Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = ship resistance and powering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 15347 KiB  
Article
Research on Optimization Design of Ice-Class Ship Form Based on Actual Sea Conditions
by Yu Lu, Xuan Cao, Jiafeng Wu, Xiaoxuan Peng, Lin An and Shizhe Liu
J. Mar. Sci. Eng. 2025, 13(7), 1320; https://doi.org/10.3390/jmse13071320 - 9 Jul 2025
Viewed by 261
Abstract
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake [...] Read more.
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake long-distance ocean voyages, an ice-class ship requires sufficient icebreaking capacity to navigate ice-covered water areas. However, since such ships operate for most of their time under open water conditions, it is also crucial to consider their resistance characteristics in these environments. Firstly, this paper employs linear interpolation to extract wind, wave, and sea ice data along the route and calculates the proportion of ice-covered and open water area in the overall voyage. This provides data support for hull form optimization based on real sea state conditions. Then, a resistance optimization platform for ice-class ships is established by integrating hull surface mixed deformation control within a scenario analysis framework. Based on the optimization results, comparative analysis is conducted between the parent hull and the optimized hull under various environmental resistance scenarios. Finally, the optimization results are evaluated in terms of energy consumption using a fuel consumption model of the ship’s main engine. The optimized hull achieves a 16.921% reduction in total resistance, with calm water resistance and wave-added resistance reduced by 5.92% and 27.6%, respectively. Additionally, the optimized hull shows significant resistance reductions under multiple wave and floating ice conditions. At the design speed, calm water power and hourly fuel consumption are reduced by 7.1% and 7.02%, respectively. The experimental results show that the hull form optimization process in this paper can take into account both ice-region navigation and ice-free navigation. The design ideas and solution methods can provide a reference for the design of ice-class ships. Full article
Show Figures

Figure 1

24 pages, 3097 KiB  
Review
Advancements and Development Trends in Lead-Cooled Fast Reactor Core Design
by Cong Zhang, Ling Chen, Yongfa Zhang and Song Li
Processes 2025, 13(6), 1773; https://doi.org/10.3390/pr13061773 - 4 Jun 2025
Viewed by 1030
Abstract
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding [...] Read more.
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding capability, and economic efficiency. However, its engineering implementation faces key challenges, such as material compatibility, closed fuel cycles, and irradiation performance of structures. This paper comprehensively reviews the latest progress in the core design of lead-cooled fast reactors in terms of the innovation of nuclear fuel, optimization of coolant, material adaptability, and design of assemblies and core structures. The research findings indicate remarkable innovation trends in the field of lead-cooled fast reactor core design, including optimizing the utilization efficiency of nuclear fuel based on the nitride fuel system and the traveling wave burnup theory, effectively suppressing the corrosion effect of liquid metal through surface modification technology and the development of ceramic matrix composites; replacing the lead-bismuth eutectic system with pure lead coolant to enhance economic efficiency and safety; and significantly enhancing the neutron economy and system integration degree by combining the collaborative design strategy of the open-type assembly structure and control drums. In the future, efforts should be made to overcome the radiation resistance of materials and liquid metal corrosion technology, develop closed fuel cycle systems, and accelerate the commercialization process through international standardization cooperation to provide sustainable clean energy solutions for basic load power supply, high-temperature hydrogen production, ship propulsion, and other fields. Full article
(This article belongs to the Special Issue Process Safety Technology for Nuclear Reactors and Power Plants)
Show Figures

Figure 1

19 pages, 4925 KiB  
Article
Operation at Reduced Atmospheric Pressure and Concept of Reliability Redundancy for Optimized Design of Insulation Systems
by Gian Carlo Montanari and Sukesh Babu Myneni
Energies 2025, 18(9), 2371; https://doi.org/10.3390/en18092371 - 6 May 2025
Viewed by 358
Abstract
Electrified transportation is calling for insulation design criteria that is adequate to provide elevated levels of power density, power dynamics and reliability. Increasing voltage levels are expected to cause accelerated intrinsic and extrinsic aging effects which will not be easily predictable at the [...] Read more.
Electrified transportation is calling for insulation design criteria that is adequate to provide elevated levels of power density, power dynamics and reliability. Increasing voltage levels are expected to cause accelerated intrinsic and extrinsic aging effects which will not be easily predictable at the design stage due to a lack of suitable modeling. Designing reliable insulation systems would require finding solutions able to control accelerated aging due to an unpredictable increase of intrinsic stresses and the onset of extrinsic stresses as partial discharges. This paper proposes the concept of reliability redundancy for the insulation design of aerospace electrical asset components, which is also validated at lower-than-standard atmospheric pressure. The principle is that extrinsic-aging-free design might be achieved upon determining the aging stress or abnormal service stresses distribution and being sure that aging will not generate conditions that can incept extrinsic aging (partial discharges) during operation life. However, such information is never, in practice, fully available to insulation system designers. Hence, especially in critical applications such as electrified aircraft, aerospace, and combat ships a further level of reliability should be added to a partial-discharge-free design, which can consist of the use of corona-resistant materials and/or of life models able to consider the accelerated aging effect of partial discharges (or any other type of extrinsic-accelerated aging factor). Innovative life modeling considering both extrinsic and intrinsic aging stresses, insulating material testing to estimate model parameters, and a metric for quantifying the extent of corona (or partial discharge) resistance can lead to establishing feasibility and limit conditions for optimized or fully reliability-redundant design. It is shown in the paper that if an extrinsic-aging-free design is not feasible, and it is therefore replaced by a redundant design, a further level of reliability redundancy can be provided by effective condition monitoring plans. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

20 pages, 11109 KiB  
Article
Self-Propulsion Factors for Minimum Propulsion Power Assessment in Adverse Conditions
by Joon-Hyoung Lee, Seunghyun Hwang, Young-Yeon Lee, Woo-Seok Jin and Moon-Chan Kim
J. Mar. Sci. Eng. 2025, 13(3), 595; https://doi.org/10.3390/jmse13030595 - 17 Mar 2025
Viewed by 557
Abstract
Considering that slow steaming requires low engine power, which impedes maneuverability under severe sea conditions, the International Maritime Organization (IMO) provides guidelines for the minimum propulsion power (MPP) required to maintain ship maneuverability in adverse conditions. This study focused on the characteristics of [...] Read more.
Considering that slow steaming requires low engine power, which impedes maneuverability under severe sea conditions, the International Maritime Organization (IMO) provides guidelines for the minimum propulsion power (MPP) required to maintain ship maneuverability in adverse conditions. This study focused on the characteristics of self-propulsion factors in the context of MPP assessment to enhance MPP prediction accuracy. Overload tests were conducted at low speeds of advance, considering added resistance in adverse conditions. Moreover, propeller open-water tests were conducted corresponding to propeller flow with low Reynolds numbers to investigate their effect on self-propulsion factors. In addition, computational fluid dynamics (CFD) simulations were conducted to analyze physical phenomena such as the flow field and pressure distribution under model test conditions. The results indicated that the thrust deduction factor was lower than that given in the guidelines, whereas the wake fraction was higher at the required forward speed of 2 knots. The MPP assessment in this study revealed that the required brake power was 4–5% lower than that given in the guidelines, indicating that the guidelines need reviewing for a more reliable assessment. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 8787 KiB  
Article
A Numerical Study for the Self-Propulsion Performance of a Propulsion System Using the Coanda Effect
by Jun-Hee Lee, Kwang-Jun Paik and Do-Han Oh
J. Mar. Sci. Eng. 2025, 13(3), 437; https://doi.org/10.3390/jmse13030437 - 25 Feb 2025
Viewed by 847
Abstract
This study evaluated the performance of a ship propeller numerically using the Coanda effect. The simulations applied a model based on a 6.5K DWT tanker and conducted self-propulsion assessments for three types of propellers: the original propeller, a normal propeller, and a Coanda [...] Read more.
This study evaluated the performance of a ship propeller numerically using the Coanda effect. The simulations applied a model based on a 6.5K DWT tanker and conducted self-propulsion assessments for three types of propellers: the original propeller, a normal propeller, and a Coanda propeller. The numerical simulations used the unsteady Reynolds-averaged Navier–Stokes (URANS) equations, incorporating the SST k–ω turbulence model. The influence of the additional thrust generated by the Coanda effect on the hull resistance and self-propulsion factors was analyzed. The key findings showed that the Coanda-based propeller achieved efficient propulsion performance by generating additional lift even at low rotational speeds. A self-propulsion analysis showed that the Coanda propeller required approximately 7.8% less delivered power than the original propeller. These results suggest that propulsion systems utilizing the Coanda effect offer superior efficiency and economic advantages over traditional technologies. This study provides critical baseline data for assessing the feasibility of a Coanda propeller, with further validation planned through full-scale ship simulations. Full article
(This article belongs to the Special Issue Novelties in Marine Propulsion)
Show Figures

Figure 1

27 pages, 13034 KiB  
Article
Numerical Research on Hull–Propeller–Rudder–Ice Interaction of Full-Scale Polar Transport Ship in Brash Ice Channel
by Jinlong Zhang, Jianing Zhang, Lei Zhang, Weimin Chen and Qingshan Zhang
J. Mar. Sci. Eng. 2025, 13(1), 145; https://doi.org/10.3390/jmse13010145 - 15 Jan 2025
Cited by 1 | Viewed by 1268
Abstract
A strong nonlinear ice load has a significant impact on the resistance and power demand of polar transport ships under different drafts in brash ice channels. In this study, the CFD-DEM coupling method is used to investigate the self-propulsion performance of a full-scale [...] Read more.
A strong nonlinear ice load has a significant impact on the resistance and power demand of polar transport ships under different drafts in brash ice channels. In this study, the CFD-DEM coupling method is used to investigate the self-propulsion performance of a full-scale polar transport ship in brash ice channels. The interactions between the full-scale polar transport ship, propeller, rudder, and brash ice are effectively simulated. First, the hydrodynamic performance of an open-water propeller is tested, and it is found that the numerical errors of efficiency and the experimental result are less than 8%. Then, the ice resistance, total thrust, effective power, delivered power, and propulsive efficiency of the polar transport ship under different draft conditions are studied, and the results are in good agreement with those of the self-propulsion model tests in the brash ice channel. Through a numerical simulation of self-propulsion in the brash ice channel, self-propulsion points under different drafts and brash ice thicknesses are obtained. It is found that the propeller rotation speed is closely related to the draft depth. Finally, experiments and numerical simulations of the total ice resistance are carried out under different brash ice thicknesses, and the results are consistent with those of the empirical formulas. The accuracy of the three empirical formulas under different drafts is compared. This research work determines the resistance, power demand, and propulsive efficiency of a polar transport ship under given ice conditions and speeds, as well as the self-propulsion points under different ice thicknesses. It is of great significance for the control of ships in polar navigation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 14161 KiB  
Article
A Parametric Study on Air Lubrication for Ship Energy Efficiency
by Raul Lima Portela Bispo, Jeferson Avila Souza, Jean-David Caprace, Juan Carlos Ordonez and Crístofer Hood Marques
J. Mar. Sci. Eng. 2024, 12(12), 2309; https://doi.org/10.3390/jmse12122309 - 15 Dec 2024
Cited by 1 | Viewed by 2107
Abstract
With the new target set by the International Maritime Organization (IMO) of zero net emissions of atmospheric gases from maritime vessels by 2050, studies of methods that improve the efficiency of vessels have become highly relevant. One promising method is air injection, which [...] Read more.
With the new target set by the International Maritime Organization (IMO) of zero net emissions of atmospheric gases from maritime vessels by 2050, studies of methods that improve the efficiency of vessels have become highly relevant. One promising method is air injection, which creates a lubricating film between the hull and water, reducing the total resistance. Despite the potential of air injection, there is a lack of studies defining the correlation between key parameters (such as air layer thickness, injection angle, vessel speed, and the number of nozzles) in the method efficiency. Therefore, this study aimed to assess the method’s efficiency through a parametric analysis. The study utilized the OpenFOAM software to analyze the air injection method in the Duisburg Test Case (DTC) hull, a 1:59 scaled container ship. The numerical solution used finite volumes to discretize the conservation equations, RANS (Reynolds-Averaged Navier–Stokes) in the momentum equation, and κ-ω SST in the turbulence model. The optimum configuration achieved 14.13% net power savings, while the worst configuration increased the power consumption instead. An analysis of variance (ANOVA) confirmed the relationship between parameters and effectiveness. Therefore, the results showed the importance of adjusting the method’s parameters. Full article
(This article belongs to the Special Issue Advanced Technologies for New (Clean) Energy Ships)
Show Figures

Figure 1

18 pages, 5962 KiB  
Article
Optimal Routing and Sustainable Operation Scheduling of Large Ships with Integrated Full-Electric Propulsion
by Epameinondas K. Koumaniotis and Fotios D. Kanellos
Sustainability 2024, 16(23), 10662; https://doi.org/10.3390/su162310662 - 5 Dec 2024
Cited by 1 | Viewed by 1013
Abstract
The continuously intensified pursuit to reduce emissions related to human activity and the increased competition in maritime sector calls for sustainable and well-planned solutions to conform with environmental constraints and maximize profit, respectively. In a sector that is very critical for human activities, [...] Read more.
The continuously intensified pursuit to reduce emissions related to human activity and the increased competition in maritime sector calls for sustainable and well-planned solutions to conform with environmental constraints and maximize profit, respectively. In a sector that is very critical for human activities, such as the maritime industry, it is essential to be able to reduce ship emissions without increasing the overall cost of operations and the time to transfer the cargo. All these parameters make ship routing and ship emission reduction very crucial. This work examines the effective routing of large ships with an integrated full-electric propulsion system and the optimal power generation scheduling of their generators to attain the minimum possible operational cost. To achieve this, the problem was formulated, modeled and solved in two stages, namely, ship routing and power generation scheduling, respectively. The first stage was solved using the Particle Swarm Optimization (PSO) method and the second one with a conventional optimization algorithm based on the steepest decent concept. The proposed ship routing method is based on the sea resistance concept and the minimization of total ship propulsion energy. The obtained results show that the optimal path is a combination of the minimum distance path and the minimum resistance path. Ship sustainability is reinforced with the reduction in ship operation cost and ship emissions. Ship emission reduction is achieved in the second optimization stage using a suitable emission index that complies with IMO regulations. Full article
(This article belongs to the Special Issue Sustainable Maritime Logistics and Low-Carbon Transportation)
Show Figures

Figure 1

19 pages, 6333 KiB  
Article
Notes on Towed Self-Propulsion Experiments with Simulated Managed Ice in Traditional Towing Tanks
by José Enrique Gutiérrez-Romero, Blas Zamora-Parra, Samuel Ruiz-Capel, Jerónimo Esteve-Pérez, Alejandro López-Belchí, Pablo Romero-Tello and Antonio José Lorente-López
J. Mar. Sci. Eng. 2024, 12(10), 1691; https://doi.org/10.3390/jmse12101691 - 24 Sep 2024
Viewed by 1261
Abstract
Efficiency estimation of a propeller behind a vessel’s hull while sailing through ice floes, together with the ship’s resistance to motion, is a key factor in designing the power plant and determining the safety measures of a ship. This paper encloses the results [...] Read more.
Efficiency estimation of a propeller behind a vessel’s hull while sailing through ice floes, together with the ship’s resistance to motion, is a key factor in designing the power plant and determining the safety measures of a ship. This paper encloses the results from the experiments conducted at the CEHINAV towing tank, which consisted of analyzing the influence of the concentration at the free surface of artificial blocks, simulating ice, in propeller–block interactions. Thrust and torque were measured for a towed self-propelled ship model through simulated broken ice blocks made of paraffin wax. Three block concentrations of different block sizes and three model speeds were studied during the experimentation. Open-water self-propulsion tests and artificial broken ice towed self-propulsion tests are shown and compared in this work. The most relevant observations are outlined at the end of this paper, as well as some guidelines for conducting artificial ice-towed self-propulsion tests in traditional towing tanks. Full article
(This article belongs to the Special Issue Ice-Structure Interaction in Marine Engineering)
Show Figures

Figure 1

22 pages, 2812 KiB  
Article
Markovian Maintenance Planning of Ship Propulsion System Accounting for CII and System Degradation
by Yordan Garbatov and Petar Georgiev
Energies 2024, 17(16), 4123; https://doi.org/10.3390/en17164123 - 19 Aug 2024
Cited by 2 | Viewed by 1305
Abstract
The study’s objective is to create a method to select the best course of maintenance action for each state of ship propulsion system degradation while considering both the present and future costs and associated carbon intensity indicator, CII, rates. The method considers the [...] Read more.
The study’s objective is to create a method to select the best course of maintenance action for each state of ship propulsion system degradation while considering both the present and future costs and associated carbon intensity indicator, CII, rates. The method considers the effects of wind and wave action when considering fouling and ageing. The ship resistance in calm, wave, and wind conditions has been defined using standard operating models, which have also been used to estimate the required engine power, service speed, fuel consumption, generated CO2, CII, and subsequent maintenance costs. The maintenance takes into consideration the effects of profit loss because of lost opportunities and efficiency over time. Any maintenance choice has total costs associated with it, including extra fuel, upkeep, and missed opportunities. Using a discrete-time Markov chain, the ship’s propulsion system maintenance schedule is optimized. A decision has been reached regarding the specific maintenance measures to be undertaken for each state of the Markov chain among various alternatives. The choice of optimal maintenance is related to a Markov decision process and is made by considering both the current and future costs. The developed method can forecast the propulsion system’s future states and any required maintenance activities. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

27 pages, 10145 KiB  
Article
Stochastic Optimization of Onboard Photovoltaic Hybrid Power System Considering Environmental Uncertainties
by Jianyun Zhu and Li Chen
J. Mar. Sci. Eng. 2024, 12(8), 1240; https://doi.org/10.3390/jmse12081240 - 23 Jul 2024
Viewed by 993
Abstract
Environmental uncertainties present a significant challenge in the design of onboard photovoltaic hybrid power systems (PV-HPS), a pivotal decarbonization technology garnering widespread attention in the shipping industry. Neglecting environmental uncertainties associated with photovoltaic (PV) output and hull resistance can lead to suboptimal solutions. [...] Read more.
Environmental uncertainties present a significant challenge in the design of onboard photovoltaic hybrid power systems (PV-HPS), a pivotal decarbonization technology garnering widespread attention in the shipping industry. Neglecting environmental uncertainties associated with photovoltaic (PV) output and hull resistance can lead to suboptimal solutions. To address this issue, this paper proposes a stochastic optimization method for PV-HPS, aiming to minimize greenhouse gas (GHG) emissions and lifecycle costs. Copula functions are employed to establish joint distributions of uncertainties in solar irradiance, ambient temperature, significant wave height, and wave period. Monte Carlo simulation, the bi-bin method, and the multi-objective particle swarm optimization (MOPSO) algorithm are utilized for scenario generation, scenario reduction, and design space exploration. The efficacy of the proposed method is demonstrated through a case study involving an unmanned ship. Additionally, deterministic optimization and two partial stochastic optimizations are conducted to underscore the importance of simultaneously considering environmental uncertainties related to power sources and hull resistance. The results affirm the proposed approach’s capability to reduce GHG emissions and lifecycle costs. A sensitivity analysis of bin number is performed to investigate the tradeoff between optimality and computation time. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 6101 KiB  
Article
Analysis of the Impact Resistance Characteristics of a Power Propulsion Shaft System Containing a High-Elasticity Coupling
by Yukuo Guo, Ruiping Zhou, Zhaozhao Ma, Jianzheng Wang and Ziteng Yan
Appl. Sci. 2024, 14(12), 4995; https://doi.org/10.3390/app14124995 - 7 Jun 2024
Cited by 2 | Viewed by 1398
Abstract
In research concerning the impact resistance characteristics of ship power transmission shaft systems incorporating a high-elasticity coupling, a significant challenge lies in ascertaining the displacement compensation metrics for the high-elasticity coupling. This study constructs a finite element model of the ship power transmission [...] Read more.
In research concerning the impact resistance characteristics of ship power transmission shaft systems incorporating a high-elasticity coupling, a significant challenge lies in ascertaining the displacement compensation metrics for the high-elasticity coupling. This study constructs a finite element model of the ship power transmission shaft system with an entity equivalent model of the high-elasticity coupling. Utilizing the Dynamic Design Analysis Method (DDAM) and the time-history method, the dynamic responses of the high-elasticity coupling, the propulsion shaft system, and its critical cross-sections under explosive impact loads are analyzed. The findings indicate that the maximum impact displacement of the propulsion shafting system, as calculated by DDAM, is 22.47 mm in the vertical direction at the driven end of the high-elasticity coupling. In contrast, the maximum impact displacement determined by the time-history method is 15.23 mm in the same direction. The study corroborates the precision of the high-elasticity coupling equivalent model establishment methodology and confirms that the entity equivalent model of the power transmission shaft system with a high-elasticity coupling is capable of fulfilling the criteria for a swift evaluation of impact resistance characteristics. This provides theoretical backing for the forecasting of impact resistance performance in ship propulsion shaft systems. Full article
Show Figures

Figure 1

18 pages, 2677 KiB  
Article
Investigating Fishing Vessel Hydrodynamics by Using EFD and CFD Tools, with Focus on Total Ship Resistance and Its Components
by Sebastian Oyuela, Héctor Rubén Díaz Ojeda, Francisco Pérez Arribas, Alejandro Daniel Otero and Roberto Sosa
J. Mar. Sci. Eng. 2024, 12(4), 622; https://doi.org/10.3390/jmse12040622 - 5 Apr 2024
Cited by 4 | Viewed by 2058
Abstract
The aim of this work is to gain a better understanding of the hydrodynamics of a typical Argentinian fishing vessel in calm water. It is focused on the evaluation of total ship resistance and its components for different draughts. The 1978 ITTC Power [...] Read more.
The aim of this work is to gain a better understanding of the hydrodynamics of a typical Argentinian fishing vessel in calm water. It is focused on the evaluation of total ship resistance and its components for different draughts. The 1978 ITTC Power Prediction method is used to predict total ship resistance from experiments carried out at the University of Buenos Aires towing tank. To conduct a more detailed evaluation of the flow around this hull, numerical studies at model scale are carried out with the open-source code OpenFOAM V10 and validated against experimental results. The Reynolds-Averaged Navier–Stokes (RANS) method together with Volume of Fluid (VOF) are used for the numerical procedure. The validated CFD model not only can provide more detailed information about the ship’s hydrodynamics than the EFD results but also allows for the exploration of the improvement in ship power prediction by using combined CFD-EFD methodologies. This work numerically calculates the form factor by using a double-body configuration and discusses the possibility of combining EFD results with this CFD form factor in order to improve total force prediction for this kind of ships. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

19 pages, 5862 KiB  
Article
Assessing High-Voltage Shore Connection Safety: An In-Depth Study of Grounding Practices in Shore Power Systems
by Shih-Hsien Hsu, Fu-Ming Tzu, Wei-Huang Chang and Yi-Dong Chen
Energies 2024, 17(6), 1373; https://doi.org/10.3390/en17061373 - 13 Mar 2024
Cited by 6 | Viewed by 2943
Abstract
There is growing concern regarding air pollutants (NOx, SOx, and PM) and carbon emissions from ocean-going vessels in harbor areas and the role of high-voltage shore connection (HVSC) systems in mitigating these emissions during vessel berthing. The HVSC operates as a TN grounding [...] Read more.
There is growing concern regarding air pollutants (NOx, SOx, and PM) and carbon emissions from ocean-going vessels in harbor areas and the role of high-voltage shore connection (HVSC) systems in mitigating these emissions during vessel berthing. The HVSC operates as a TN grounding system in humid environments, and it needs a proper grounding design to ensure safety when faults occur. This article intends to examine the overvoltage resulting from fault currents and its implications for the safety of operators when a single line-to-ground fault takes place within the design of HVSC grounding systems. The assessment is carried out by employing actual scenarios and parameters from a container berth at Kaohsiung Harbor in Taiwan. Considering site conditions, such as the wet ground surface, human body resistance, and electric shock duration, the tolerable safe voltage level is derived using IEEE Std. 80 and IEC 60479-1. Based on the shore power system grounding architecture specified in IEEE/IEC 80005-1, an equivalent circuit model is constructed to calculate the fault currents using symmetrical component analysis. The actual touch voltages generated in various locations are analyzed under scenarios of connecting or disconnecting the equipotential bonding between the ship and the shore using neutral grounding resistor (NGR) designs. This article delves into the scenarios of electric shock that may occur during the operation of an actual container ship’s shore power system. It evaluates whether various contact voltage values exceed current international standards and verifies the grounding design and safety voltage specifications of IEEE/IEC 80005-1. According to the results of this study, the use of NGR and protective earthed neutral (PEN) conductors in HVSC is crucial. This can limit fault currents, reduce touch voltage, and ensure the safety of personnel and equipment. Therefore, ensuring and monitoring equipment conductors and adopting NGRs of appropriate sizes are crucial elements in maintaining electrical safety in HVSC systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

24 pages, 6480 KiB  
Article
Trim and Engine Power Joint Optimization of a Ship Based on Minimum Energy Consumption over a Whole Voyage
by Yanyun Yu, Hongshuo Zhang, Zongbao Mu, Yating Li, Yutong Sun and Jia Liu
J. Mar. Sci. Eng. 2024, 12(3), 475; https://doi.org/10.3390/jmse12030475 - 10 Mar 2024
Cited by 12 | Viewed by 2537
Abstract
Trim optimization is an available approach for the energy saving and emission reduction of a ship. As a ship sails on the water, the draft and trim undergo constant changes due to the consumption of fuel oil and other consumables. As a result, [...] Read more.
Trim optimization is an available approach for the energy saving and emission reduction of a ship. As a ship sails on the water, the draft and trim undergo constant changes due to the consumption of fuel oil and other consumables. As a result, the selection of the initial trim is important if ballasting or shifting liquid among the tanks is not considered during a voyage. According to the characteristics of ship navigation and maneuvering, a practical trim optimization method is proposed to identify the Optimal Trim over a Whole Voyage (OTWV) which makes the fuel consumption of the voyage minimum. The calculations of speed vs. draft and trim surfaces are created according to hull resistance data generated by CFD, model tests, or real ship measurements, and these surfaces are used to calculate the OTWV. Ultimately, a trim and Main Engine (ME) power joint optimization method is developed based on the OTWV to make the total fuel consumption minimum for a voyage with a fixed length and travel time. A 307000 DWT VLCC is taken as an example to validate the practicality and effect of the two proposed optimization methods. The trim optimization example indicates that the OTWV could save up to 1.2% of the total fuel consumption compared to the Optimal Trim at Initial Draft (OTID). The trim and ME power joint optimization results show that the proposed method could steadily find the optimal trim and ME power combination, and the OTWV could save up to 1.0% fuel consumption compared to the OTID in this case. Full article
(This article belongs to the Special Issue Advances in Ships and Marine Structures)
Show Figures

Figure 1

Back to TopTop