Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Keywords = silica precursors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7274 KiB  
Article
Sol–Gel-Derived Silica/Alumina Particles for Enhancing the Mechanical Properties of Acrylate Composite Materials
by Khaled Altwair, Vladisav Tadić, Miloš Petrović, Andrija Savić, Vesna Radojević, Radmila Jančić Heinemann and Marija M. Vuksanović
Gels 2025, 11(8), 575; https://doi.org/10.3390/gels11080575 - 24 Jul 2025
Viewed by 281
Abstract
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was [...] Read more.
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was calcined at 1000 °C, yielding an α-cristobalite form of silica and corundum-phase alumina. These hybrid particles were introduced into polymer composites at reinforcement levels of 1 wt.%, 3 wt.%, and 5 wt.%. Mechanical behavior was evaluated through three-point bending tests, Shore D hardness measurements, and controlled-energy impact testing. Among the formulations, the 3 wt.% composite exhibited optimal performance, displaying the highest flexural modulus and strength, along with enhanced impact resistance. Hardness increased with rising particle content. Fractographic analysis revealed that the 3 wt.% loading produced a notably rougher fracture surface, correlating with improved energy absorption. In contrast, the 5 wt.% composite, although harder than the matrix and other composites, exhibited diminished toughness due to particle agglomeration. Full article
(This article belongs to the Special Issue Advances in Composite Gels (3rd Edition))
Show Figures

Figure 1

26 pages, 4303 KiB  
Article
Thermal Degradation and Microstructural Evolution of Geopolymer-Based UHPC with Silica Fume and Quartz Powder
by Raghda A. Elhefny, Mohamed Abdellatief, Walid E. Elemam and Ahmed M. Tahwia
Infrastructures 2025, 10(8), 192; https://doi.org/10.3390/infrastructures10080192 - 22 Jul 2025
Viewed by 213
Abstract
The durability and fire resilience of concrete structures are increasingly critical in modern construction, particularly under elevated-temperature exposure. With this context, the current study explores the thermal and microstructural characteristics of geopolymer-based ultra-high-performance concrete (G-UHPC) incorporating quartz powder (QP) and silica fume (SF) [...] Read more.
The durability and fire resilience of concrete structures are increasingly critical in modern construction, particularly under elevated-temperature exposure. With this context, the current study explores the thermal and microstructural characteristics of geopolymer-based ultra-high-performance concrete (G-UHPC) incorporating quartz powder (QP) and silica fume (SF) after exposure to elevated temperatures. SF was used at 15% and 30% to partially replace the precursor material, while QP was used at 25%, 30%, and 35% as a partial replacement for fine sand. The prepared specimens were exposed to 200 °C, 400 °C, and 800 °C, followed by air cooling. Mechanical strength tests were conducted to evaluate compressive and flexural strengths, as well as failure patterns. Microstructural changes due to thermal exposure were assessed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Among the prepared mixtures, the 30SF35QP mixture exhibited the highest compressive strength (156.0 MPa), followed by the 15SF35QP mix (146.83 MPa). The experimental results demonstrated that G-UHPC underwent varying levels of thermal degradation across the 200–800 °C range yet displayed excellent resistance to thermal spalling. At 200 °C, compressive strength increased due to enhanced geopolymerization, with the control mix showing a 29.8% increase. However, significant strength reductions were observed at 800 °C, where the control mix retained only 30.8% (32.0 MPa) and the 30SF25QP mixture retained 28% (38.0 MPa) of their original strengths. Despite increased porosity and cracking at 800 °C, the 30SF35QP mixture exhibited superior strength retention due to its denser matrix and reduced voids. The EDS results confirmed improved gel stability in the 30% SF mixtures, as evidenced by higher silicon content. These findings suggest that optimizing SF and QP content significantly enhances the fire resistance and structural integrity of G-UHPC, providing practical insights for the design of sustainable, high-performance concrete structures in fire-prone environments. Full article
Show Figures

Figure 1

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 363
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

11 pages, 1263 KiB  
Article
Characteristics of Laterite Soil for Potential Geopolymer Applications
by Zeyneb K. Nuru, Walied A. Elsaigh and Elsabe P. Kearsley
Minerals 2025, 15(7), 719; https://doi.org/10.3390/min15070719 - 9 Jul 2025
Viewed by 366
Abstract
Laterite soil is widely found in various tropical and subtropical regions. This study focuses on the physical and chemical properties of laterite soil as a precursor for geopolymer synthesis. The characteristics of the soil were determined through experimental analyses, including XRF, XRD, SEM, [...] Read more.
Laterite soil is widely found in various tropical and subtropical regions. This study focuses on the physical and chemical properties of laterite soil as a precursor for geopolymer synthesis. The characteristics of the soil were determined through experimental analyses, including XRF, XRD, SEM, EDS, FTIR, TGA/DTA, and pH measurements. XRF analysis revealed that the primary chemical oxides are silica, alumina, and iron oxide, which are very essential for geopolymer production. Both XRD and FTIR assessments revealed that the calcination process applied to laterite diminishes its crystallinity while enhancing its amorphous nature, thereby improving its reactivity. TGA and DTA results confirmed significant weight loss and dihydroxylation between 400 °C and 700 °C, while temperatures above 700 °C showed minimal weight loss and no further dihydroxylation. The pH of the tested laterite soil was measured at 5.35, indicating strong acidic behaviour. Based on these combined chemical and physical analyses, this study concludes that laterite soil is a viable precursor material for geopolymer synthesis. Full article
Show Figures

Figure 1

28 pages, 53432 KiB  
Article
Deposition of Mesoporous Silicon Dioxide Films Using Microwave PECVD
by Marcel Laux, Ralf Dreher, Rudolf Emmerich and Frank Henning
Materials 2025, 18(13), 3205; https://doi.org/10.3390/ma18133205 - 7 Jul 2025
Viewed by 278
Abstract
Mesoporous silicon dioxide films have been shown to be well suited as adhesion-promoting interlayers for generating high-strength polymer–metal interfaces. These films can be fabricated via microwave plasma-enhanced chemical vapor deposition using the precursor hexamethyldisiloxane and oxygen as working gas. The resulting mesoporous structures [...] Read more.
Mesoporous silicon dioxide films have been shown to be well suited as adhesion-promoting interlayers for generating high-strength polymer–metal interfaces. These films can be fabricated via microwave plasma-enhanced chemical vapor deposition using the precursor hexamethyldisiloxane and oxygen as working gas. The resulting mesoporous structures enable polymer infiltration during overmolding, which leads to a nanoscale form-locking mechanism after solidification. This mechanism allows for efficient stress transfer across the interface and makes the resulting adhesion highly dependent on the morphology of the deposited film. To gain a deeper understanding of the underlying deposition mechanisms and improve process stability, this work investigates the growth behavior of mesoporous silica films using a multiple regression analysis approach. The seven process parameters coating time, distance, chamber pressure, substrate temperature, flow rate, plasma pulse duration, and pause-to-pulse ratio were systematically varied within a Design of Experiments framework. The resulting films were characterized by their free surface area, mean agglomerate diameter, and film thickness using digital image analysis, white light interferometry, and atomic force microscopy. The deposited films exhibit a wide range of morphological appearances, ranging from quasi-dense to dust-like structures. As part of this research, the free surface area varied from 15 to 55 percent, the mean agglomerate diameter from 17 to 126 nm, and the film thickness from 35 to 1600 nm. The derived growth model describes the deposition process with high statistical accuracy. Furthermore, all coatings were overmolded via injection molding and subjected to mechanical testing, allowing a direct correlation between film morphology and their performance as adhesion-promoting interlayers. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

17 pages, 5613 KiB  
Article
Hierarchical Affinity Engineering in Amine-Functionalized Silica Membranes for Enhanced CO2 Separation: A Combined Experimental and Theoretical Study
by Zhenghua Guo, Qian Li, Kaidi Guo and Liang Yu
Membranes 2025, 15(7), 201; https://doi.org/10.3390/membranes15070201 - 2 Jul 2025
Viewed by 507
Abstract
Excessive carbon dioxide (CO2) emissions represent a critical challenge in mitigating global warming, necessitating advanced separation technologies for efficient carbon capture. Silica-based membranes have attracted significant attention due to their exceptional chemical, thermal, and mechanical stability under harsh operating conditions. In [...] Read more.
Excessive carbon dioxide (CO2) emissions represent a critical challenge in mitigating global warming, necessitating advanced separation technologies for efficient carbon capture. Silica-based membranes have attracted significant attention due to their exceptional chemical, thermal, and mechanical stability under harsh operating conditions. In this study, we introduce a novel layered hybrid membrane designed based on amine-functionalized silica precursors, where a distinct affinity gradient is engineered by incorporating two types of amine-functionalized materials. The top layer was composed of high-affinity amine species to maximize CO2 sorption, while a sublayer with milder affinity facilitated smooth CO2 diffusion, thereby establishing a continuous solubility gradient across the membrane. A dual approach, combining comprehensive experimental testing and rigorous theoretical modeling, was employed to elucidate the underlying CO2 transport mechanisms. Our results reveal that the hierarchical structure significantly enhances the intrinsic driving force for CO2 permeation, leading to superior separation performance compared to conventional homogeneous facilitated transport membranes. This study not only provides critical insights into the design principles of affinity gradient membranes but also demonstrates their potential for scalable, high-performance CO2 separation in industrial applications. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

20 pages, 5010 KiB  
Article
Antimicrobial, Oxidant, Cytotoxic, and Eco-Safety Properties of Sol–Gel-Prepared Silica–Copper Nanocomposite Materials
by Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Albena Bachvarova-Nedelcheva, Yoanna Kostova, Stela Atanasova-Vladimirova, Elena Nenova, Iliana Ivanova, Lyubomira Yocheva and Elitsa Pavlova
Pharmaceuticals 2025, 18(7), 976; https://doi.org/10.3390/ph18070976 - 28 Jun 2025
Viewed by 474
Abstract
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples [...] Read more.
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples were denoted as Si/Cu (gel) and Si/Cu/500 (500 °C heat-treated). Their phase formation and morphology were studied by XRD and SEM. The antibacterial activity was tested by two Gram-positive bacteria, three Gram-negative bacteria, and two types of eukaryotic species. Most bacteria were more sensitive to Si/Cu/500 materials than to Si/Cu (gel). The yeasts were more sensitive to Si/Cu (gel). The new nanomaterials were tested for oxidant activity at pH 7.4 (physiological) and pH 8.5 (optimal) in three model systems by the chemiluminescent method. They significantly inhibited the generation of free radicals and ROS. This result underlines their potential as regulators of the free radical processes in living systems. The epithelial tumor cell lines appeared more sensitive than the non-transformed fibroblasts, likely due to their metabolic activity and proliferation rates, leading to greater accumulation of the substances. Using Daphnia magna, the ecotoxicity study showed that the LC50 was reached at 1 mg/L of Si/Cu/500. Si/Cu (gel) was more toxic. Conclusions: Our results reveal the potential of these nanohybrids to be applied in living, eukaryotic systems. The cytotoxicity evaluation showed higher tolerance of normal, non-transformed cells, in concurrence with the oxidation tests. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Figure 1

25 pages, 3946 KiB  
Review
Application Possibilities of Sustainable Nanostructured Silica-Based Materials in Cosmetics
by Veronica Latini, Agnieszka Feliczak-Guzik and Agata Wawrzyńczak
Cosmetics 2025, 12(4), 134; https://doi.org/10.3390/cosmetics12040134 - 25 Jun 2025
Viewed by 813
Abstract
Nanostructured silica-based materials, including mesoporous silica nanoparticles (SiNPs), show a wide range of applications in various areas, such as food, pharmaceutical, and cosmetic industries. This is mainly due to their unique properties, namely biocompatibility, stability, adjustable pore size, a highly developed specific surface [...] Read more.
Nanostructured silica-based materials, including mesoporous silica nanoparticles (SiNPs), show a wide range of applications in various areas, such as food, pharmaceutical, and cosmetic industries. This is mainly due to their unique properties, namely biocompatibility, stability, adjustable pore size, a highly developed specific surface area, and simplicity in surface modification. Currently, special emphasis is placed on obtaining nanostructured silica-based materials using so-called green methods, which not only reduce toxic by-products, but also enable the use of raw materials from plants, agricultural and industrial waste, as well as bacteria or fungi. This trend is particularly evident in the cosmetic industry, which is striving to reduce the adverse environmental and social impacts of cosmetic production. Therefore, this article presents a review of the literature from the last ten years, which describes issues related to the possibilities of replacing synthetic silica-based ingredients in cosmetic products with their more environmentally friendly counterparts. Special emphasis has been placed on the application possibilities of sustainable nanostructured silica-based materials and their potential toxicity in topical formulations. The possibilities of obtaining nanostructured silica-based materials through green synthesis and using natural silica precursors have been briefly presented, as well as the options for modifying the surface of these materials. Full article
Show Figures

Figure 1

9 pages, 859 KiB  
Article
The Impact of Arginine Side Chains on the Mechanism of Polycondensation of Silicic Acid in Bioinspired Mineralization
by Jose Lanuza and Enrico Ravera
Inorganics 2025, 13(6), 206; https://doi.org/10.3390/inorganics13060206 - 19 Jun 2025
Viewed by 379
Abstract
The polycondensation of silica from soluble silicic acid is at the basis of several chemical processes. The usual industrial route requires harsh pH conditions and high concentrations of the precursor molecules, not to mention a thermal treatment for obtaining condensed structures. On the [...] Read more.
The polycondensation of silica from soluble silicic acid is at the basis of several chemical processes. The usual industrial route requires harsh pH conditions and high concentrations of the precursor molecules, not to mention a thermal treatment for obtaining condensed structures. On the other hand, biological organisms can promote the precipitation of silica under physiological conditions, including temperature and pH, and low concentrations of precursors. The key to this process is the use of polycationic molecules. Despite the relevance of these processes in modern industrial inorganic chemistry, this fascinating process is still not completely understood. Recent studies converge in pointing out that the role of the polycation is to create supersaturation of silicic acid in its immediate proximity, which would explain the impact of the polycation on the reaction rates. However, it remains unclear whether these polycations also directly influence the reaction mechanism at a molecular level. In this manuscript, we address this question by analyzing the reaction pathway of silicic acid dimerization in the presence of guanidinium as a mimic of the arginine side chain, through DFT calculations. We found that the impact on the reaction pathway is minimal, which strengthens the hypothesis of the local supersaturation driven by the polycationic molecules. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Italy)
Show Figures

Graphical abstract

12 pages, 2793 KiB  
Article
Varying Synthesis Parameters of Potato Starch Aerogel for Aerospace Applications
by Jacob Staker, Daniel A. Scheiman, Janice Mather, Jamesa L. Stokes and Haiquan Guo
Gels 2025, 11(6), 467; https://doi.org/10.3390/gels11060467 - 18 Jun 2025
Viewed by 292
Abstract
Aerogels have the potential for usage in many daily and high-tech aerospace applications. Silica aerogels are fragile, while organic aerogels are much tougher, but they are both generally synthesized using toxic solvents. Biodegradable aerogels, if they possess similar properties as polymer aerogels, could [...] Read more.
Aerogels have the potential for usage in many daily and high-tech aerospace applications. Silica aerogels are fragile, while organic aerogels are much tougher, but they are both generally synthesized using toxic solvents. Biodegradable aerogels, if they possess similar properties as polymer aerogels, could be widely utilized in many aerospace applications and offer environmental benefits. In this work, potato starch aerogels were systematically studied. The potato starch concentration, the amount of plasticizer (glycerol), and an acid source (acetic acid) were varied. The relationship of the precursors on potato starch aerogel’s properties, such as density, shrinkage, porosity, BET surface area, mechanical properties, and thermal conductivities, were researched. The resulting potato starch aerogels possess suitable density, Young’s modulus, and thermal conductivity for use in many aerospace applications. Full article
(This article belongs to the Special Issue Polymer Aerogels and Aerogel Composites)
Show Figures

Graphical abstract

23 pages, 4661 KiB  
Article
Microstructural, Mechanical and Fresh-State Performance of BOF Steel Slag in Alkali-Activated Binders: Experimental Characterization and Parametric Mix Design Method
by Lucas B. R. Araújo, Daniel L. L. Targino, Lucas F. A. L. Babadopulos, Heloina N. Costa, Antonio E. B. Cabral and Juceline B. S. Bastos
Buildings 2025, 15(12), 2056; https://doi.org/10.3390/buildings15122056 - 15 Jun 2025
Viewed by 509
Abstract
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits [...] Read more.
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits its applications. This paper proposes a systematic parametric validation for AAB mix design applied to pastes and concretes, valorizing steel slag as precursors. The composed binders are based on coal fly ash (FA) and Basic Oxygen Furnace (BOF) steel slag. These precursors were activated with sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) alkaline solutions. A parametric investigation was performed on the mix design parameters, sweeping the (i) alkali content from 6% to 10%, (ii) silica modulus (SiO2/Na2O) from 0.75 to 1.75, and (iii) ash-to-slag ratios in the proportions of 75:25 and 50:50, using parametric intervals retrieved from the literature. These variations were analyzed using response surface methodology (RSM) to develop a mechanical model of the compressive strength of the hardened paste. Flowability, yield stress, and setting time were evaluated. Statistical analyses, ANOVA and the Duncan test, validated the model and identified interactions between variables. The concrete formulation design was based on aggregates packing analysis with different paste contents (from 32% up to 38.4%), aiming at self-compacting concrete (SCC) with slump flow class 1 (SF1). The influence of the curing condition was evaluated, varying with ambient and thermal conditions, at 25 °C and 65 °C, respectively, for the initial 24 h. The results showed that lower silica modulus (0.75) achieved the highest compressive strength at 80.1 MPa (28 d) for pastes compressive strength, densifying the composite matrix. The concrete application of the binder achieved SF1 fluidity, with 575 mm spread, 64.1 MPa of compressive strength, and 26.2 GPa of Young’s modulus in thermal cure conditions. These findings demonstrate the potential for developing sustainable high-performance materials based on parametric design of AAB formulations and mix design. Full article
(This article belongs to the Special Issue Advances in Cementitious Materials)
Show Figures

Figure 1

15 pages, 1643 KiB  
Article
Flow Synthesis of Pharmaceutical Intermediate Catalyzed by Immobilized DERA: Comparison of Different Immobilization Techniques and Reactor Designs
by Dino Skendrović, Anita Šalić, Ivan Karlo Cingesar, Marta Pinčić and Ana Vrsalović Presečki
Molecules 2025, 30(11), 2276; https://doi.org/10.3390/molecules30112276 - 22 May 2025
Viewed by 588
Abstract
The enzymatic synthesis of statin intermediates offers a sustainable alternative to traditional multistep chemical methods. This study investigates the continuous flow synthesis of statin precursors in a millireactor using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) immobilized on mesoporous silica foam (MCF) and magnetic nanoparticles (MNPs). Two [...] Read more.
The enzymatic synthesis of statin intermediates offers a sustainable alternative to traditional multistep chemical methods. This study investigates the continuous flow synthesis of statin precursors in a millireactor using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) immobilized on mesoporous silica foam (MCF) and magnetic nanoparticles (MNPs). Two types of flow millireactors, a fixed bed millireactor for MCF and a fluidized bed millireactor for MNP, were designed. Key performance indicators including conversion, selectivity, yield, and productivity were analyzed and compared with the batch reactor results. The MNP-based fluidized bed millisystem demonstrated superior conversion (97.78%) and yield (95.85%) under optimized conditions, outperforming both batch and MCF-based millisystems. This work highlights the importance of optimizing immobilization techniques and reactor configurations to enhance enzyme stability and catalytic efficiency in continuous biocatalytic processes, particularly for pharmaceutical applications. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 608
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

17 pages, 5531 KiB  
Article
Eco-Friendly Polypropylene Composites Reinforced with Cellulose Fibers and Silica Nanoparticles
by Rinat M. Iskakov, Aigul S. Bukanova, Altynay S. Kalauova, Fazilat B. Kairliyeva, Alimzhan N. Nauashev, Gulbarshin K. Shambilova, Ivan M. Obidin, Mikhail S. Kuzin, Dmitryi N. Chernenko, Timofey D. Patsaev, Pavel S. Gerasimenko, Igor S. Makarov and Ivan Yu. Skvortsov
Polymers 2025, 17(10), 1290; https://doi.org/10.3390/polym17101290 - 8 May 2025
Cited by 1 | Viewed by 749
Abstract
In this study, polymer composites based on a polypropylene (PP) matrix with the addition of cellulose and ES-40, used as a silica precursor, were investigated. These composites were designed to achieve enhanced biodegradability through the incorporation of bioavailable cellulose and to enable subsequent [...] Read more.
In this study, polymer composites based on a polypropylene (PP) matrix with the addition of cellulose and ES-40, used as a silica precursor, were investigated. These composites were designed to achieve enhanced biodegradability through the incorporation of bioavailable cellulose and to enable subsequent carbonization into carbon–silicon carbide systems. Rheological investigations revealed that the multicomponent mixtures exhibited pseudoplastic behavior over the shear rate range typical of injection molding, ensuring process stability without additional plasticization. Morphological analysis demonstrated that an optimal balance of PP, cellulose, and ES-40 promoted the formation of a three-dimensional network structure, leading to a significant increase in flexural modulus at the equal flexural strength despite some reduction in tensile strength. It was further shown that substituting fibrous cellulose with microcrystalline cellulose improved the composite homogeneity, thereby enhancing the density and mechanical properties, especially in systems with low polymer contents. Preliminary pyrolysis experiments indicated that these injection-molded composites can serve as precursors for fabricating bulk thermally stable products containing silicon carbide particles. The obtained results underscore the high potential of the developed materials for applications in conventional injection molding, the possibility of additive manufacturing, and processes requiring subsequent carbonization. Full article
(This article belongs to the Special Issue Development in Carbon-Fiber-Reinforced Polymer Composites)
Show Figures

Graphical abstract

19 pages, 9914 KiB  
Article
Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers
by Joaquín Penide, Efstratios Stavrakakis, Félix Quintero, Danai Poulidi, Antonio Riveiro, Jesús del Val, Rafael Comesaña, Fernando Lusquiños and Juan Pou
Fibers 2025, 13(5), 59; https://doi.org/10.3390/fib13050059 - 7 May 2025
Viewed by 899
Abstract
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to [...] Read more.
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to maximize surface and enable a high sorption rate. In this work, we present an original approach based on the use of a novel architecture of precursors in the form of very thin free-standing solid silica fibers. An original technique called continuous fiberizing by laser melting (Cobiflas) was used to obtain membranes of pure silica fibers with diameters in the micrometer range, forming a porous membrane which offer a high surface and porous connectivity to be used as precursors without any supporting substrate. Then, we employed a method based on the impregnation of the silica fibers within a lithium-containing aqueous solution and subsequent calcination to obtain a porous solid adsorbent with the maximum proportion of lithium orthosilicate. This method is compared with the results obtained using a sol-gel powder method by analyzing their composition using X-Ray Diffraction (XRD), and their adsorption capacity and adsorption kinetics by Thermogravimetric analyses (TGA). As a result, an outstanding type of solid adsorbent is reported with a 31% adsorption capacity and a total regeneration capacity, which is over 0.8 efficiency with regard to the theoretical maximum adsorption of this material. Full article
Show Figures

Figure 1

Back to TopTop