Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (630)

Search Parameters:
Keywords = short-term load forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4306 KiB  
Article
A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models
by Donglin Li, Xiaoxin Zhao, Weimao Xu, Chao Ge and Chunzheng Li
Energies 2025, 18(14), 3781; https://doi.org/10.3390/en18143781 - 17 Jul 2025
Abstract
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the [...] Read more.
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

24 pages, 26654 KiB  
Article
Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks
by Vasileios Zelios, Paris Mastorocostas, George Kandilogiannakis, Anastasios Kesidis, Panagiota Tselenti and Athanasios Voulodimos
Electronics 2025, 14(14), 2820; https://doi.org/10.3390/electronics14142820 - 14 Jul 2025
Viewed by 239
Abstract
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network [...] Read more.
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to forecast hourly electricity demand is investigated. The proposed models were trained on historical load data from the Greek power system spanning the years 2013 to 2016. Various deep learning architectures were implemented and their forecasting performances using statistical metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were evaluated. The experiments utilized multiple time horizons (1 h, 2 h, 24 h) and input sequence lengths (6 h to 168 h) to assess model accuracy and robustness. The best performing GRU model achieved an RMSE of 83.2 MWh and a MAPE of 1.17% for 1 h ahead forecasting, outperforming both LSTM and RNN in terms of both accuracy and computational efficiency. The predicted values were integrated into a dynamic Power BI dashboard, to enable real-time visualization and decision support. These findings demonstrate the potential of deep learning architectures, particularly GRUs, for operational load forecasting and their applicability to intelligent energy systems in a market-strained environment. Full article
Show Figures

Figure 1

21 pages, 2533 KiB  
Article
Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland)
by Natalia Drop and Adriana Bohdan
Sustainability 2025, 17(14), 6407; https://doi.org/10.3390/su17146407 - 13 Jul 2025
Viewed by 350
Abstract
Accurate short-term passenger forecasts help regional airports align capacity with demand and plan investments effectively. Drawing on quarterly traffic data for 2010–2024 supplied by the Polish Civil Aviation Authority, this study employs Holt–Winters exponential smoothing to predict passenger volumes at Szczecin–Goleniów Airport for [...] Read more.
Accurate short-term passenger forecasts help regional airports align capacity with demand and plan investments effectively. Drawing on quarterly traffic data for 2010–2024 supplied by the Polish Civil Aviation Authority, this study employs Holt–Winters exponential smoothing to predict passenger volumes at Szczecin–Goleniów Airport for 2025. Additive and multiplicative formulations were parameterized with Excel Solver, using the mean absolute percentage error to identify the better-fitting model. The additive version captured both the steady post-pandemic recovery and pronounced seasonal peaks, indicating that passenger throughput is likely to rise modestly year on year, with the highest loads expected in the summer quarter and the lowest in early spring. These findings suggest the airport should anticipate continued growth and consider adjustments to terminal capacity, apron allocation, and staffing schedules to maintain service quality. Because the Holt–Winters method extrapolates historical patterns and does not incorporate external shocks—such as economic downturns, policy changes, or public health crises—its projections are most reliable over the short horizon examined and should be complemented by scenario-based analyses in future work. This study contributes to sustainable airport management by providing a reproducible, data-driven forecasting framework that can optimize resource allocation with minimal environmental impact. Full article
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Optimization of Photovoltaic and Battery Storage Sizing in a DC Microgrid Using LSTM Networks Based on Load Forecasting
by Süleyman Emre Eyimaya, Necmi Altin and Adel Nasiri
Energies 2025, 18(14), 3676; https://doi.org/10.3390/en18143676 - 11 Jul 2025
Viewed by 216
Abstract
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient [...] Read more.
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient temperature, while battery charging and discharging operations are managed according to real-time demand. A simulation framework is developed in MATLAB 2021b to analyze PV output, battery state of charge (SOC), and grid energy exchange. For demand-side management, the Long Short-Term Memory (LSTM) deep learning model is employed to forecast future load profiles using historical consumption data. Moreover, a Multi-Layer Perceptron (MLP) neural network is designed for comparison purposes. The dynamic load prediction, provided by LSTM in particular, improves system responsiveness and efficiency compared to MLP. Simulation results indicate that optimal sizing of PV and storage units significantly reduces energy costs and dependency on the main grid for both forecasting methods; however, the LSTM-based approach consistently achieves higher annual savings, self-sufficiency, and Net Present Value (NPV) than the MLP-based approach. The proposed method supports the design of more resilient and sustainable DC microgrids through data-driven forecasting and system-level optimization, with LSTM-based forecasting offering the greatest benefits. Full article
Show Figures

Figure 1

27 pages, 4389 KiB  
Article
Application of Machine Learning for Fuel Consumption and Emission Prediction in a Marine Diesel Engine Using Diesel and Waste Cooking Oil
by Tadas Žvirblis, Kristina Čižiūnienė and Jonas Matijošius
J. Mar. Sci. Eng. 2025, 13(7), 1328; https://doi.org/10.3390/jmse13071328 - 11 Jul 2025
Viewed by 220
Abstract
This study creates and tests a machine learning model that can predict fuel use and emissions (NOx, CO2, CO, HC, PN) from a marine internal combustion engine when it is running normally. The model learned from data collected from [...] Read more.
This study creates and tests a machine learning model that can predict fuel use and emissions (NOx, CO2, CO, HC, PN) from a marine internal combustion engine when it is running normally. The model learned from data collected from conventional diesel fuel experiments. Subsequently, we evaluated its ability to transfer by employing the parameters associated with waste cooking oil (WCO) biodiesel and its 60/40 diesel mixture. The machine learning model demonstrated exceptional proficiency in forecasting diesel mode (R2 > 0.95), effectively encapsulating both long-term trends and short-term fluctuations in fuel consumption and emissions across various load regimes. Upon the incorporation of WCO data, the model maintained its capacity to identify trends; however, it persistently overestimated emissions of CO, HC, and PN. This discrepancy arose primarily from the differing chemical composition of the fuel, particularly in terms of oxygen content and density. A significant correlation existed between indicators of incomplete combustion and the utilization of fuel. Nonetheless, NOx exhibited an inverse relationship with indicators of combustion efficiency. The findings indicate that the model possesses the capability to estimate emissions in real time, requiring only a modest amount of additional training to operate effectively with alternative fuels. This approach significantly diminishes the necessity for prolonged experimental endeavors, rendering it an invaluable asset for the formulation of fuel strategies and initiatives aimed at mitigating carbon emissions in maritime operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 484 KiB  
Article
Short-Term Forecasting of Total Aggregate Demand in Uncontrolled Residential Charging with Electric Vehicles Using Artificial Neural Networks
by Giovanni Panegossi Formaggio, Mauro de Souza Tonelli-Neto, Danieli Biagi Vilela and Anna Diva Plasencia Lotufo
Inventions 2025, 10(4), 54; https://doi.org/10.3390/inventions10040054 - 8 Jul 2025
Viewed by 182
Abstract
Electric vehicles are gaining attention and being adopted by new users every day. Their widespread use creates a new scenario and challenge for the energy system due to the high energy storage demands they generate. Forecasting these loads using artificial neural networks has [...] Read more.
Electric vehicles are gaining attention and being adopted by new users every day. Their widespread use creates a new scenario and challenge for the energy system due to the high energy storage demands they generate. Forecasting these loads using artificial neural networks has proven to be an efficient way of solving time series problems. This study employs a multilayer perceptron network with backpropagation training and Bayesian regularisation to enhance generalisation and minimise overfitting errors. The research aggregates real consumption data from 200 households and 348 electric vehicles. The developed method was validated using MAPE, which resulted in errors below 6%. Short-term forecasts were made across the four seasons, predicting the total aggregate demand of households and vehicles for the next 24 h. The methodology produced significant and relevant results for this problem using hybrid training, a few-neuron architecture, deep learning, fast convergence, and low computational cost, with potential for real-world application. The results support the electrical power system by optimising these loads, reducing costs and energy generation, and preparing a new scenario for EV penetration rates. Full article
Show Figures

Figure 1

22 pages, 3925 KiB  
Article
Optimized Multiple Regression Prediction Strategies with Applications
by Yiming Zhao, Shu-Chuan Chu, Ali Riza Yildiz and Jeng-Shyang Pan
Symmetry 2025, 17(7), 1085; https://doi.org/10.3390/sym17071085 - 7 Jul 2025
Viewed by 279
Abstract
As a classical statistical method, multiple regression is widely used for forecasting tasks in power, medicine, finance, and other fields. The rise of machine learning has led to the adoption of neural networks, particularly Long Short-Term Memory (LSTM) models, for handling complex forecasting [...] Read more.
As a classical statistical method, multiple regression is widely used for forecasting tasks in power, medicine, finance, and other fields. The rise of machine learning has led to the adoption of neural networks, particularly Long Short-Term Memory (LSTM) models, for handling complex forecasting problems, owing to their strong ability to capture temporal dependencies in sequential data. Nevertheless, the performance of LSTM models is highly sensitive to hyperparameter configuration. Traditional manual tuning methods suffer from inefficiency, excessive reliance on expert experience, and poor generalization. Aiming to address the challenges of complex hyperparameter spaces and the limitations of manual adjustment, an enhanced sparrow search algorithm (ISSA) with adaptive parameter configuration was developed for LSTM-based multivariate regression frameworks, where systematic optimization of hidden layer dimensionality, learning rate scheduling, and iterative training thresholds enhances its model generalization capability. In terms of SSA improvement, first, the population is initialized by the reverse learning strategy to increase the diversity of the population. Second, the mechanism for updating the positions of producer sparrows is improved, and different update formulas are selected based on the sizes of random numbers to avoid convergence to the origin and improve search flexibility. Then, the step factor is dynamically adjusted to improve the accuracy of the solution. To improve the algorithm’s global search capability and escape local optima, the sparrow search algorithm’s position update mechanism integrates Lévy flight for detection and early warning. Experimental evaluations using benchmark functions from the CEC2005 test set demonstrated that the ISSA outperforms PSO, the SSA, and other algorithms in optimization performance. Further validation with power load and real estate datasets revealed that the ISSA-LSTM model achieves superior prediction accuracy compared to existing approaches, achieving an RMSE of 83.102 and an R2 of 0.550 during electric load forecasting and an RMSE of 18.822 and an R2 of 0.522 during real estate price prediction. Future research will explore the integration of the ISSA with alternative neural architectures such as GRUs and Transformers to assess its flexibility and effectiveness across different sequence modeling paradigms. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 2763 KiB  
Article
A Multi-Timescale Operational Strategy for Active Distribution Networks with Load Forecasting Integration
by Dongli Jia, Zhaoying Ren, Keyan Liu, Kaiyuan He and Zukun Li
Energies 2025, 18(13), 3567; https://doi.org/10.3390/en18133567 - 7 Jul 2025
Viewed by 230
Abstract
To enhance the operational stability of distribution networks during peak periods, this paper proposes a multi-timescale operational method considering load forecasting impacts. Firstly, the Crested Porcupine Optimizer (CPO) is employed to optimize the hyperparameters of long short-term memory (LSTM) networks for an accurate [...] Read more.
To enhance the operational stability of distribution networks during peak periods, this paper proposes a multi-timescale operational method considering load forecasting impacts. Firstly, the Crested Porcupine Optimizer (CPO) is employed to optimize the hyperparameters of long short-term memory (LSTM) networks for an accurate prediction of the next-day load curves. Building on this foundation, a multi-timescale optimization strategy is developed: During the day-ahead operation phase, a conservation voltage reduction (CVR)-based regulation plan is formulated to coordinate the control of on-load tap changers (OLTCs) and distributed resources, alleviating peak-shaving pressure on the upstream grid. In the intraday optimization phase, real-time adjustments of OLTC tap positions are implemented to address potential voltage violations, accompanied by an electrical distance-based control strategy for flexible adjustable resources, enabling rapid voltage recovery and enhancing system stability and robustness. Finally, a modified IEEE-33 node system is adopted to verify the effectiveness of the proposed multi-timescale operational method. The method demonstrates a load forecasting accuracy of 93.22%, achieves a reduction of 1.906% in load power demand, and enables timely voltage regulation during intraday limit violations, effectively maintaining grid operational stability. Full article
Show Figures

Figure 1

15 pages, 2722 KiB  
Article
Predicting the Evolution of Capacity Degradation Histograms of Rechargeable Batteries Under Dynamic Loads via Latent Gaussian Processes
by Daocan Wang, Xinggang Li and Jiahuan Lu
Energies 2025, 18(13), 3503; https://doi.org/10.3390/en18133503 - 2 Jul 2025
Viewed by 220
Abstract
Accurate prediction of lithium-ion battery capacity degradation under dynamic loads is crucial yet challenging due to limited data availability and high cell-to-cell variability. This study proposes a Latent Gaussian Process (GP) model to forecast the full distribution of capacity fade in the form [...] Read more.
Accurate prediction of lithium-ion battery capacity degradation under dynamic loads is crucial yet challenging due to limited data availability and high cell-to-cell variability. This study proposes a Latent Gaussian Process (GP) model to forecast the full distribution of capacity fade in the form of high-dimensional histograms, rather than relying on point estimates. The model integrates Principal Component Analysis with GP regression to learn temporal degradation patterns from partial early-cycle data of a target cell, using a fully degraded reference cell. Experiments on the NASA dataset with randomized dynamic load profiles demonstrate that Latent GP enables full-lifecycle capacity distribution prediction using only early-cycle observations. Compared with standard GP, long short-term memory (LSTM), and Monte Carlo Dropout LSTM baselines, it achieves superior accuracy in terms of Kullback–Leibler divergence and mean squared error. Sensitivity analyses further confirm the model’s robustness to input noise and hyperparameter settings, highlighting its potential for practical deployment in real-world battery health prognostics. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

25 pages, 3667 KiB  
Article
A Long-Time Series Forecast Method for Wind Turbine Blade Strain with Incremental Bi-LSTM Learning
by Bingkai Wang, Wenlei Sun and Hongwei Wang
Sensors 2025, 25(13), 3898; https://doi.org/10.3390/s25133898 - 23 Jun 2025
Viewed by 251
Abstract
This article presents a novel incremental forecast method to address the challenges in long-time strain status prediction for a wind turbine blade (WTB) under wind loading. Taking strain as the key indicator of structural health, a mathematical model is established to characterize the [...] Read more.
This article presents a novel incremental forecast method to address the challenges in long-time strain status prediction for a wind turbine blade (WTB) under wind loading. Taking strain as the key indicator of structural health, a mathematical model is established to characterize the long-time series forecast forecasting process. Based on the Bi-directional Long Short-Term Memory (Bi-LSTM) framework, the proposed method incorporates incremental learning via an error-supervised feedback mechanism, enabling the dynamic self-updating of the model parameters. The experience replay and elastic weight consolidation are integrated to further enhance the prediction accuracy. Ultimately, the experimental results demonstrate that the proposed incremental forecast method achieves a 24% and 4.6% improvement in accuracy over the Bi-LSTM and Transformer, respectively. This research not only provides an effective solution for long-time prediction of WTB health but also offers a novel technical framework and theoretical foundation for long-time series forecasting. Full article
Show Figures

Figure 1

25 pages, 935 KiB  
Article
Elastic Momentum-Enhanced Adaptive Hybrid Method for Short-Term Load Forecasting
by Wenting Zhao, Haoran Xu, Peng Chen, Juan Zhang, Jing Li and Tingting Cai
Energies 2025, 18(13), 3263; https://doi.org/10.3390/en18133263 - 22 Jun 2025
Viewed by 307
Abstract
Load forecasting plays a crucial role in power system planning and operational dispatch management. Accurate load prediction is essential for enhancing power system reliability and facilitating the local integration of renewable energy. This paper proposes a hybrid approach combining traditional time series models [...] Read more.
Load forecasting plays a crucial role in power system planning and operational dispatch management. Accurate load prediction is essential for enhancing power system reliability and facilitating the local integration of renewable energy. This paper proposes a hybrid approach combining traditional time series models (ARIMA) with machine learning models (SVR). The particle swarm optimization (PSO) algorithm is improved by adjusting its elastic momentum, and the enhanced APSO algorithm is employed to optimize the adaptive weights of the hybrid model. Consequently, an elastic momentum-enhanced adaptive weighted load forecasting model (APSO-ARIMA-SVR) is developed. Numerical simulations using real-world datasets validate the model’s effectiveness. Results demonstrate that the proposed APSO-ARIMA-SVR model achieves optimal fitting performance, with prediction errors of 274.23 (MAE) and 321.50 (RMSE), representing the lowest errors among all comparative models. Full article
Show Figures

Graphical abstract

34 pages, 12843 KiB  
Article
Short-Term Power Load Forecasting Using an Improved Model Integrating GCN and Transformer
by Man Wu, Wanyi Feng, Xinya Li, Yunan Liu and Chuxin Cao
Appl. Sci. 2025, 15(13), 7003; https://doi.org/10.3390/app15137003 - 21 Jun 2025
Viewed by 347
Abstract
Improving the accuracy of power load forecasting is an important link in the optimization of power systems. Most of the existing studies in the short-term load forecasting task at present have the problem of insufficient extraction of multi-scale features. Therefore, in order to [...] Read more.
Improving the accuracy of power load forecasting is an important link in the optimization of power systems. Most of the existing studies in the short-term load forecasting task at present have the problem of insufficient extraction of multi-scale features. Therefore, in order to improve prediction accuracy, this study designs a short-term power load forecasting model integrating multi-scale GCN and the improved Transformer, as well as the prediction method based on this model. First, multi-feature power load data were collected. Second, the random forest algorithm was used to preprocess the data. Next, multi-scale GCN was utilized to model the multi-scale spatio-temporal features in the power load data. The data processed by the multi-scale GCN were input into the improved Transformer module based on MLLA to extract long-term temporal dependencies. Subsequently, comparative experiments and ablation experiments were conducted on three public power datasets. The experimental results show that, compared to the comparative model, for the ETTh1 dataset, the RMSE index of this model decreased by up to 0.314, the MAE decreased by up to 0.304, and the R2 index result improved by up to 9.45%. For the ETTm1 dataset, the RMSE index of this model decreased by up to 0.266, the MAE decreased by up to 0.231, and the R2 index result improved by up to 3.3%. For the Australian dataset, the RMSE index of this model decreased by up to 494.366, the MAE decreased by up to 493.127, and the R2 index result improved by up to 54%, verifying the superiority and effectiveness of the proposed model. Full article
Show Figures

Figure 1

24 pages, 6560 KiB  
Article
Spatio-Temporal Attention-Based Deep Learning for Smart Grid Demand Prediction
by Muhammed Cavus and Adib Allahham
Electronics 2025, 14(13), 2514; https://doi.org/10.3390/electronics14132514 - 20 Jun 2025
Cited by 1 | Viewed by 955
Abstract
Accurate short-term load forecasting is vital for the reliable and efficient operation of smart grids, particularly under the uncertainty introduced by variable renewable energy sources (RESs) such as solar and wind. This study introduces ST-CALNet, a novel hybrid deep learning framework that integrates [...] Read more.
Accurate short-term load forecasting is vital for the reliable and efficient operation of smart grids, particularly under the uncertainty introduced by variable renewable energy sources (RESs) such as solar and wind. This study introduces ST-CALNet, a novel hybrid deep learning framework that integrates convolutional neural networks (CNNs) with an Attentive Long Short-Term Memory (LSTM) network to enhance forecasting performance in renewable-integrated smart grids. The CNN component captures spatial dependencies from multivariate inputs, comprising meteorological variables and generation data, while the LSTM module models temporal correlations in historical load patterns. An embedded attention mechanism dynamically weights input sequences, enabling the model to prioritise the most influential time steps, thereby improving its interpretability and robustness during demand fluctuations. ST-CALNet was trained and evaluated using real-world datasets that include electricity consumption, solar photovoltaic (PV) output, and wind generation. Experimental evaluation demonstrated that the model achieved a mean absolute error (MAE) of 0.0494, root mean squared error (RMSE) of 0.0832, and a coefficient of determination (R2) of 0.4376 for electricity demand forecasting. For PV and wind generation, the model attained MAE values of 0.0134 and 0.0141, respectively. Comparative analysis against baseline models confirmed ST-CALNet’s superior predictive accuracy, particularly in minimising absolute and percentage-based errors. Temporal and regime-based error analysis validated the model’s resilience under high-variability conditions such as peak load periods, while visualisation of attention scores offered insights into the model’s temporal focus. These findings underscore the potential of ST-CALNet for deployment in intelligent energy systems, supporting more adaptive, transparent, and dependable forecasting within smart grid infrastructures. Full article
Show Figures

Figure 1

22 pages, 2209 KiB  
Article
Very Short-Term Load Forecasting Model for Large Power System Using GRU-Attention Algorithm
by Tae-Geun Kim, Sung-Guk Yoon and Kyung-Bin Song
Energies 2025, 18(13), 3229; https://doi.org/10.3390/en18133229 - 20 Jun 2025
Viewed by 343
Abstract
This paper presents a very short-term load forecasting (VSTLF) model tailored for large-scale power systems, employing a gated recurrent unit (GRU) network enhanced with an attention mechanism. To improve forecasting accuracy, a systematic input feature selection method based on Normalized Mutual Information (NMI) [...] Read more.
This paper presents a very short-term load forecasting (VSTLF) model tailored for large-scale power systems, employing a gated recurrent unit (GRU) network enhanced with an attention mechanism. To improve forecasting accuracy, a systematic input feature selection method based on Normalized Mutual Information (NMI) is introduced. Additionally, a novel input feature termed the load variationis proposed to explicitly capture real-time dynamic load patterns. Tailored data preprocessing techniques are applied, including load reconstitution to account for the impact of Behind-The-Meter (BTM) solar generation, and a weighted averaging method for constructing representative weather inputs. Extensive case studies using South Korea’s national power system data from 2021 to 2023 demonstrate that the proposed GRU-attention model significantly outperforms existing approaches and benchmark models. In particular, when expressing the accuracy of the proposed method in terms of the error rate, the Mean Absolute Percentage Error (MAPE) is 0.77%, which shows an improvement of 0.50 percentage points over the benchmark model using the Kalman filter algorithm and an improvement of 0.27 percentage points over the hybrid deep learning benchmark (CNN-BiLSTM). The simulation results clearly demonstrate the effectiveness of the NMI-based feature selection and the combination of load characteristics for very short-term load forecasting. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

22 pages, 2320 KiB  
Article
Two-Stage Coordinated Operation Mechanism for Virtual Power Plant Clusters Based on Energy Interaction
by Xingang Yang, Lei Qi, Di Wang and Qian Ai
Electronics 2025, 14(12), 2484; https://doi.org/10.3390/electronics14122484 - 18 Jun 2025
Viewed by 269
Abstract
As an essential platform for aggregating and coordinating distributed energy resources (DERs), the virtual power plant (VPP) has attracted widespread attention in recent years. With the increasing scale of VPPs, energy interaction and sharing among VPP clusters (VPPCs) have become key approaches to [...] Read more.
As an essential platform for aggregating and coordinating distributed energy resources (DERs), the virtual power plant (VPP) has attracted widespread attention in recent years. With the increasing scale of VPPs, energy interaction and sharing among VPP clusters (VPPCs) have become key approaches to improving energy utilization efficiency and reducing operational costs. Therefore, studying the coordinated operation mechanism of VPPCs is of great significance. This paper proposes a two-stage coordinated operation model for VPPCs based on energy interaction to enhance the overall economic performance and coordination of the cluster. In the day-ahead stage, a cooperative operation model based on Nash bargaining theory is constructed. The inherently non-convex and nonlinear problem is decomposed into a cluster-level benefit maximization subproblem and a benefit allocation subproblem. The Alternating Direction Method of Multipliers (ADMM) is employed to achieve distributed optimization, ensuring both the efficiency of coordination and the privacy and decision independence of each VPP. In the intra-day stage, to address the uncertainty in renewable generation and load demand, a real-time pricing mechanism based on the supply–demand ratio is designed. Each VPP performs short-term energy forecasting and submits real-time supply–demand information to the coordination center, which dynamically determines the price for the next trading interval according to the reported imbalance. This pricing mechanism facilitates real-time electricity sharing among VPPs. Finally, numerical case studies validate the effectiveness and practical value of the proposed model in improving both operational efficiency and fairness. Full article
Show Figures

Figure 1

Back to TopTop