Pd-Decorated SnO2 Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of Pd-Decorated SnO2 Nanofilm on SiNW Substrate
2.2.1. Preparation of a Nanostructured Silver Holey Mask
2.2.2. Fabrication of a Vertical SiNW Substrate
2.2.3. Deposition of Pd-Decorated SnO2 Nanofilm on SiNW Substrate
2.3. Characterization
2.4. Hydrogen Gas Sensing Tests
3. Results and Discussion
3.1. Morphology and Material
3.2. Gas Sensing Properties
3.3. Hydrogen Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Qureshi, F.; Yusuf, M.; Arham Khan, M.; Ibrahim, H.; Ekeoma, B.C.; Kamyab, H.; Rahman, M.M.; Nadda, A.K.; Chelliapan, S. A State-of-The-Art Review on the Latest Trends in Hydrogen Production, Storage, and Transportation Techniques. Fuel 2023, 340, 127574. [Google Scholar] [CrossRef]
- Lee, J.-S.; An, J.W.; Bae, S.; Lee, S.-K. Review of Hydrogen Gas Sensors for Future Hydrogen Mobility Infrastructure. Appl. Sci. Converg. Technol. 2022, 31, 79–84. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Mohseni-Dargah, M.; Falahati, Z.; Abbassi, R.; Razmjou, A.; Asadnia, M. Sensing Advancement towards Safety Assessment of Hydrogen Fuel Cell Vehicles. J. Power Sources 2021, 489, 229450. [Google Scholar] [CrossRef]
- Darmadi, I.; Nugroho, F.A.A.; Langhammer, C. High-Performance Nanostructured Palladium-Based Hydrogen Sensors—Current Limitations and Strategies for Their Mitigation. ACS Sens. 2020, 5, 3306–3327. [Google Scholar] [CrossRef]
- Yajima, T.; Koide, K.; Fukatsu, N.; Ohashi, T.; Iwahara, H. A new hydrogen sensor for molten aluminum. Sens. Actuators B Chem. 1993, 14, 697–699. [Google Scholar] [CrossRef]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Gorbova, E.; Balkourani, G.; Molochas, C.; Sidiropoulos, D.; Brouzgou, A.; Demin, A.; Tsiakaras, P. Brief Review on High-Temperature Electrochemical Hydrogen Sensors. Catalysts 2022, 12, 1647. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Z.; Tang, Y.; Sun, J.; Wei, X.; Zhang, Q.; Tian, G.; Wang, H. MEMS-Based Resistive Hydrogen Sensor with High Performance Using a Palladium-Gold Alloy Thin Film. J. Alloys Compd. 2023, 930, 167398. [Google Scholar] [CrossRef]
- Xu, L.; Li, T.; Gao, X.; Wang, Y. A High-Performance Three-Dimensional Microheater-Based Catalytic Gas Sensor. IEEE Electron Device Lett. 2012, 33, 284–286. [Google Scholar] [CrossRef]
- Ai, B.; Sun, Y.; Zhao, Y. Plasmonic Hydrogen Sensors. Small 2022, 18, 2107882. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured Metal Oxide Semiconductor-Based Gas Sensors: A Comprehensive Review. Sens. Actuators Phys. 2022, 341, 113578. [Google Scholar] [CrossRef]
- Wang, L.; Lou, Z.; Fei, T.; Zhang, T. Templating Synthesis of ZnO Hollow Nanospheres Loaded with Au Nanoparticles and Their Enhanced Gas Sensing Properties. J. Mater. Chem. 2012, 22, 4767. [Google Scholar] [CrossRef]
- Gautam, D.; Gautam, Y.K.; Sharma, K.; Kumar, A.; Kumar, A.; Srivastava, V.; Singh, B.P. Recent Developments in SnO2 Nanostructures Inspired Hydrogen Gas Sensors. Int. J. Hydrogen Energy 2024, 81, 313–345. [Google Scholar] [CrossRef]
- Wang, B.J.; Ma, S.Y. High Response Ethanol Gas Sensor Based on Orthorhombic and Tetragonal SnO2. Vacuum 2020, 177, 109428. [Google Scholar] [CrossRef]
- Abinaya, M.; Pal, R.; Sridharan, M. Highly Sensitive Room Temperature Hydrogen Sensor Based on Undoped SnO2 Thin Films. Solid State Sci. 2019, 95, 105928. [Google Scholar] [CrossRef]
- Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T. Hydrogen Sensors Made of Undoped and Pt-Doped SnO2 Nanowires. J. Alloys Compd. 2009, 488, L21–L25. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Sun, Y.; Li, P.; Ji, J.; Chen, Y.; Zhang, W.; Hu, J. Fabrication and Gas Sensing Properties of Au-Loaded SnO2 Composite Nanoparticles for Highly Sensitive Hydrogen Detection. Sens. Actuators B Chem. 2017, 240, 664–673. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, Q.; Xu, L.; Gui, Y.; Zhao, Z.; Tang, C.; Chen, W. Synthesis and Characterization of Highly Sensitive Hydrogen (H2) Sensing Device Based on Ag Doped SnO2 Nanospheres. Materials 2018, 11, 492. [Google Scholar] [CrossRef]
- Duoc, V.T.; Nguyen, H.; Ngoc, T.M.; Xuan, C.T.; Hung, C.M.; Duy, N.V.; Hoa, N.D. Hydrogen Gas Sensor Based on Self-Heating Effect of SnO2/Pt Thin Film with Ultralow Power Consumption. Int. J. Hydrogen Energy 2024, 61, 774–782. [Google Scholar] [CrossRef]
- Li, G.; Du, K.; Wang, X.; Wang, X.; Chen, B.; Qiu, C.; Xu, J. Pd Nanoparticles Decorated SnO2 Ultrathin Nanosheets for Highly Sensitive H2 Sensor: Experimental and Theoretical Studies. Int. J. Hydrogen Energy 2024, 50, 761–771. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultra-Fast Response and Highly Selectivity Hydrogen Gas Sensor Based on Pd/SnO2 Nanoparticles. Int. J. Hydrogen Energy 2022, 47, 3157–3169. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Improving the Hydrogen Sensing Properties of SnO2 Nanowire-Based Conductometric Sensors by Pd-Decoration. Sens. Actuators B Chem. 2019, 285, 358–367. [Google Scholar] [CrossRef]
- Johnson, N.J.J.; Lam, B.; MacLeod, B.P.; Sherbo, R.S.; Moreno-Gonzalez, M.; Fork, D.K.; Berlinguette, C.P. Facets and Vertices Regulate Hydrogen Uptake and Release in Palladium Nanocrystals. Nat. Mater. 2019, 18, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, C.; Zhdanov, V.P.; Zorić, I.; Kasemo, B. Size-Dependent Kinetics of Hydriding and Dehydriding of Pd Nanoparticles. Phys. Rev. Lett. 2010, 104, 135502. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Synthesis of Pd Nanoparticle-Decorated SnO2 Nanowires and Determination of the Optimum Quantity of Pd Nanoparticles for Highly Sensitive and Selective Hydrogen Gas Sensor. Sens. Actuators B Chem. 2020, 322, 128651. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. A Superior Sensor Consisting of Porous, Pd Nanoparticle–Decorated SnO2 Nanotubes for the Detection of Ppb-Level Hydrogen Gas. J. Alloys Compd. 2022, 907, 164459. [Google Scholar] [CrossRef]
- Kim, M.H.; Jang, B.; Kim, W.; Lee, W. Enhanced Hydrogen Sensing Properties of Pd-Coated SnO2 Nanorod Arrays in Nitrogen and Transformer Oil. Sens. Actuators B Chem. 2019, 283, 890–896. [Google Scholar] [CrossRef]
- Coutancier, D.; Zhang, S.-T.; Bernardini, S.; Fournier, O.; Mathieu-Pennober, T.; Donsanti, F.; Tchernycheva, M.; Foldyna, M.; Schneider, N. ALD of ZnO:Ti: Growth Mechanism and Application as an Efficient Transparent Conductive Oxide in Silicon Nanowire Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 21036–21044. [Google Scholar] [CrossRef] [PubMed]
- Baraban, L.; Ibarlucea, B.; Baek, E.; Cuniberti, G. Hybrid Silicon Nanowire Devices and Their Functional Diversity. Adv. Sci. 2019, 6, 1900522. [Google Scholar] [CrossRef]
- Peng, F.; Su, Y.; Zhong, Y.; Fan, C.; Lee, S.-T.; He, Y. Silicon Nanomaterials Platform for Bioimaging, Biosensing, and Cancer Therapy. Acc. Chem. Res. 2014, 47, 612–623. [Google Scholar] [CrossRef]
- Tripathi, R.; Chauhan, V.; Gandharapu, P.; Kobi, S.; Mukhopadhyay, A.; Dusane, R.O. Si Nanowires Grown on Cu Substrates via the Hot-Wire-Assisted Vapor–Liquid–Solid Method for Use as Anodes for Li-Ion Batteries. ACS Appl. Nano Mater. 2022, 5, 17767–17782. [Google Scholar] [CrossRef]
- Xu, J.; Refino, A.D.; Delvalle, A.; Seibert, S.; Schwalb, C.; Hansen, P.E.; Foldyna, M.; Siaudinyte, L.; Hamdana, G.; Wasisto, H.S.; et al. Deep-Reactive Ion Etching of Silicon Nanowire Arrays at Cryogenic Temperatures. Appl. Phys. Rev. 2024, 11, 021411. [Google Scholar] [CrossRef]
- Wendisch, F.J.; Rey, M.; Vogel, N.; Bourret, G.R. Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching. Chem. Mater. 2020, 32, 9425–9434. [Google Scholar] [CrossRef]
- Soueiti, J.; Sarieddine, R.; Kadiri, H.; Alhussein, A.; Lerondel, G.; Habchi, R. A Review of Cost-Effective Black Silicon Fabrication Techniques and Applications. Nanoscale 2023, 15, 4738–4761. [Google Scholar] [CrossRef]
- Cuscunà, M.; Convertino, A.; Zampetti, E.; Macagnano, A.; Pecora, A.; Fortunato, G.; Felisari, L.; Nicotra, G.; Spinella, C.; Martelli, F. On-Chip Fabrication of Ultrasensitive NO2 Sensors Based on Silicon Nanowires. Appl. Phys. Lett. 2012, 101, 103101. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Liu, D.; Wang, K. Dendritic Composite Array of Silicon Nanowires/WO3 Nanowires for Sensitive Detection of NO2 at Room Temperature. Mater. Lett. 2017, 207, 29–32. [Google Scholar] [CrossRef]
- Noh, J.-S.; Kim, H.; Kim, B.S.; Lee, E.; Cho, H.H.; Lee, W. High-Performance Vertical Hydrogen Sensors Using Pd-Coated Rough Si Nanowires. J. Mater. Chem. 2011, 21, 15935. [Google Scholar] [CrossRef]
- Lai, R.A.; Hymel, T.M.; Narasimhan, V.K.; Cui, Y. Schottky Barrier Catalysis Mechanism in Metal-Assisted Chemical Etching of Silicon. ACS Appl. Mater. Interfaces 2016, 8, 8875–8879. [Google Scholar] [CrossRef]
- Qi, L.; Song, B.; Wu, H.; Tong, Y.; Li, L.; Wu, H.; Shi, K. Synthesis of Ag-Doped SnO2 Nanoflowers and Applications to Room Temperature High-Performance NO2 Gas Sensing. Sens. Actuators 2024, 420, 136494. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.-J.; Liang, S.; Ji, Q.; Zhu, J.; Xia, Y. Ultrafine SnO2/Sn Nanoparticles Embedded into an In Situ Generated Meso-/Macroporous Carbon Matrix with a Tunable Pore Size. Langmuir 2022, 38, 1689–1697. [Google Scholar] [CrossRef]
- Gao, J.; Wu, B.; Cao, C.; Zhan, Z.; Ma, W.; Wang, X. Unraveling the dynamic evolution of Pd species on Pd-loaded ZnO nanorods for different hydrogen sensing behaviors. ACS Sustain. Chem. Eng. 2021, 9, 6370–6379. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, T.; Li, X.; Li, Q.; Zhang, X.; Cao, T.; Li, Y.; Zhang, L.; Guo, L.; Fu, Y. Pd-Decorated PdO Hollow Shells: A H2-Sensing System in Which Catalyst Nanoparticle and Semiconductor Support Are Interconvertible. ACS Appl. Mater. Interfaces 2020, 12, 42971–42981. [Google Scholar] [CrossRef]
- Khan, A.; Rahman, F.; NongJal, R.; Asokan, K. Optical Transmittance and Electrical Transport Investigations of Fe-Doped In2O3 Thin Films. Appl. Phys. A 2021, 127, 339. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Michail, G.; Katerinopoulou, D.; Moschovis, K.; Iliopoulos, E.; Kiriakidis, G.; Binas, V.; Aperathitis, E. Transparent P-Type NiO:Al Thin Films as Room Temperature Hydrogen and Methane Gas Sensors. Mater. Sci. Semicond. Process. 2020, 109, 104922. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef]
- Sun, J.; Yin, G.; Cai, T.; Yu, W.; Peng, F.; Sun, Y.; Zhang, F.; Lu, J.; Ge, M.; He, D. The Role of Oxygen Vacancies in the Sensing Properties of Ni Substituted SnO2 Microspheres. RSC Adv. 2018, 8, 33080–33086. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Tang, K.; Wang, H.; Chen, T.; Jiang, K.; Zhou, T.; Quan, H.; Guo, R. Ultralow Detection Limit and Ultrafast Response/Recovery of the H2 Gas Sensor Based on Pd-Doped rGO/ZnO-SnO2 from Hydrothermal Synthesis. Microsyst. Nanoeng. 2022, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, K.; Yang, P.; Fu, X.; Wang, Z.; Yang, S.; Xiong, J.; Zhang, X.; Hu, Y.; Gu, H. Hydrogen Sensors Based on Pt-Decorated SnO2 Nanorods with Fast and Sensitive Room-Temperature Sensing Performance. J. Alloys Compd. 2019, 811, 152086. [Google Scholar] [CrossRef]
- Tang, X.; Haddad, P.-A.; Mager, N.; Geng, X.; Reckinger, N.; Hermans, S.; Debliquy, M.; Raskin, J.-P. Chemically Deposited Palladium Nanoparticles on Graphzene for Hydrogen Sensor Applications. Sci. Rep. 2019, 9, 3653. [Google Scholar]
- Bang, J.H.; Choi, M.S.; Mirzaei, A.; Oum, W.; Han, S.; Kim, S.S.; Kim, H.W. Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 2020, 46, 604–611. [Google Scholar] [CrossRef]
- Van Toan, N.; Chien, N.V.; Van Duy, N.; Hong, H.S.; Nguyen, H.; Hoa, N.D.; Van Hieu, N. Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands. J. Hazard. Mater. 2016, 301, 433–442. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultrasensitive gas sensor based on Pd/SnS2/SnO2 nanocomposites for rapid detection of H2. Sens. Actuators B Chem. 2022, 359, 131612. [Google Scholar] [CrossRef]
- Pandey, G.; Bhardwaj, M.; Kumar, S.; Lawaniya, S.D.; Kumar, M.; Dwivedi, P.K.; Awasthi, K. Synergistic effects of Pd-Ag decoration on SnO/SnO2 nanosheets for enhanced hydrogen sensing. Sens. Actuators B Chem. 2024, 402, 135062. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Liu, L.; Xu, X.; Wang, Z.; Wang, W.; Zheng, W.; Dong, B.; Wang, C. Enhancement of hydrogen monitoring properties based on Pd–SnO2 composite nanofibers. Sens. Actuators B Chem. 2010, 147, 111–115. [Google Scholar] [CrossRef]
Sensor | Description |
---|---|
Sensor 1 | SiNW-based Pd (1 nm)-decorated SnO2 naofilm (40 nm) |
Sensor 2 | SiNW-based SnO2 nanofilm (40 nm) |
Sensor 3 | 40 nm-thick SnO2 nanofilm without SiNW substrate and Pd decoration |
Sensor 4 | SiNW-based SnO2 nanofilm (30 nm) |
Sensor 5 | SiNW-based SnO2 nanofilm (50 nm) |
Sensor 6 | SiNW-based Pd (3 nm)-decorated SnO2 nanofilm (40 nm) |
Sensor 7 | SiNW-based Pd (6 nm)-decorated SnO2 nanofilm (40 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, T.; Mo, T.; Xu, X.; Tao, H.; Wang, H.; Yu, B.; Zhao, Z.-J. Pd-Decorated SnO2 Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing. Sensors 2025, 25, 655. https://doi.org/10.3390/s25030655
Fang T, Mo T, Xu X, Tao H, Wang H, Yu B, Zhao Z-J. Pd-Decorated SnO2 Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing. Sensors. 2025; 25(3):655. https://doi.org/10.3390/s25030655
Chicago/Turabian StyleFang, Tiejun, Tianyang Mo, Xianwu Xu, Hongwei Tao, Hongbo Wang, Bingjun Yu, and Zhi-Jun Zhao. 2025. "Pd-Decorated SnO2 Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing" Sensors 25, no. 3: 655. https://doi.org/10.3390/s25030655
APA StyleFang, T., Mo, T., Xu, X., Tao, H., Wang, H., Yu, B., & Zhao, Z.-J. (2025). Pd-Decorated SnO2 Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing. Sensors, 25(3), 655. https://doi.org/10.3390/s25030655