator for evaluating the quality of selenium-enriched yeast. Brewer’s yeast was selected as the experimental subject, and the digestion of this yeast (Brewer’s yeast) was simulated using an in vitro biomimetic gastrointestinal reactor to evaluate the effects of selenium-enriched yeast with various SeM levels on the gut flora of a healthy population. The experimental design comprised normal yeast (control group, OR), yeast containing moderate SeM levels (selenium-enriched group, SE), yeast containing high SeM levels (high-selenium group, MU), and a commercially available group comprising selenium-enriched yeast tablets (MA). The MU group exhibited a significantly higher concentration of short-chain fatty acids than the OR and MA groups during 48 h of fermentation, with significant differences observed (p < 0.05). Sequencing results revealed that the MU group showed significantly increased relative abundances of Bacteroidetes and Actinobacteria, while exhibiting a decreased ratio of Firmicutes to Bacteroidetes, which may simultaneously affect multiple metabolic pathways in vivo. These findings support the theory that selenium-enriched yeast with a high SeM has a more positive effect on human health compared with traditional yeast and offer new ideas for the development and application of selenium-enriched yeast. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

15 pages, 1515 KiB  
Article
Impact of Lactic Acid Bacteria on Immunoreactivity of Oat Beers
by Anna Diowksz, Paulina Pawłowska, Edyta Kordialik-Bogacka and Joanna Leszczyńska
Appl. Sci. 2025, 15(7), 3887; https://doi.org/10.3390/app15073887 - 2 Apr 2025
Viewed by 460
Abstract
The common contamination of oats with gluten cereals represents a problem for celiacs. One way to reduce the level of toxic peptides may be hydrolysis by lactic acid bacteria (LAB). The study examined the influence of the addition of a LAB starter at [...] Read more.
The common contamination of oats with gluten cereals represents a problem for celiacs. One way to reduce the level of toxic peptides may be hydrolysis by lactic acid bacteria (LAB). The study examined the influence of the addition of a LAB starter at the grain malting stage on the immunoreactivity of oat beers using enzyme-linked immunosorbent assays with rabbit antibodies and human sera. Immunoblotting was used to identify proteins involved in the immunoenzymatic reaction. The immune response to QQQP and PQQQ sequences was much higher in barley and barley malt (64–76% in relation to wheat) than in oats (20%) and oat malts (below 26%). In the case of anti-QQQPP peptide antibodies, the differences were not so pronounced, mainly due to the high heterogeneity of the oat malt samples. The remaining immunoreactivity was effectively reduced during the technological process of beer production. The mashing process contributed most to the decrease in immunoreactivity, with the wort produced from oat sour malt having an immunoreactivity level of lower than 4%. In the subsequent stages of the beer production process, the immune response was further reduced to below 2% in the resulting beer. Although the level of immunoreactivity of oat sour malt assessed with rabbit antibodies was comparable to that of the regular one, oat sour beers presented significantly weaker immune responses than barley beers, which was not always the case with regular oat beers. This proves the beneficial effect of LAB on reducing the immunoreactivity of the raw material. The analysis performed with human sera confirmed this tendency. Although the immune response to oat beer was strongly dependent on individual sensitivity, the remaining immunoreactivity in oat beers after simulated digestion was only 0.6–2.0%. Full article
(This article belongs to the Special Issue Food Fermentation: New Advances and Applications)
Show Figures

Figure 1

19 pages, 4067 KiB  
Article
Improving Lunar Soil Simulant for Plant Cultivation: Earthworm-Mediated Organic Waste Integration and Plant-Microbe Interactions
by Zhongfu Wang, Sihan Hou, Boyang Liao, Zhikai Yao, Yuting Zhu, Hong Liu and Jiajie Feng
Plants 2025, 14(7), 1046; https://doi.org/10.3390/plants14071046 - 27 Mar 2025
Viewed by 668
Abstract
Long-term human residence on the Moon is an inevitable trend in lunar exploration, necessitating the development of Bioregenerative Life Support Systems (BLSSs). In BLSSs, plant cultivation serves as the core functional unit, requiring substantial amounts of cultivation substrates. Lunar soil has potential as [...] Read more.
Long-term human residence on the Moon is an inevitable trend in lunar exploration, necessitating the development of Bioregenerative Life Support Systems (BLSSs). In BLSSs, plant cultivation serves as the core functional unit, requiring substantial amounts of cultivation substrates. Lunar soil has potential as a cultivation substrate, but its suitability for plant growth must be improved to meet life-support requirements. As a fine-grained, organics-free, in situ resource, lunar soil’s high compaction significantly restricts crops’ root access to oxygen, water, and nutrients. While the addition of organic solid waste—a byproduct of BLSSs—could alleviate compaction, issues such as salinization, incomplete decomposition, and the presence of pathogens pose risks to crop health. In this study, we introduced earthworms into wheat cultivation systems to gradually digest, transfer (as vermicompost), and mix solid waste with a lunar soil simulant substrate. We set five experimental groups: a positive control group using vermiculite (named as V) as the optimal growth substrate, a negative control group using pure lunar soil simulant (LS), and three treatment groups using lunar soil simulant with solid waste and 15 (LS+15ew), 30 (LS+30ew), and 45 (LS+45ew) earthworms added. Our results demonstrated significant improvements in both compaction (e.g., bulk density, hydraulic conductivity) and salinization (e.g., salinity, electrical conductivity), likely due to the improved soil aggregate structures, which increased the porosity and ion adsorption capacity of the soil. Additionally, the microbial community within the substrate shifted toward a cooperative pattern dominated by significantly enriched plant probiotics. Consequently, the cultivated wheat achieved approximately 80% of the growth parameters (including production) compared to the control group grown in vermiculite with nutrient solution (representing ideal cultivation conditions), indicating sufficient nutrient supply from the mineralized waste. We can conclude that the earthworms “complementarily” improved the lunar soil simulant and organic waste by addressing compaction and salinization, respectively, leading to comprehensive improvements in key parameters, including the microbial environment. This study proposes a conceptual framework for improving lunar soil for crop cultivation, and it innovatively introduces earthworms as a preliminary yet effective solution. These findings provide a feasible and inspiring foundation for future lunar agriculture. Full article
Show Figures

Figure 1

25 pages, 912 KiB  
Review
Comprehensive Review of Plant Protein Digestibility: Challenges, Assessment Methods, and Improvement Strategies
by Mauricio Opazo-Navarrete, César Burgos-Díaz, Cristina Bravo-Reyes, Ivo Gajardo-Poblete, Manuel Chacón-Fuentes, Juan E. Reyes and Luis Mojica
Appl. Sci. 2025, 15(7), 3538; https://doi.org/10.3390/app15073538 - 24 Mar 2025
Viewed by 5152
Abstract
Plant-based proteins are increasingly recognized for their environmental, ethical, and nutritional benefits. However, their digestibility varies due to factors such as molecular structure, amino acid composition, and processing methods. This review comprehensively analyzes methods used to assess plant protein digestibility, including in vivo, [...] Read more.
Plant-based proteins are increasingly recognized for their environmental, ethical, and nutritional benefits. However, their digestibility varies due to factors such as molecular structure, amino acid composition, and processing methods. This review comprehensively analyzes methods used to assess plant protein digestibility, including in vivo, in vitro, and ex vivo approaches. While in vivo studies, particularly those using pigs, are considered the gold standard, in vitro and ex vivo models offer cost-effective and reproducible alternatives for simulating digestion. Additionally, antinutritional factors present in plant proteins can hinder digestibility, necessitating processing strategies such as fermentation, enzymatic hydrolysis, and high-pressure treatments to enhance protein bioavailability. Advances in evaluation techniques, including the Digestible Indispensable Amino Acid Score (DIAAS) and dynamic digestion models, offer more precise assessments of protein quality. By systematically comparing these methods, this review aims to guide food scientists and manufacturers in selecting appropriate evaluation strategies to improve the nutritional quality of plant-based protein products. Understanding the mechanisms influencing plant protein digestibility is essential for optimizing food formulations and supporting the broader adoption of sustainable protein sources in human diets. Full article
Show Figures

Figure 1

19 pages, 2674 KiB  
Article
Modulation of Gut Microbiota and Short-Chain Fatty Acid Production by Simulated Gastrointestinal Digests from Microalga Chlorella vulgaris
by Celia Bañares, Samuel Paterson, Dulcenombre Gómez-Garre, Adriana Ortega-Hernández, Silvia Sánchez-González, Carolina Cueva, Miguel Á. de la Fuente, Blanca Hernández-Ledesma and Pilar Gómez-Cortés
Int. J. Mol. Sci. 2025, 26(6), 2754; https://doi.org/10.3390/ijms26062754 - 19 Mar 2025
Cited by 1 | Viewed by 1189
Abstract
Chlorella vulgaris is a source of potential bioactive compounds that can reach the large intestine and interact with colonic microbiota. However, the effects of consumption of this microalga on gastrointestinal function have scarcely been studied. This paper simulates, for the first time, the [...] Read more.
Chlorella vulgaris is a source of potential bioactive compounds that can reach the large intestine and interact with colonic microbiota. However, the effects of consumption of this microalga on gastrointestinal function have scarcely been studied. This paper simulates, for the first time, the passage of C. vulgaris through the gastrointestinal tract, combining the INFOGEST method and in vitro colonic fermentation to evaluate potential effects on the human colonic microbiota composition by 16S rRNA gene sequencing and its metabolic functionality. The results show that the presence of this microalga increased the release of short-chain fatty acids (SCFAs), such as acetic, propionic, butyric, and isobutyric fatty acids, after 48 h colonic fermentation, being indicators of gut health. In correlation with the release of SCFAs, a significant reduction in bacterial groups causing intestinal imbalance, such as Enterobacteriaceae, Enterococcus spp., and Staphylococcus spp., was observed. In addition, digests from C. vulgaris favored intestinal health-related taxa, such as Akkermansia and Lactobacillus. C. vulgaris is, therefore, a promising food ingredient for good intestinal health and the maintenance of a balanced colonic microbiota. Full article
Show Figures

Figure 1

19 pages, 3946 KiB  
Article
Characterization and In Vitro Prebiotic Activity of Pterostilbene/β-Cyclodextrin Inclusion Complexes
by Chuan-Chao Wu, Long Qian, Zhen Rong, Yu-Qi Li, Hui-Min Zhang, Rui-Yu He and Guo-Qiang Zhang
Molecules 2025, 30(6), 1363; https://doi.org/10.3390/molecules30061363 - 18 Mar 2025
Cited by 1 | Viewed by 678
Abstract
Pterostilbene (PTS) has multiple benefits, but poor water solubility and bioavailability limit its application. PTS/β-CD inclusion complexes were synthesized through the phase solubility method to enhance their water solubility. The inclusion complexes were characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray [...] Read more.
Pterostilbene (PTS) has multiple benefits, but poor water solubility and bioavailability limit its application. PTS/β-CD inclusion complexes were synthesized through the phase solubility method to enhance their water solubility. The inclusion complexes were characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and molecular docking techniques. The results demonstrated that PTS and β-CD successfully created inclusion complexes with a host–guest ratio of 1:1 and a stability constant of 166.7 M−1. To further investigate its prebiotic function, simulated digestion experiments revealed that β-CD exhibited resistance to digestion, allowing it to reach the colon intact. During gastrointestinal digestion, PTS in the PTS/β-CD inclusion complexes was gradually released. Following digestion, the in vitro fermentation of healthy human feces further confirmed the probiotic properties. Compared to the β-CD and fructooligosaccharide (FOS) groups, the PTS/β-CD group significantly increased the production of acetic acid, butyric acid, and lactic acid, respectively. Additionally, beneficial bacteria, such as Bifidobacterium and Lactobacillus, proliferated in the PTS/β-CD group, while the relative abundance of potential pathogenic bacteria, such as Lactococcus, Streptococcus, and Klebsiella, was significantly reduced. Compared to the blank group, propionic acid and butyric acid concentrations in the β-CD group were significantly higher. The abundance of Lactobacillus and other key bacterial species in the β-CD group increased, while the relative abundance of Klebsiella and other pathogens decreased significantly. In conclusion, PTS/β-CD inclusion complexes altered the composition of intestinal flora, promoting the proliferation of beneficial bacteria and inhibiting the growth of harmful bacteria, thereby demonstrating dual probiotic functionality. Full article
Show Figures

Figure 1

Back to TopTop