Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = silicon vacancy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2382 KB  
Article
Hyperfine Coupling Constants of Photoinduced Axial Symmetry NV Centers in a 6H Silicon Carbide: DFT and High-Field ENDOR Spectroscopy Study
by Yuliya Ermakova, Ekaterina Dmitrieva, Irina Gracheva, Darya Shurtakova, Margarita Sadovnikova, Fadis Murzakhanov, Georgy Mamin, Sergey Nagalyuk, Evgeny Mokhov and Marat Gafurov
Appl. Nano 2025, 6(4), 23; https://doi.org/10.3390/applnano6040023 - 31 Oct 2025
Viewed by 206
Abstract
Solid-state spin centers are at the forefront of developing advanced quantum technologies, engaging in applications of sensing, communication and computing. A semiconductor host matrix compatible with existing silicon technology provides a robust platform for holding spin defects and an opportunity for external manipulation. [...] Read more.
Solid-state spin centers are at the forefront of developing advanced quantum technologies, engaging in applications of sensing, communication and computing. A semiconductor host matrix compatible with existing silicon technology provides a robust platform for holding spin defects and an opportunity for external manipulation. In this article, negatively charged nitrogen-vacancy (NV) centers in the hexagonal hh position in a 6H polytype silicon carbide crystal was studied using high-frequency (94 GHz) electron paramagnetic (EPR) and electron nuclear double resonances (ENDOR) spectroscopy. Experimentally determined values of hyperfine and quadrupole interactions of 14N were compared with the values obtained for the centers in NVk2k1 positions. The distribution of spin density of the defect within a supercell of the SiC crystal lattice was calculated using the density functional theory approach. The theoretical estimation of electron-nuclear interaction constants turned out to be in close agreement with the experimental values, which allows us to refine the microscopic model of a point defect. The temperature dependence of the spin Hamiltonian values (δA/δT ≅ 180 Hz/K) was studied with the possibility of observing the 14N NMR signal at room temperature. The fundamental knowledge gained about interactions’ parameters’ behavior lays the foundation for the creation of promising quantum platforms. Full article
Show Figures

Figure 1

11 pages, 2803 KB  
Article
Correlation of EPR and Photoluminescence Analysis for Crystalline Defects in Eu3+/Yb3+-Doped Lutetium Silicate Sol–Gel Powders
by Andrea Danielle Cancino-Moreno, Arturo López-Marure, Stephany Natasha Arellano-Ahumada, Daniel Ramírez-Rosales and Margarita García-Hernández
Inorganics 2025, 13(11), 343; https://doi.org/10.3390/inorganics13110343 - 22 Oct 2025
Viewed by 301
Abstract
Crystalline defects such as oxygen vacancies have been studied little by electron paramagnetic resonance (EPR) spectroscopy for silicate-based luminescent materials. In this study, lutetium oxyorthosilicate powders were prepared by the sol–gel method, using TEOS (silicon source) and rare earth salts as precursors. The [...] Read more.
Crystalline defects such as oxygen vacancies have been studied little by electron paramagnetic resonance (EPR) spectroscopy for silicate-based luminescent materials. In this study, lutetium oxyorthosilicate powders were prepared by the sol–gel method, using TEOS (silicon source) and rare earth salts as precursors. The cross-linking agent, Glymo, contributed silicon atoms to the precursor solution in all systems. The addition of Glymo to Lu2SiO5, Lu2SiO5:Eu and Lu2SiO5:Eu/Yb influenced the morphology and chemical structure of the powders, leading to Lu2Si2O7 formation. The crystalline defects in the lutetium silicate systems were investigated by EPR spectroscopy, and several defects related to oxygen were identified, as well as impurities from the precursors. Photoluminescence emission spectra revealed Eu3+ transitions between 5D07F0, 5D07F1 and 5D07F2 under 258 nm excitation, in addition to oxygen vacancy emissions between 500 and 550 nm. Oxygen vacancies were identified and confirmed by correlating EPR and photoluminescence studies. Full article
(This article belongs to the Special Issue Phosphors: Synthesis, Properties, and Structures)
Show Figures

Figure 1

17 pages, 5980 KB  
Article
Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing
by Xiaoyu Sun, Haojie Zheng, Qiannan Jia, Limin Qi, Zhiqi Zhang, Lijing Zhong, Wei Yan, Jianrong Qiu and Min Qiu
Photonics 2025, 12(10), 973; https://doi.org/10.3390/photonics12100973 - 30 Sep 2025
Viewed by 444
Abstract
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light [...] Read more.
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light energy at the nanoscale while simultaneously regulating intense photo modifications. In this study, we report the controllable growth of long-distance, high-straightness, and high-parallelism multifilament structures in SiC using ultrafast laser processing. The mechanism is the formation of femtosecond multifilaments through the nonlinear effects of clamping equilibrium, which allow highly confined light to propagate without diffraction in parallel channels, further inducing high-aspect-ratio nanostripe-like photomodifications. By employing an elliptical Gaussian beam—rather than a circular one—and optimizing pulse durations to stabilize multifilaments with regular positional distributions, the induced multifilament structures can reach a length of approximately 90 μm with a minimum linewidth of only 28 nm, resulting in an aspect ratio of over 3200:1. Raman tests indicate that the photomodified regions consist of amorphous SiC, amorphous silicon, and amorphous carbon, and photoluminescence tests reveal that silicon vacancy color centers could be induced in areas with lower light power density. By leveraging femtosecond multifilaments for diffraction-less light confinement, this work proposes an effective method for manufacturing deep-subwavelength, high-aspect-ratio nanostructures in SiC. Full article
Show Figures

Figure 1

11 pages, 2980 KB  
Article
Interface-Engineered Highly Responsive ReS2 Photodetector
by Yunfei Wang, Zijian Wang, Yuan Gao, Chenglin Wang and Haiyan Nan
Appl. Sci. 2025, 15(18), 10058; https://doi.org/10.3390/app151810058 - 15 Sep 2025
Viewed by 454
Abstract
Trap states in 2D transition metal dichalcogenides significantly affect the responsivity and response time of photodetectors, and previous ReS2/Si-based heterojunction photodetectors have struggled to simultaneously achieve high responsivity and fast response. To address this issue, we developed a n-type ReS2 [...] Read more.
Trap states in 2D transition metal dichalcogenides significantly affect the responsivity and response time of photodetectors, and previous ReS2/Si-based heterojunction photodetectors have struggled to simultaneously achieve high responsivity and fast response. To address this issue, we developed a n-type ReS2/p-type Si heterojunction photodetector through interface engineering. Specifically, the silicon substrate with a silicon dioxide dielectric layer was treated with inductively coupled soft plasma to adjust the thickness and surface states of the dielectric layer. This treatment created a multilayered heterostructure, which increased carrier concentration, effectively passivated sulfur-vacancy-induced defects, and thereby improved responsivity. Experimental results showed that the silicon-based n-type ReS2 photodetector achieved a responsivity of 0.88 A W−1 with a rapid response rise time of 2.5 s, a significant improvement from the intrinsic values of 12 mA W−1 responsivity and 6 s rise time. Additionally, due to the defect-tunable nature of this pretreatment technique, the device exhibited enhanced Raman peaks and intensified photoluminescence (PL) absorption features, confirming the effectiveness of the interface engineering in optimizing device performance. Full article
Show Figures

Figure 1

18 pages, 2288 KB  
Article
Defect Studies in Thin-Film SiO2 of a Metal-Oxide-Silicon Capacitor Using Drift-Assisted Positron Annihilation Lifetime Spectroscopy
by Ricardo Helm, Werner Egger, Catherine Corbel, Peter Sperr, Maik Butterling, Andreas Wagner, Maciej Oskar Liedke, Johannes Mitteneder, Michael Mayerhofer, Kangho Lee, Georg S. Duesberg, Günther Dollinger and Marcel Dickmann
Nanomaterials 2025, 15(15), 1142; https://doi.org/10.3390/nano15151142 - 23 Jul 2025
Viewed by 739
Abstract
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, [...] Read more.
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, electric fields up to 1.72MV/cm were applied. The measurements reveal a field-dependent suppression of positronium (Ps) formation by up to 64%, leading to an enhancement of free positron annihilation. The increase in free positrons suggests that vacancy clusters are the dominant defect type in the oxide layer. Additionally, drift towards the SiO2/Si interface reveals not only larger void-like defects but also a distinct population of smaller traps that are less prominent when drifting to the Al/SiO2 interface. In total, by combining positron drift with PALS, more detailed insights into the nature and spatial distribution of defects within the SiO2 network and in particular near the SiO2/Si interface are obtained. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

11 pages, 1410 KB  
Article
Theoretical Study on Impact of Chemical Composition and Water Content on Mechanical Properties of Stratlingite Mineral
by Daniel Tunega and Ali Zaoui
Minerals 2025, 15(6), 648; https://doi.org/10.3390/min15060648 - 16 Jun 2025
Viewed by 473
Abstract
Stratlingite is known as one of the hydration products of aluminum-rich cements. Its microstructure and, consequently, mechanical properties, depend on the Al/Si ratio and hydration conditions. The layered structure of stratlingite is characterized as defected, with vacancies in the aluminosilicate layer. This study [...] Read more.
Stratlingite is known as one of the hydration products of aluminum-rich cements. Its microstructure and, consequently, mechanical properties, depend on the Al/Si ratio and hydration conditions. The layered structure of stratlingite is characterized as defected, with vacancies in the aluminosilicate layer. This study uses density functional theory calculations on different stratlingite models to show how chemical composition, water content, and structural defects affect its mechanical properties. The developed models represent structures with full occupancy, with little or no content of structural water, and with vacancies in the aluminosilicate layer. It was shown that the full occupancy models have the highest toughness and are strongly anisotropic. The calculated bulk modulus (BH) of the models with full occupancy was about 40 GPa, being in the typical range for calcium aluminosilicate minerals. The water loss led to an increase in BH by approximately 40% compared to the models with full occupancy. In contrast, the models with vacancies exhibited a decrease in BH of about 30%. In models with the high silicon content (Al/Si ratio of 1/4), BH, Young’s (EH), and shear (GH) moduli decreased in a range 15%–30% compared to the models with an Al/Si ratio of 2/3 of Al/Si. Finally, according to Pugh’s ratio (BH/GH), which serves as a criterion for brittle–ductile transition (1.8), the models with full occupancy exhibit a brittle behavior, whereas the defected structures are closer to ductile. This could explain the elastic behavior of stratlingite binder in concretes. Generally, the calculations showed that all investigated parameters (chemical composition, water content, and structural defects) have a significant impact on the mechanical properties of stratlingite minerals. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Graphical abstract

15 pages, 1687 KB  
Article
Study on Regulation Mechanism of Heat Transport at Aluminum Nitride/Graphene/Silicon Carbide Heterogeneous Interface
by Dongjing Liu, Pengbo Wang, Zhiliang Hu, Jia Fu, Wei Qin, Jianbin Yu, Yangyang Zhang, Bing Yang and Yunqing Tang
Nanomaterials 2025, 15(12), 928; https://doi.org/10.3390/nano15120928 - 14 Jun 2025
Viewed by 795
Abstract
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial [...] Read more.
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial thermal conductivity are analyzed by phonon state density versus phonon participation rate to reveal their phonon transfer mechanisms during thermal transport. It is shown that the interfacial thermal conductance (ITC) increases about three times when the temperature increases from 300 K to 1100 K. It is analyzed that the increase in temperature will enhance lattice vibration, enhance phonon coupling degree, and thus increase its ITC. With the increase in the number of AlN-SiC layers from 8 to 28, the ITC increases by about 295.3%, and it is analyzed that the increase in the number of AlN-SiC layers effectively reduces the interfacial scattering and improves the phonon interfacial transmission efficiency. The increase in the number of graphene layers from 1 layer to 4 layers decreases the ITC by 70.3%. The interfacial thermal conductivity reaches a minimum, which is attributed to the increase in graphene layers aggravating the degree of phonon localization. Under the influence of the increase in graphene single and double vacancy defects concentration, the ITC is slightly reduced. When the defect rate reaches about 20%, the interfacial thermal conductance of SV (single vacancy) and DV (double vacancy) defects rises back to 5.606 × 10−2 GW/m2K and 5.224 × 10−2 GW/m2K, respectively. It is analyzed that the phonon overlapping and the participation rate act at the same time, so the heat-transferring phonons increase, increasing the thermal conductance of their interfaces. The findings provide theoretical support for optimizing the thermal management performance of heterostructure interfaces. Full article
Show Figures

Graphical abstract

14 pages, 3791 KB  
Article
Deposition of HfO2 by Remote Plasma ALD for High-Aspect-Ratio Trench Capacitors in DRAM
by Jiwon Kim, Inkook Hwang, Byungwook Kim, Wookyung Lee, Juha Song, Yeonwoong Jung and Changbun Yoon
Nanomaterials 2025, 15(11), 783; https://doi.org/10.3390/nano15110783 - 23 May 2025
Cited by 1 | Viewed by 3076
Abstract
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that [...] Read more.
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that minimizes electronic defects caused by charged vacancies is essential for reducing leakage current and ensuring high dielectric strength. In this study, we fabricated metal–insulator–metal (MIM) capacitors in high-aspect-ratio trench structures using remote plasma ALD (RP-ALD) and direct plasma ALD (DP-ALD). The trenches, etched into silicon, featured a 7:1 aspect ratio, 76 nm pitch, and 38 nm critical dimension. We evaluated the electrical characteristics of HfO2-based capacitors with TiN top and bottom electrodes, focusing on leakage current density and equivalent oxide thickness. Capacitance–voltage analysis and X-ray photoelectron spectroscopy (XPS) revealed that RP-ALD effectively suppressed plasma-induced damage, reducing defect density and leakage current. While DP-ALD offered excellent film properties, it suffered from degraded lateral uniformity due to direct plasma exposure. Given its superior lateral uniformity, lower leakage, and defect suppression, RP-ALD shows strong potential for improving DRAM capacitor performance and serves as a promising alternative to the currently adopted thermal ALD process. Full article
Show Figures

Graphical abstract

14 pages, 2534 KB  
Article
Defects Induced by High-Temperature Neutron Irradiation in 250 µm-Thick 4H-SiC p-n Junction Detector
by Alfio Samuele Mancuso, Enrico Sangregorio, Annamaria Muoio, Saverio De Luca, Matteo Hakeem Kushoro, Erik Gallo, Silvia Vanellone, Eleonora Quadrivi, Antonio Trotta, Lucia Calcagno and Francesco La Via
Materials 2025, 18(11), 2413; https://doi.org/10.3390/ma18112413 - 22 May 2025
Viewed by 869
Abstract
The objective of the proposed work was to investigate the electrical performance of a 250 µm-thick 4H-SiC p-n junction detector after irradiation with DT neutrons (14.1 MeV energy) at high temperature (500 °C). The results showed that the current–voltage (I-V) characteristics of the [...] Read more.
The objective of the proposed work was to investigate the electrical performance of a 250 µm-thick 4H-SiC p-n junction detector after irradiation with DT neutrons (14.1 MeV energy) at high temperature (500 °C). The results showed that the current–voltage (I-V) characteristics of the unirradiated SiC detector were ideal, with an ideality factor close to 1.5. A high electron mobility (µn) and built-in voltage (Vbi) were also observed. Additionally, the leakage current remained very low in the temperature range of 298–523 K. High-temperature irradiation caused a deviation from ideal behaviour, leading to an increase in the ideality factor, decreases in the µn and Vbi values, and a significant rise in the leakage current. Studying the capacitance–voltage (C-V) characteristics, it was observed that neutron irradiation induced reductions in both Al-doped (p+-type) and N-doped (n-type) 4H-SiC carrier concentrations. A comprehensive investigation of the deep defect states and impurities was carried out using deep-level transient spectroscopy (DLTS) in the temperature range of 85–750 K. In particular, high-temperature neutron irradiation influenced the behaviours of both the Z1/2 and EH6/7 traps, which were related to carbon interstitials, silicon vacancies, or anti-site pairs. Full article
Show Figures

Figure 1

18 pages, 3382 KB  
Review
Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering
by Ivana Capan
Appl. Sci. 2025, 15(10), 5606; https://doi.org/10.3390/app15105606 - 16 May 2025
Cited by 3 | Viewed by 2769
Abstract
This review provides an overview of defects in silicon carbide (SiC) with potential applications as quantum qubits. It begins with a brief introduction to quantum qubits and existing qubit platforms, outlining the essential criteria a defect must meet to function as a viable [...] Read more.
This review provides an overview of defects in silicon carbide (SiC) with potential applications as quantum qubits. It begins with a brief introduction to quantum qubits and existing qubit platforms, outlining the essential criteria a defect must meet to function as a viable qubit. The focus then shifts to the most promising defects in SiC, notably the silicon vacancy (VSi) and divacancy (VC-VSi). A key challenge in utilizing these defects for quantum applications is their precise and controllable creation. Various fabrication techniques, including irradiation, ion implantation, femtosecond laser processing, and focused ion beam methods, have been explored to create these defects. Designed as a beginner-friendly resource, this review aims to support early-career experimental researchers entering the field of SiC-related quantum qubits. Providing an introduction to defect-based qubits in SiC offers valuable insights into fabrication strategies, recent progress, and the challenges that lie ahead. Full article
(This article belongs to the Special Issue Quantum Communication and Applications)
Show Figures

Figure 1

13 pages, 2743 KB  
Article
Multilevel Multimodal Physical Unclonable Functions by Laser Writing of Silicon Carbide Color Centers
by Yuxing Ma, Yue Qin, Hao Guo, Ye Tian and Lishuang Liu
Micromachines 2025, 16(3), 329; https://doi.org/10.3390/mi16030329 - 12 Mar 2025
Viewed by 1163
Abstract
Information security serves as the cornerstone for ensuring the stable development of today’s highly digitized era. As cryptographic primitives with high security and robust encryption capabilities, physical unclonable functions (PUFs) are recognized as one of the critical solutions to address information leakage issues. [...] Read more.
Information security serves as the cornerstone for ensuring the stable development of today’s highly digitized era. As cryptographic primitives with high security and robust encryption capabilities, physical unclonable functions (PUFs) are recognized as one of the critical solutions to address information leakage issues. However, the encoding of PUFs often relies on the inherent properties of materials, which limits the potential for further enhancement of their encoding capacity (EC). In this study, we introduce a four-level encoding scheme by leveraging the stochastic characteristics of free radical chemical reactions and energy deposition in the fabrication process of silicon carbide (SiC) color centers. A multilevel multimodal PUF (MMPUF) encoding strategy (ES) for flexible substrates with high EC, low cost, and simple and fast readout was constructed. The spatially random distribution of SiC and silicon vacancy (Vsi) color-center concentrations as well as the offsets of the laser pyrolysis position along the X- and Y-axes are four independent physical properties that ensure the encoding performance of the PUF, achieving a high encoding capacity of 24×10×10 and secure, stable, and unclonable encoding. Furthermore, the integration of the PUF tags with the products through a doping manufacturing process, rather than simple attachment, enhances the security and practicality of the anti-counterfeiting system. The proposed encoding hierarchy based on the offsets provides a novel encoding solution for improving PUF EC. Full article
Show Figures

Figure 1

14 pages, 3518 KB  
Article
On the Current Conduction and Interface Passivation of Graphene–Insulator–Silicon Solar Cells
by Hei Wong, Jieqiong Zhang, Jun Liu and Muhammad Abid Anwar
Nanomaterials 2025, 15(6), 416; https://doi.org/10.3390/nano15060416 - 8 Mar 2025
Cited by 1 | Viewed by 1170
Abstract
Interface-passivated graphene/silicon Schottky junction solar cells have demonstrated promising features with improved stability and power conversion efficiency (PCE). However, there are some misunderstandings in the literature regarding some of the working mechanisms and the impacts of the silicon/insulator interface. Specifically, attributing performance improvement [...] Read more.
Interface-passivated graphene/silicon Schottky junction solar cells have demonstrated promising features with improved stability and power conversion efficiency (PCE). However, there are some misunderstandings in the literature regarding some of the working mechanisms and the impacts of the silicon/insulator interface. Specifically, attributing performance improvement to oxygen vacancies and characterizing performance using Schottky barrier height and ideality factor might not be the most accurate or appropriate. This work uses Al2O3 as an example to provide a detailed discussion on the interface ALD growth of Al2O3 on silicon and its impact on graphene electrode metal–insulator–semiconductor (MIS) solar cells. We further suggest that the current conduction in MIS solar cells with an insulating layer of 2 to 3 nm thickness is better described by direct tunneling, Poole–Frenkel emission, and Fowler–Nordheim tunneling, as the junction voltage sweeps from negative to a larger forward bias. The dielectric film thickness, its band offset with Si, and the interface roughness, are key factors to consider for process optimization. Full article
Show Figures

Figure 1

17 pages, 3998 KB  
Article
Contributions of Oxide Support Reducibility for Selective Oxidation of 5-Hydroxymethylfurfural over Ag-Based Catalysts
by Haichen Lai, Gaolei Shi, Liuwei Shen and Xingguang Zhang
Catalysts 2025, 15(3), 248; https://doi.org/10.3390/catal15030248 - 5 Mar 2025
Cited by 1 | Viewed by 1150
Abstract
As a type of sustainable and renewable natural source, biomass-derived 5-hydroxymethyl furfural (HMF) can be converted into high-value chemicals. This study investigated the interactions between silver (Ag) and oxide supports with varied reducibility and their contributions to tuning catalytic performance in the selective [...] Read more.
As a type of sustainable and renewable natural source, biomass-derived 5-hydroxymethyl furfural (HMF) can be converted into high-value chemicals. This study investigated the interactions between silver (Ag) and oxide supports with varied reducibility and their contributions to tuning catalytic performance in the selective oxidation of HMF. Three representatives of manganese dioxide (MnO2), zirconium dioxide (ZrO2), and silicon dioxide (SiO2) were selected to support the Ag active sites. The catalysts were characterized by techniques such as STEM (TEM), Raman, XPS, H2-TPR, and FT-IR spectroscopy to explore the morphology, Ag dispersion, surface properties, and electronic states. The catalytic results demonstrated that MnO2 with the highest reducibility exhibited superior catalytic performance, achieving 75.4% of HMF conversion and 41.6% of selectivity for 2,5-furandicarboxylic acid (FDCA) at 120 °C. In contrast, ZrO2 and SiO2 exhibited limited oxidation capabilities, mainly producing intermediate products like FFCA and/or HMFCA. The oxidation ability of these catalysts was governed by support reducibility, because it determined the density of oxygen vacancies (Ov) and surface hydroxyl groups (OOH), and eventually influenced the catalytic activity, as demonstrated by the reaction rate: Ag/MnO2 (3214.5 molHMF·gAg−1·h−1), Ag/ZrO2 (2062.3 molHMF·gAg−1·h−1), and Ag/SiO2 (1394.4 molHMF·gAg−1·h−1). These findings provide valuable insights into the rational design of high-performance catalysts for biomass-derived chemical conversion. Full article
Show Figures

Figure 1

14 pages, 5735 KB  
Article
Defect Tailoring in HfO2/Si Films upon Post-Deposition Annealing and Ultraviolet Irradiation
by Silvestre Salas-Rodríguez, Fernanda I. González-Moreno, Rosa M. Woo-García, Agustín L. Herrera-May, Francisco López-Huerta and Felipe Caballero-Briones
Appl. Sci. 2025, 15(3), 1573; https://doi.org/10.3390/app15031573 - 4 Feb 2025
Cited by 1 | Viewed by 2224
Abstract
In the present work, a study of the structural defects in HfO2 thin films deposited by dip-coating on p-type silicon substrates treated under different conditions, such as air-annealing, ultraviolet irradiation, and simultaneous annealing–UV irradiation, is presented. HfO2 thin films were analyzed [...] Read more.
In the present work, a study of the structural defects in HfO2 thin films deposited by dip-coating on p-type silicon substrates treated under different conditions, such as air-annealing, ultraviolet irradiation, and simultaneous annealing–UV irradiation, is presented. HfO2 thin films were analyzed by grazing incidence X-ray diffraction, Raman spectroscopy, optical fluorescence, atomic force microscopy, and UV-Vis diffuse reflectance. Films treated at 200 °C and 350 °C present peaks corresponding to monoclinic HfO2. After UV treatment, the films became amorphous. The combination of annealing at 350 °C with UV treatment does not lead to crystalline peaks, suggesting that UV treatment causes extensive structural damage. Fluorescence spectroscopy and UV-Vis spectroscopy suggest that films present oxygen vacancies as their main structural defects. A reduction in oxygen vacancies after the second thermal treatment was observed, but in contrast, after UV irradiation, fluorescence spectroscopy indicated that more defects are created within the mobility gap, irrespective of the simultaneous annealing at 350 °C. An electronic band diagram was proposed assigning the observed fluorescence bands and optical transitions, which, in turn, explain the electrical properties of the films. The results suggest that the electronic structure of HfO2 films can be tailored with a careful choice of thermal annealing conditions along with the controlled creation of defects using UV irradiation, which could open the way to multiple applications of the materials either in microelectronics, optoelectronics, as well as in photocatalytic/electrocatalytic applications such as photodegradation and hydrogen generation. Full article
Show Figures

Figure 1

17 pages, 5489 KB  
Article
Pd-Decorated SnO2 Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing
by Tiejun Fang, Tianyang Mo, Xianwu Xu, Hongwei Tao, Hongbo Wang, Bingjun Yu and Zhi-Jun Zhao
Sensors 2025, 25(3), 655; https://doi.org/10.3390/s25030655 - 23 Jan 2025
Cited by 5 | Viewed by 2151
Abstract
The development of reliable, highly sensitive hydrogen sensors is crucial for the safe implementation of hydrogen-based energy systems. This paper proposes a novel way to enhance the performance of hydrogen sensors through integrating Pd-SnO2 nanofilms on the substrate with silicon nanowires (SiNWs). [...] Read more.
The development of reliable, highly sensitive hydrogen sensors is crucial for the safe implementation of hydrogen-based energy systems. This paper proposes a novel way to enhance the performance of hydrogen sensors through integrating Pd-SnO2 nanofilms on the substrate with silicon nanowires (SiNWs). The samples were fabricated via a simple and cost-effective process, mainly consisting of metal-assisted chemical etching (MaCE) and electron beam evaporation. Structural and morphological characterizations were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results showed that, compared to those without SiNW structure or decorative Pd nanoparticles, the Pd-decorated SnO2 nanofilm integrated on the SiNW substrates exhibited significantly improved hydrogen sensing performance, achieving a response time of 9 s at 300 °C to 1.5% H2 and a detection limit of 1 ppm. The enhanced performance can be primarily attributed to the large surface area provided by SiNWs, the efficient hydrogen spillover effect facilitated by Pd nanoparticles, and the abundant oxygen vacancies present on the surface of the SnO2 nanofilm, as well as the Schottky barrier formed at the heterojunction interface between Pd and SnO2. This study demonstrates a promising approach for developing high-performance H2 sensors characterized by ultrafast response times and ultralow detection limits. Full article
(This article belongs to the Special Issue Recent Development of Flexible Tactile Sensors and Their Applications)
Show Figures

Figure 1

Back to TopTop