Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = siloxane sources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6076 KiB  
Article
Aldehyde-Assisted Alkoxysilane Condensation to Form Siloxane Bond: A New Process for Curing Alkoxy-Functional Silicone Resins
by Sławomir Rubinsztajn, Urszula Mizerska, Jan Kurjata, Małgorzata Kwiatkowska and Marek Cypryk
Molecules 2025, 30(3), 714; https://doi.org/10.3390/molecules30030714 - 5 Feb 2025
Cited by 2 | Viewed by 938
Abstract
The formation of the siloxane bond is one of the most important reactions used in silicone chemistry and technology. In this paper, a new process for the condensation of alkoxy-functional silanes to form a siloxane bond is presented. The new reaction is catalyzed [...] Read more.
The formation of the siloxane bond is one of the most important reactions used in silicone chemistry and technology. In this paper, a new process for the condensation of alkoxy-functional silanes to form a siloxane bond is presented. The new reaction is catalyzed by a Ge(II)+ complex stabilized by pentamethylcyclopentadiene with a weakly coordinated anion, tetrakis(pentafluorophenyl)borane. A mechanistic study of this new condensation process using model alkoxy-functional silanes and propionaldehyde is completed. It is established that the quantitative conversion of alkoxysilanes to the siloxane bond requires stoichiometric amounts of aldehyde. It is also found that paraldehyde can serve as a convenient, higher boiling source of acetaldehyde for the condensation of alkoxysilanes. The results obtained, supported by DFT calculations, allow for us to formulate the mechanism of this reaction. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

12 pages, 1434 KiB  
Article
Synthesis and Thermal Properties of Bio-Based Janus Ring Siloxanes Incorporating Terpenes and Terpenoids
by Niyaz Yagafarov, Jiaorong Kuang, Nobuhiro Takeda, Yujia Liu, Armelle Ouali and Masafumi Unno
Materials 2024, 17(21), 5348; https://doi.org/10.3390/ma17215348 - 31 Oct 2024
Viewed by 1115
Abstract
A mild and highly selective hydrosilylation method was employed to synthesize five novel well-defined Janus ring siloxanes bearing terpenes and terpenoids, which are the main bioactive components of essential oils. The characterization of these new bio-sourced molecular materials, derived from hydrosilyl-substituted all-cis [...] Read more.
A mild and highly selective hydrosilylation method was employed to synthesize five novel well-defined Janus ring siloxanes bearing terpenes and terpenoids, which are the main bioactive components of essential oils. The characterization of these new bio-sourced molecular materials, derived from hydrosilyl-substituted all-cis-cyclotetrasiloxane, was conducted through comprehensive analyses using multinuclear NMR, infrared spectroscopy, elemental analysis, and mass spectroscopy. The thermal stability of the newly synthesized Janus rings was investigated, and the siloxane skeleton was shown to confer an enhanced thermal stability compared with free terpenes and terpenoids. Full article
Show Figures

Graphical abstract

18 pages, 5341 KiB  
Article
Functional Silsesquioxanes—Tailoring Hydrophobicity and Anti-Ice Properties of Polylactide in 3D Printing Applications
by Roksana Konieczna, Robert E. Przekop, Daria Pakuła, Julia Głowacka, Katarzyna Ziętkowska, Rafał Kozera and Bogna Sztorch
Materials 2024, 17(19), 4850; https://doi.org/10.3390/ma17194850 - 1 Oct 2024
Cited by 2 | Viewed by 1393
Abstract
To explore the tailoring of hydrophobicity in 3D-printed polylactide (PLA) composites for advanced applications using additive manufacturing (AM), this study focuses on the use of Fused Deposition Modeling (FDM) 3D printing. PLA, a material derived from renewable sources, is favored for its eco-friendliness [...] Read more.
To explore the tailoring of hydrophobicity in 3D-printed polylactide (PLA) composites for advanced applications using additive manufacturing (AM), this study focuses on the use of Fused Deposition Modeling (FDM) 3D printing. PLA, a material derived from renewable sources, is favored for its eco-friendliness and user accessibility. Nonetheless, PLA’s inherent hydrophilic properties result in moisture absorption, negatively affecting its performance. This research aims to modify PLA with organosilicon compounds to enhance its hydrophobic and anti-icing properties. Incorporating fluorinated siloxane derivatives led to significant increases in water contact angles by up to 39%, signifying successful hydrophobic modification. Mechanical testing demonstrated that the addition of organosilicon additives did not compromise the tensile strength of PLA and, in some instances, improved impact resistance, especially with the use of OSS-4OFP:2HEX:2TMOS, which resulted in an increase in the tensile strength value of 25% and increased impact strength by 20% compared to neat PLA. Differential scanning calorimetry (DSC) analysis indicated that the modified PLA exhibited reduced cold crystallization temperatures without altering the glass transition or melting temperatures. These results suggest that organosilicon-modified PLA has the potential to expand the material’s application in producing moisture and ice-resistant 3D-printed prototypes for various industrial uses, thereby facilitating the creation of more durable and versatile 3D-printed components. Full article
(This article belongs to the Special Issue Materials for Additive Manufacturing Processes)
Show Figures

Figure 1

23 pages, 6430 KiB  
Review
Bio-Inspired Strategies Are Adaptable to Sensors Manufactured on the Moon
by Alex Ellery
Biomimetics 2024, 9(8), 496; https://doi.org/10.3390/biomimetics9080496 - 15 Aug 2024
Cited by 1 | Viewed by 2255
Abstract
Bio-inspired strategies for robotic sensing are essential for in situ manufactured sensors on the Moon. Sensors are one crucial component of robots that should be manufactured from lunar resources to industrialize the Moon at low cost. We are concerned with two classes of [...] Read more.
Bio-inspired strategies for robotic sensing are essential for in situ manufactured sensors on the Moon. Sensors are one crucial component of robots that should be manufactured from lunar resources to industrialize the Moon at low cost. We are concerned with two classes of sensor: (a) position sensors and derivatives thereof are the most elementary of measurements; and (b) light sensing arrays provide for distance measurement within the visible waveband. Terrestrial approaches to sensor design cannot be accommodated within the severe limitations imposed by the material resources and expected manufacturing competences on the Moon. Displacement and strain sensors may be constructed as potentiometers with aluminium extracted from anorthite. Anorthite is also a source of silica from which quartz may be manufactured. Thus, piezoelectric sensors may be constructed. Silicone plastic (siloxane) is an elastomer that may be derived from lunar volatiles. This offers the prospect for tactile sensing arrays. All components of photomultiplier tubes may be constructed from lunar resources. However, the spatial resolution of photomultiplier tubes is limited so only modest array sizes can be constructed. This requires us to exploit biomimetic strategies: (i) optical flow provides the visual navigation competences of insects implemented through modest circuitry, and (ii) foveated vision trades the visual resolution deficiencies with higher resolution of pan-tilt motors enabled by micro-stepping. Thus, basic sensors may be manufactured from lunar resources. They are elementary components of robotic machines that are crucial for constructing a sustainable lunar infrastructure. Constraints imposed by the Moon may be compensated for using biomimetic strategies which are adaptable to non-Earth environments. Full article
(This article belongs to the Special Issue A Systems Approach to BioInspired Design)
Show Figures

Figure 1

10 pages, 1335 KiB  
Article
Concentration and Distribution of Specific Siloxanes (D5 and D6) and PAHs in the Anacostia and Potomac Rivers, USA
by Olivia Ventresca, Ashley Acevedo, Kristina Nicholas, Jonathan Craig, Sophia Carpenter, Christia Fisher, Madeleine Danzberger, Cassidy Williams, Barbara Balestra and Stephen MacAvoy
Water 2024, 16(14), 2059; https://doi.org/10.3390/w16142059 - 20 Jul 2024
Cited by 1 | Viewed by 1690
Abstract
The waterways adjacent to Washington DC, USA have a history of contamination from heavy metals, nutrients, pesticides, and industrial chemicals. Among the chemicals of concern are PAHs, which are a historical contaminant but also have modern pyrogenic and petrogenic sources in the area’s [...] Read more.
The waterways adjacent to Washington DC, USA have a history of contamination from heavy metals, nutrients, pesticides, and industrial chemicals. Among the chemicals of concern are PAHs, which are a historical contaminant but also have modern pyrogenic and petrogenic sources in the area’s waterways. Another group of contaminants that are of emerging interest are siloxanes (silicones), which are widely used as lubricants, sealants, and cosmetics. Some lower-molecular-weight siloxanes are regulated by the EU in recognition of harm to aquatic life, but there are no restrictions in the United States. In fact, studies examining water pollutants do not typically test for siloxanes. Here, we present the concentrations of specific PAHs and siloxanes from surface sediments in the Potomac and Anacostia Rivers (including the Anacostia’s tributaries) collected between 2018 and 2023. Both D5 (decamethylcyclopentasiloxane) and D6 (dodecamethylcyclohexasiloxane) were found in most locations, with concentrations averaging 0.13 and 0.006 mg/g (dry mass), respectively. Pyrene, fluoranthene, bibenzyl, and phenanthrene were also found in the Anacostia and some of its tributaries, with concentrations increasing downstream. In the Potomac, concentrations were generally lower than those observed in the Anacostia. Based on ratios of pyrene to fluoranthene + pyrene, the likely source of PAHs was petrogenic. Full article
Show Figures

Figure 1

20 pages, 2278 KiB  
Review
Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review
by Chipo Shonhiwa, Yolanda Mapantsela, Golden Makaka, Patrick Mukumba and Ngwarai Shambira
Energies 2023, 16(14), 5272; https://doi.org/10.3390/en16145272 - 10 Jul 2023
Cited by 10 | Viewed by 3281
Abstract
Biogas consists of mainly methane, as a source of energy, and impurities such as carbon dioxide, hydrogen sulphide, water, and siloxanes. These impurities, such as hydrogen sulphide, reduce the biogas energy content and corrode equipment that store, transport, or utilise biogas. Several reviews [...] Read more.
Biogas consists of mainly methane, as a source of energy, and impurities such as carbon dioxide, hydrogen sulphide, water, and siloxanes. These impurities, such as hydrogen sulphide, reduce the biogas energy content and corrode equipment that store, transport, or utilise biogas. Several reviews on upgrading biogas to biomethane have been published, but minimal focus has been put on upgrading biogas for commercialisation in South Africa. Thus, this study reviewed biogas upgrading techniques in South Africa to put together information on activities and experiences on biogas valorisation to enhance the chances for different stakeholders to learn and build on from local experiences. To capture all relevant information, literature from the past 10 years was retrieved from online databases and government, municipality, and companies’ websites and institutional repositories. The review covered the sorption, separation, and in situ techniques that are globally used for upgrading biogas. The status of the biogas sector and the upgrading activities that occur in the country with their cost, energy, and environmental impacts were given in detail. It is estimated that a total of 3 million Nm3d−1 of biogas can be produced in the country from biogas substrates. Thus, researchers and entrepreneurs are encouraged to collaborate to utilise the abundant resources used for biogas production to enhance the commercialisation of biomethane. Full article
(This article belongs to the Topic Waste-to-Energy)
Show Figures

Figure 1

13 pages, 2143 KiB  
Article
Silica-Containing Biomimetic Composites Based on Sea Urchin Skeleton and Polycalcium Organyl Silsesquioxane
by Nikolay P. Shapkin, Irina G. Khalchenko, Anatoliy L. Drozdov, Aleksander N. Fedorets, Igor Yu Buravlev, Anna A. Andrasyuk, Natalya V. Maslova, Kirill A. Pervakov and Evgeniy K. Papynov
Biomimetics 2023, 8(3), 300; https://doi.org/10.3390/biomimetics8030300 - 9 Jul 2023
Cited by 3 | Viewed by 2270
Abstract
The paper presents an original approach to the synthesis of polycalciumorganyl silsesquioxanes through the reaction of polyorganyl silsesquioxanes [RSiO1.5]n (where R is an ethyl and phenyl radical) with sea urchin skeleton under the conditions of mechanochemical activation. The [...] Read more.
The paper presents an original approach to the synthesis of polycalciumorganyl silsesquioxanes through the reaction of polyorganyl silsesquioxanes [RSiO1.5]n (where R is an ethyl and phenyl radical) with sea urchin skeleton under the conditions of mechanochemical activation. The novelty and practical significance of the present study lies in the use of an available natural raw source as a source of calcium ions to initiate the reaction of calcium silicate formation and create a matrix for the formation of a porous inorganic composite framework. The thermal stability of the introduced silicates, i.e., the ability to maintain a porous structure at high temperatures, is key to the production of an ordered porous material. The reaction scheme was proposed to be based on the interaction of calcium carbonate with the siloxane bond. FTIR, XRD, GPC, and TGA were used to study the composition and structure of the obtained materials. The cross-sectional area of the polymer chain and the volumes of the coherent scattering regions of the polymers obtained were calculated from the XRD data. To prepare the composites, the sea urchin skeleton was further modified with polycalciumorganyl silsesquioxanes in a toluene solution. To remove the sea urchin skeleton, the obtained biomimetic composites were treated with hydrochloric acid. The results of the morphological and surface composition studies are reported. The method proposed in the paper could be of fundamental importance for the possibility of obtaining structured porous composite materials for a wide range of practical applications, including for the purpose of creating a composite that may be a promising carrier for targeted delivery of chemotherapy agents. Full article
Show Figures

Figure 1

15 pages, 1204 KiB  
Article
QSAR Models for the Prediction of Dietary Biomagnification Factor in Fish
by Linda Bertato, Nicola Chirico and Ester Papa
Toxics 2023, 11(3), 209; https://doi.org/10.3390/toxics11030209 - 23 Feb 2023
Cited by 9 | Viewed by 2133
Abstract
Xenobiotics released in the environment can be taken up by aquatic and terrestrial organisms and can accumulate at higher concentrations through the trophic chain. Bioaccumulation is therefore one of the PBT properties that authorities require to assess for the evaluation of the risks [...] Read more.
Xenobiotics released in the environment can be taken up by aquatic and terrestrial organisms and can accumulate at higher concentrations through the trophic chain. Bioaccumulation is therefore one of the PBT properties that authorities require to assess for the evaluation of the risks that chemicals may pose to humans and the environment. The use of an integrated testing strategy (ITS) and the use of multiple sources of information are strongly encouraged by authorities in order to maximize the information available and reduce testing costs. Moreover, considering the increasing demand for development and the application of new approaches and alternatives to animal testing, the development of in silico cost-effective tools such as QSAR models becomes increasingly important. In this study, a large and curated literature database of fish laboratory-based values of dietary biomagnification factor (BMF) was used to create externally validated QSARs. The quality categories (high, medium, low) available in the database were used to extract reliable data to train and validate the models, and to further address the uncertainty in low-quality data. This procedure was useful for highlighting problematic compounds for which additional experimental effort would be required, such as siloxanes, highly brominated and chlorinated compounds. Two models were suggested as final outputs in this study, one based on good-quality data and the other developed on a larger dataset of consistent Log BMFL values, which included lower-quality data. The models had similar predictive ability; however, the second model had a larger applicability domain. These QSARs were based on simple MLR equations that could easily be applied for the predictions of dietary BMFL in fish, and support bioaccumulation assessment procedures at the regulatory level. To ease the application and dissemination of these QSARs, they were included with technical documentation (as QMRF Reports) in the QSAR-ME Profiler software for QSAR predictions available online. Full article
Show Figures

Figure 1

13 pages, 3633 KiB  
Article
Facile Preparation and Characterization of Silica Nanoparticles from South Africa Fly Ash Using a Sol–Gel Hydrothermal Method
by Patrick Ehi Imoisili, Emeka Charles Nwanna and Tien-Chien Jen
Processes 2022, 10(11), 2440; https://doi.org/10.3390/pr10112440 - 18 Nov 2022
Cited by 24 | Viewed by 4450
Abstract
Silica nanoparticles (SNPs) consist of several applications which include lightweight aggregates, energy storage, and drug delivery. Nevertheless, the silica reagents used in SNP synthesis are both costly and hazardous. As a result, it is critical to look for other sources of silica. For [...] Read more.
Silica nanoparticles (SNPs) consist of several applications which include lightweight aggregates, energy storage, and drug delivery. Nevertheless, the silica reagents used in SNP synthesis are both costly and hazardous. As a result, it is critical to look for other sources of silica. For this research, a simple sol–gel hydrothermal approach is used to make SNPs from South African fly ash (SAFA). SAFA is classified as fly ash class F according to X-ray fluorescence (XRF) analysis. The wide-angle X-ray diffraction (XRD) pattern reveals the structural composition of SAFA and the amorphous phase of extracted SNPs, while Fourier transform infrared (FTIR) examination reveals the presence of silanol and siloxane groups. Basic SNPs were generally spherical with diameters of about 60 nm, according to scanning electron microscopy (SEM) and transition electron microscope (TEM) studies. The presence of SiO2 is confirmed by energy-dispersive X-ray spectroscopy (EDX) spectrum analysis. Particle size assessment indicates particle sizes ranging from 48 nm to 87 nm in diameter, with a mean diameter of 67 nm. The application of SNPs in wastewater treatment demonstrated that they can be used to remove Cd2+ from an aqueous solution. This research offers new ideas for using South African fly ash in SNP manufacturing. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

11 pages, 630 KiB  
Article
Occurrence and Behavior of Methylsiloxanes in Urban Environment in Four Cities of China
by Yao Jiang, Junyu Guo, Ying Zhou, Boya Zhang and Jianbo Zhang
Int. J. Environ. Res. Public Health 2022, 19(21), 13869; https://doi.org/10.3390/ijerph192113869 - 25 Oct 2022
Cited by 12 | Viewed by 1935
Abstract
Methylsiloxanes (MSs), used in industrial production and personal care products, are released in various environmental media. In this study, we combined monitoring and modeling to investigate the occurrence and behavior of MSs in the urban environment in China. MSs were widely found in [...] Read more.
Methylsiloxanes (MSs), used in industrial production and personal care products, are released in various environmental media. In this study, we combined monitoring and modeling to investigate the occurrence and behavior of MSs in the urban environment in China. MSs were widely found in the air, water, soil and sediment of four cities in China. The concentrations of MSs in all four environmental media of Zhangjiagang were higher than those in the other three cities (Beijing, Kunming and Lijiang), indicating that the siloxane production plant had a significant impact on the pollution level of MSs in the surrounding environment. The samples with high MS concentrations were all from the sample sites near the outlet of the WWTPs, which showed that the effluent of the WWTPs was the main source of MS pollution in the surrounding environment. The modeling results of the EQC level III model showed that D4 discharged into the environment was mainly distributed in the air, while D5 and D6 were mainly distributed in the sediment. CMSs (D4–D6) discharged into various environmental media could exist in the urban environment for a long time with low temperatures in cities. When the temperature was 0 °C, the residence time of D5 and D6 could be 68.1 days and 243 days in the whole environmental system in Beijing. This study illustrates the importance of CMSs (D4–D6) in low-temperature environments and the potential environmental risks that they may pose. Full article
Show Figures

Figure 1

13 pages, 3231 KiB  
Article
Advances in the Measurement of Polymeric Colorimetric Sensors Using Portable Instrumentation: Testing the Light Influence
by Adria Martínez-Aviño, Maria de Diego-Llorente-Luque, Carmen Molins-Legua and Pilar Campíns-Falcó
Polymers 2022, 14(20), 4285; https://doi.org/10.3390/polym14204285 - 12 Oct 2022
Cited by 10 | Viewed by 2341
Abstract
Sustainable and green sensors based on polydimethyl siloxane (PDMS) or cellulose polymers, as a case of study of the use of portable instrumentation joined to a smartphone, have been tested. A smartphone camera was used to obtain images and was also coupled to [...] Read more.
Sustainable and green sensors based on polydimethyl siloxane (PDMS) or cellulose polymers, as a case of study of the use of portable instrumentation joined to a smartphone, have been tested. A smartphone camera was used to obtain images and was also coupled to a minispectrometer, without and with an optical fiber probe to register spectra. To study light influence on the analytical signal, light-emitting diode (LED), halogen light and daylight have been assayed. A corrective palette of 24 colors and a set with 45 colors from different color ranges were used as the validation set. The results indicated that halogen light was the best option to obtain the spectra. However, for digital image analysis, it was the LED light that gave a greater approximation of the RGB values of the real colors. Based on these results, the spectra and the RGB components of PDMS solid sensors doped with 1,2-naphtoquinone-4-sulfonate (NQS) for the determination of ammonium in water or urea in urine, PDMS doped with Griess reagent for developing the assay of nitrite in waters and cellulose sensors for the determination of hydrogen sulfide in the atmospheres have been obtained. The results achieved were good in terms of sensitivity and linearity and were comparable to those obtained using a laboratory benchtop instrument. Several rules for selecting the most suitable light source to obtain the spectra and/or images have been established and an image correction method has been introduced. Full article
Show Figures

Figure 1

14 pages, 7293 KiB  
Article
Activated Porous Carbon Fiber: New Adsorbent for Sampling and Analysis by Thermal Desorption of Siloxanes in Biogas and Biomethane
by Enrico Paris, Pasquale Avino, Ettore Guerriero, Beatrice Vincenti, Adriano Palma, Monica Carnevale, Paolo Benedetti, Marco Torre and Francesco Gallucci
Int. J. Environ. Res. Public Health 2022, 19(17), 10890; https://doi.org/10.3390/ijerph191710890 - 1 Sep 2022
Cited by 5 | Viewed by 2076
Abstract
The growing global energy demand requires the continuous development and optimization of the production of alternative energy sources. According to the circular economy approach, waste conversion into biogas and biomethane represent an interesting energy source. The input into the distribution network and energy [...] Read more.
The growing global energy demand requires the continuous development and optimization of the production of alternative energy sources. According to the circular economy approach, waste conversion into biogas and biomethane represent an interesting energy source. The input into the distribution network and energy conversion systems of biomethane requires quality monitoring and the use of cleaning up systems. Therefore, there is a need to constantly invest in the development of sampling and analysis systems that save time, costs, and materials. The purpose of this study was to use activated porous carbon fiber (APCF), an extremely versatile material for sampling and analysis by thermal desorption, to show the advantages it has over the adsorbents traditionally used for siloxane monitoring. Siloxanes are among the contaminating compounds that are mainly present in biogas and biomethane, and if not removed sufficiently, they endanger the quality and use of the gas. These are highly harmful compounds since during combustion, they produce quartz particles that are abrasive to the surfaces of the materials involved in the energy production process. In addition, siloxanes directly hinder the energy properties of biomethane during combustion, due to their radical scavenger properties. In this work, the efficiency of APCF tube was evaluated by comparing it with common multilayer tube thought sampling and analyzing siloxanes in lab scale and in real scale (biogas plant). Thermal desorption analysis coupled with GC-MS for the determination of siloxanes showed that the use of APCF allows to obtain better performance. This allows to deduce that APCF is an innovative material for the establishment of a better sampling and analysis method than the current ones, enabling better results to be achieved in the process of monitoring fuel quality in biomethane production and storage facilities. Full article
Show Figures

Figure 1

22 pages, 4655 KiB  
Article
A Pilot Study to Quantify Volatile Organic Compounds and Their Sources Inside and Outside Homes in Urban India in Summer and Winter during Normal Daily Activities
by Christina L. Norris, Ross Edwards, Chinmay Ghoroi, James J. Schauer, Marilyn Black and Michael H. Bergin
Environments 2022, 9(7), 75; https://doi.org/10.3390/environments9070075 - 21 Jun 2022
Cited by 8 | Viewed by 6121
Abstract
Indian cities have some of the poorest air quality globally but volatile organic compounds (VOCs)—many of which adversely affect health—and their indoor sources remain understudied in India. In this pilot study we quantified hundreds of VOCs inside and outside 26 homes in Ahmedabad [...] Read more.
Indian cities have some of the poorest air quality globally but volatile organic compounds (VOCs)—many of which adversely affect health—and their indoor sources remain understudied in India. In this pilot study we quantified hundreds of VOCs inside and outside 26 homes in Ahmedabad and Gandhinagar, Gujarat, in May 2019 and in January 2020. We sampled in the morning and afternoon/evening to capture temporal variability. Total indoor VOCs were measured at higher concentrations in winter (327.0 ± 224.2 µgm−3) than summer (150.1 ± 121.0 µgm−3) and exceeded those measured outdoors. Using variable reduction techniques, we identified potential sources of compounds (cooking, plastics [with an emphasis on plasticizers], consumer products, siloxanes [as used in the production of consumer products], vehicles). Contributions differed by season and between homes. In May, when temperatures were high, plastics contributed substantially to indoor pollution (mean of 42% contribution to total VOCs) as compared to in January (mean of 4%). Indoor cooking and consumer products contributed on average 29% and 10% to all VOCs indoors in January and 16% and 4% in May. Siloxane sources contributed <4% to any home during either season. Cooking contributed substantially to outdoor VOCs (on average 18% in January and 11% in May) and vehicle-related sources accounted for up to 84% of VOCs in some samples. Overall, results indicate a strong seasonal dependence of indoor VOC concentrations and sources, underscoring the need to better understand factors driving health-harming pollutants inside homes to facilitate exposure reductions. Full article
(This article belongs to the Special Issue Indoor Air Quality and Health Risks)
Show Figures

Figure 1

20 pages, 2106 KiB  
Article
Inherent Flame-Retardant, Humid Environment Stable and Blue Luminescent Polyamide Elastomer Regulated by Siloxane Moiety
by Qianqian Qi, Zhe Xiao, Yaowei Wang, Xinjin Yan, Peng Fu, Xiaomeng Zhang, Wei Zhao, Xinchang Pang, Minying Liu, Qingxiang Zhao and Zhe Cui
Polymers 2022, 14(9), 1919; https://doi.org/10.3390/polym14091919 - 9 May 2022
Cited by 6 | Viewed by 2804
Abstract
The rapid development of the polymeric materials market has created an urgent demand for the thermoplastic polyamide elastomer (TPAE) owing to its greater functionality, and ability to be synthesized via a facile and industrial route. In this work, a series of novel silicone-containing [...] Read more.
The rapid development of the polymeric materials market has created an urgent demand for the thermoplastic polyamide elastomer (TPAE) owing to its greater functionality, and ability to be synthesized via a facile and industrial route. In this work, a series of novel silicone-containing polyamides (PA1212/Si12) were successfully synthesized from 1,12-dodecarboxylic acid (LA), 1,12-dodecarbondiamine (DMDA), and 1,3-bis (amino-propyl) tetramethyldisiloxane (BATS), via a one-pot melt polycondensation method in the absence of a catalyst. FTIR, 1H-NMR, GPC and inherent viscosity results cohesively prove that the polymerization of monomers was well conducted, and the chemical structure was in high accordance with the design. As expected, the Si12 unit-content of the copolymers regulate the properties of the series. As the feeding ratio of BATS in the diamines increases from 5 mol% to 40 mol%, the thermal transition temperatures, Tg and Tm, decline steadily before finally stabilizing at ~6 °C and 160 °C, respectively, indicating that the co-polyamides possess improved chain flexibility but restricted crystallization ability. The conspicuous evolution in crystalline morphology of the series was observed by XRD and AFM. The increased PA Si12 phase induces the crystallized PA 1212 phase to transit from a thermally-favorable large and rigid crystal structure (α phase) to a kinetically-favorable small and ductile crystal structure (γ phase). Reflected in their stress–strain behavior, PA1212/Si12 copolymers are successfully tailored from rigid plastic to ductile elastomer. The tensile strength mildly drops from above 40 MPa to ~30 MPa while the reversible elongation increases from ~50% to approximately 350%. Accordingly, the moderate surface tension differences in the monomers facilitate the efficient conduction of the co-polymerization process, and the distributed short siloxane unit in the backbone fulfills the copolymer with desirable elasticity. Interestingly, the novel silicone-containing polyamides also display Si12 unit-content dependent flame retardancy, humidity stability, and unconventional solid-state fluorescence properties. The elastomers exhibit a low bibulous rate and anti-fouling characteristics to dye droplets and mud contamination, pass the V–1 rating (UL 94) with a constantly declining PHRR value, and emit blue luminescence under a 365 nm light source. Herein, we propose a new facile strategy for developing a high-performance and multifunctional silicone-modified polyamide, which bears promising industrialization potential. In addition, this first reported silicone-containing thermoplastic polyamide elastomer, which is self-extinguishing, anti-fouling and blue-luminescent, will further broaden the application potential of thermoplastic polyamide elastomers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

8 pages, 1808 KiB  
Article
An In-Vitro Evaluation of Articulation Accuracy for Digitally Milled Models vs. Conventional Gypsum Casts
by Jason D. Lee, German O. Gallucci and Sang J. Lee
Dent. J. 2022, 10(1), 11; https://doi.org/10.3390/dj10010011 - 11 Jan 2022
Cited by 11 | Viewed by 4628
Abstract
With the advent of a digital workflow in dentistry, the inter-occlusal articulation of digital models is now possible through various means. The Cadent iTero intraoral scanner uses a buccal scan in maximum intercuspation to record the maxillomandibular relationship. This in-vitro study compares the [...] Read more.
With the advent of a digital workflow in dentistry, the inter-occlusal articulation of digital models is now possible through various means. The Cadent iTero intraoral scanner uses a buccal scan in maximum intercuspation to record the maxillomandibular relationship. This in-vitro study compares the occlusion derived from conventionally articulated stone casts versus that of digitally articulated quadrant milled models. Thirty sets of stone casts poured from full arch polyvinyl siloxane impressions (Group A) and thirty sets of polyurethane quadrant models milled from digital impressions (Group B) were used for this study. The full arch stone casts were hand-articulated and mounted on semi-adjustable articulators, while the digitally derived models were pre-mounted from the milling center based on the data obtained from the buccal scanning procedure. A T-scan sensor was used to obtain a bite registration from each set of models in both groups. The T-scan data derived from groups A and B were compared to that from the master model to evaluate the reproducibility of the occlusion in the two groups. A statistically significant difference of the contact region surface area was found on #11 of the digitally articulated models compared to the master. An analysis of the force distribution also showed a tendency for a heavier distribution on the more anterior #11 tooth for the digitally articulated models. Within the limitations of this study, the use of a digitally articulated quadrant model system may result in a loss of accuracy, in terms of occlusion, the further anteriorly the tooth to be restored is located. Care must be taken to consider the sources of inaccuracies in the digital workflow to minimize them for a more efficient and effective restorative process. Full article
(This article belongs to the Special Issue Feature Papers in Dentistry Journal in 2021)
Show Figures

Figure 1

Back to TopTop