Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = sheath thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6617 KB  
Article
Ultrahigh-Speed Deposition of Diamond-like Carbon on a Pipe Surface Using a Scanning Deposition Method via Local High-Density Plasma
by Akihiko Ito, Masahiro Esaki, Su-Min Bae, Taketo Nagai, Hiroyuki Kousaka and Toru Harigai
Coatings 2025, 15(11), 1348; https://doi.org/10.3390/coatings15111348 - 19 Nov 2025
Viewed by 310
Abstract
This study presents a highly effective method for depositing diamond-like carbon (DLC) films onto pipe substrates using a scanning deposition by plasma enhanced chemical vapor deposition. A microwave–sheath voltage combination plasma was employed to generate local high-density plasma along a rotating pipe. While [...] Read more.
This study presents a highly effective method for depositing diamond-like carbon (DLC) films onto pipe substrates using a scanning deposition by plasma enhanced chemical vapor deposition. A microwave–sheath voltage combination plasma was employed to generate local high-density plasma along a rotating pipe. While conventional contact-mode deposition using a metal contactor suffers from arcing and surface damage due to unstable sliding contact during rotation, a non-contact deposition using a metal antenna was developed to overcome these limitations. Electromagnetic field simulations were conducted to evaluate microwave power absorption in various antenna geometries, showing that the flat-plate antenna demonstrated the most effective power coupling. Subsequent scanning deposition experiments to a rotating pipe using flat-plate antennas of different lengths revealed that the 100 mm configuration achieved the highest deposition volume rate (exceeding that of the contact-mode) while avoiding arcing. Optical emission observations during deposition confirmed the formation of high-density plasma surrounding the flat-plate antenna and Raman spectroscopy of the deposited film showed typical spectra of DLC films. The deposition rates of DLC-coated pipe showed no significant variation with respect to rotational angle, suggesting that rotation during deposition contributes to achieving uniform film thickness along the circumferential direction of the pipe. Full article
Show Figures

Figure 1

28 pages, 7165 KB  
Article
Phosphate Low-Melting Glasses as Synergist in Flame-Retardant Cable Sheath Composition: Performance and Mode of Action
by Diana Amin Alsayed, Rodolphe Sonnier, Belkacem Otazaghine, Patrick Jean, Yves Brocheton and Laurent Ferry
Polymers 2025, 17(19), 2679; https://doi.org/10.3390/polym17192679 - 3 Oct 2025
Viewed by 1002
Abstract
Nowadays, fiber optic cables are a strategic issue because of their importance in telecommunications. Due to the densification of optic cables and the reduction in polymeric layer thickness, the flammability of the external sheath has to be improved. Three novel flame-retardant compositions using [...] Read more.
Nowadays, fiber optic cables are a strategic issue because of their importance in telecommunications. Due to the densification of optic cables and the reduction in polymeric layer thickness, the flammability of the external sheath has to be improved. Three novel flame-retardant compositions using phosphate low-melting glasses (LMGs) as aluminum trihydrate (ATH) synergist were assessed in a polyethylene–ethylene vinyl acetate (PE-EVA) matrix. It was highlighted that LMG at a 10 wt% content reduced the peak and mean value of heat release rate (HRR), respectively, to 142 and 90 kW/m2 corresponding to 52% and 42% reduction compared to ATH only. Potassium phosphate LMG was shown to perform better than sodium or zinc phosphate LMG. The improvement was assigned to the formation of an expanded mineral layer at the surface of the material during combustion that acts as a thermal shield slowing down the pyrolysis rate. The structural analysis revealed that the presence of alkaline cations in glasses led to short phosphate chains that resulted in low softening point and low-viscosity liquid. It was evidenced that under heat exposure the melted glass is likely to flow between the dehydrating ATH particles, creating a cohesive layer that expands. Additionally, interactions between ATH and LMG were also evidenced. The new crystalline species may also play a role in the cohesion of the layer. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Graphical abstract

13 pages, 3237 KB  
Article
Impact of Cementing Quality on Casing Strength Safety in Coalbed Methane Wells
by Jianxun Liu, Xikun Ma, Chengbin Mei and Taixue Hu
Processes 2025, 13(10), 3124; https://doi.org/10.3390/pr13103124 - 29 Sep 2025
Viewed by 459
Abstract
To enhance the structural safety of casings in coalbed methane (CBM) wells, this study develops a finite element model of the casing-cement sheath-formation assembly using ABAQUS software (ABAQUS 6.14). The model systematically investigates the influence of cement sheath defect thickness, defect angle, and [...] Read more.
To enhance the structural safety of casings in coalbed methane (CBM) wells, this study develops a finite element model of the casing-cement sheath-formation assembly using ABAQUS software (ABAQUS 6.14). The model systematically investigates the influence of cement sheath defect thickness, defect angle, and internal pressure on the casing stress distribution. The results reveal that the cement sheath defects significantly elevate the casing stress, particularly when the defect is located at the first cementing interface. Casing stress increases most sharply when the defect angle lies between 20° and 60°. Beyond 60°, the stress on the outer wall approaches the yield strength of the casing material. Furthermore, rising internal pressure intensifies stress concentration. When internal pressure exceeds 60 MPa, the outer wall becomes the most likely location for failure initiation. Optimizing the elastic modulus of the cement sheath and employing heavy-wall casing grades such as TP125V can effectively mitigate the casing stress and enhance wellbore integrity. These findings offer both theoretical insights and practical guidance for optimizing cementing design and hydraulic fracturing operations in CBM wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2618 KB  
Article
Analysis and Optimization of Wellbore Structure Considering Casing Stress in Oil and Gas Wells Within Coal Mine Goaf Areas Subject to Overburden Movement
by Fangchao Tong, Gang Chen, Mingming Tang, Yongbo Cao, Yinping Cao and Yalong Yang
Processes 2025, 13(9), 2948; https://doi.org/10.3390/pr13092948 - 16 Sep 2025
Cited by 2 | Viewed by 619
Abstract
To address wellbore integrity issues (especially casing strength concerns) of oil and gas wells threatened by overburden movement in coal mine goafs, this study takes a gas well in the goaf of Yanchang Gas Field as the research object. Using FLAC3D 7.0 [...] Read more.
To address wellbore integrity issues (especially casing strength concerns) of oil and gas wells threatened by overburden movement in coal mine goafs, this study takes a gas well in the goaf of Yanchang Gas Field as the research object. Using FLAC3D 7.0 software, a 3D coupling model of “casing-cement sheath-formation-goaf” is established to systematically analyze the effects of goaf presence, convergence criteria, casing wall thickness/layer count, and cement slurry density on casing stress while conducting wellbore structure optimization. Key research results are as follows: (1) Overburden movement concentrates the maximum casing stress near the goaf, with the surface casing stress being 7–8 times higher than that in the absence of a goaf, serving as the core object of stress control; (2) A convergence criterion of 10−4 balances calculation accuracy and efficiency, where the maximum Von Mises equivalent stress of the surface casing differs by only 0.98% compared with that under a convergence criterion of 10−6; (3) Increasing casing layers is more effective than thickening walls or upgrading steel grade: three-layer casing reduces surface casing stress by 23.4% compared with two-layer casing, and all casing safety factors meet the standards; (4) The casing stress is minimized when the cement slurry density is 1800–1900 kg/m3 (with a minimum of 325.79 MPa), while excessively low or high density will lead to increased stress. The optimized wellbore structure provides key references for the design of gas wells in goaf areas. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 5342 KB  
Article
Analysis of Strain Transfer Characteristics of Fiber Bragg Gratings for Asphalt Pavement Health Monitoring
by Zhaojun Hou, Dianguang Cao, Peng Peng, Xunhao Ding, Tao Ma and Jianchuan Cheng
Materials 2025, 18(15), 3489; https://doi.org/10.3390/ma18153489 - 25 Jul 2025
Cited by 1 | Viewed by 772
Abstract
Fiber Bragg grating (FBG) exhibits strong resistance to electromagnetic interference and excellent linear strain response, making it highly promising for structural health monitoring (SHM) in pavement. This research investigates the strain transfer characteristics of embedded FBG in pavement structure and materials by using [...] Read more.
Fiber Bragg grating (FBG) exhibits strong resistance to electromagnetic interference and excellent linear strain response, making it highly promising for structural health monitoring (SHM) in pavement. This research investigates the strain transfer characteristics of embedded FBG in pavement structure and materials by using the relevant theoretical models. Results indicate adhesive layer thickness and sheath modulus are the primary factors influencing the strain transfer coefficient. A thinner adhesive layer and high modulus of sheath enhance the coefficient. Additionally, the strain distribution of sheath significantly affects the transfer efficiency. When the stress level near the grating region is lower than the both ends, the coefficient increases and even exceeds 1, which typically occurs under multi-axle conditions. As for asphalt mixture, high temperature leads to lower efficiency, while accumulated plastic strain improves it. Although the increased load frequency results a higher strain transfer coefficient, the magnitude of this change is negligible. By employing polynomial fitting to the sheath strain distribution, the boundary condition of theoretical equation could be removed. The theoretical and numerical results of strain transfer coefficient for pavement embedded FBG demonstrate good consistency, indicating the polynomial fitting is adoptable for the theoretical calculation with non-uniform strain distribution. This study utilizes the FEM to clarify the evolution of FBG strain transfer in pavement structures and materials, providing a theoretical basis for the design and implementation of embedded FBG in pavement. Full article
Show Figures

Figure 1

19 pages, 12488 KB  
Article
Morphological and Anatomical Characterization of Stems in Lilium Taxa
by Peng Zhou, Kuangkuang Liao, Xiunian Feng, Rui Liang, Nianjun Teng and Fang Du
Horticulturae 2025, 11(5), 546; https://doi.org/10.3390/horticulturae11050546 - 18 May 2025
Viewed by 2834
Abstract
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, [...] Read more.
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, four distinct jigsaw-puzzle-shaped shapes of epidermal cells (Ep) in monocot stems, novel I-shaped and Co-xylem (O-, X-, W-, Q-shaped) vascular bundles (Vb) in Lilium stems, and quantitative characteristics (Vb density, xylem/phloem area ratio, etc.) were systematically discovered and analyzed. Asiatic (A) and Longiflorum × A (LA) hybrids displayed epidermal appendages, while Oritenal × Trumpet (OT) hybrids featured thicker sclerenchymatous rings (Sr). Collateral Vb in hybrids visually displayed bicollateral with degraded bundle sheaths (Bs), contrasting with intact circular Bs in wild species. Ward.D clustering categorized Lilium taxa into group A (Oritenal and OT hybrids) and B (A, LA, Trumpet, Longiflorum × Oriental hybrids and wild species), with Mantel’s test identified height, Ep shape, Ep length/width ratio, cortex/Sr thickness ratio and Bs integrity as key discriminators. Bending stems exhibited a higher Vb area. These findings establish a comprehensive pheno-anatomical framework for Lilium, which can guide future breeding programs and ecological studies. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

18 pages, 530 KB  
Systematic Review
Effectiveness of Stem Cell Secretomes in the Regeneration and Functional Recovery of Severed Nerves in Patients with Nerve Injuries: A Systematic Review
by Endika Nevado-Sánchez, María Rodríguez-Díaz, Sandra Núñez-Rodríguez, Andrea Bueno-de la Fuente, Raquel de la Fuente-Anuncibay, Vega Villar-Suárez, Jerónimo Javier González-Bernal and Jorge Labrador
Cells 2025, 14(7), 492; https://doi.org/10.3390/cells14070492 - 25 Mar 2025
Cited by 1 | Viewed by 1855
Abstract
The regenerative potential of mesenchymal stem cell (MSC) secretomes in peripheral nerve injuries warrants rigorous evaluation. This systematic review analyzes their effectiveness in preclinical models of neurotmesis, a complete transection of a nerve. Neurophysiological recovery was assessed through nerve conduction velocity (NCV), a [...] Read more.
The regenerative potential of mesenchymal stem cell (MSC) secretomes in peripheral nerve injuries warrants rigorous evaluation. This systematic review analyzes their effectiveness in preclinical models of neurotmesis, a complete transection of a nerve. Neurophysiological recovery was assessed through nerve conduction velocity (NCV), a measure of the speed at which electrical impulses travel along a nerve. Following PRISMA guidelines, a systematic search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect (last search July 2024). From 640 initially identified studies, 13 met inclusion criteria, encompassing 514 animals (rats). experimental designs published since 2014 in English or Spanish, focusing on MSC secretomes for nerve regeneration. Exclusion criteria included reviews, case reports, and incomplete data. The risk of bias was assessed using Joanna Briggs Institute tools. Results were synthesized narratively, focusing on functional and structural outcomes. The included studies employed various MSC sources, including adipose tissue, olfactory mucosa, and umbilical cord. Nine studies reported enhanced SFI, favoring secretome-treated groups over controls (mean difference +20.5%, p < 0.01). Seven studies documented increased NCV, with up to 35% higher conduction velocities in treated groups (p < 0.05). Histological outcomes reported in 12 studies showed increased axonal diameter (+25%, p < 0.01), myelin sheath thickness (+30%, p < 0.05), and Schwann cell proliferation. Limitations of the included evidence include methodological heterogeneity and variability in outcome measurement tools. MSC-derived secretomes demonstrate potential as advanced therapeutic strategies for nerve injuries. Personalized approaches considering injury type and clinical context are essential for optimizing outcomes. Full article
Show Figures

Figure 1

18 pages, 3986 KB  
Article
Effects of Light Quality and Photoperiod on Growth, Dry Matter Production and Yield of Ginger
by Haodan Zhang, Xingyue Li, Tao Han, Qin Huang, Junlan Liu, Ailin Tian, Linyu Liu, Guoqing Sun, Ling Dong, Hanyu Wang, Xintong Xie, Siyu Peng, Qiang Li and Honglei Li
Plants 2025, 14(6), 953; https://doi.org/10.3390/plants14060953 - 18 Mar 2025
Cited by 1 | Viewed by 1358
Abstract
We investigated the effects of light quality and photoperiod on the phenotypic characteristics, dry matter production, and yield of ginger under three light quality ratios (A1: blue light: white light = 1:4; A2: blue light: white light = 1:1; A3: pure white light) [...] Read more.
We investigated the effects of light quality and photoperiod on the phenotypic characteristics, dry matter production, and yield of ginger under three light quality ratios (A1: blue light: white light = 1:4; A2: blue light: white light = 1:1; A3: pure white light) and two photoperiod conditions (B1: 12/12 h·d−1; B2: 16/8 h·d−1). The results demonstrated that blue light treatment significantly reduced plant height and the dry matter distribution ratio of stems and sheaths. In contrast, stem diameter, tiller number, leaf area, theoretical biomass (TBY), maximum accumulation rate (Vmax), average accumulation rate (Vaver), time point of maximum accumulation (Tmax), rapid growth period (DRGP), dry matter distribution ratio of leaves, roots, and rhizomes, number of rhizomes per plant, average rhizome weight, and yield all significantly increased with an increasing blue light ratio. Principal component analysis revealed distinct phenotypic traits, dry matter production characteristics, and yield-related traits under different blue light treatments. Blue light promoted tillering and increased stem thickness, which are key mechanisms for enhancing ginger yield. Additionally, prolonged photoperiods significantly increased plant height, stem diameter, branch number, leaf area, and biomass, while promoting the redistribution of photosynthetic products from leaves to rhizomes and increasing the proportion of dry matter allocated to rhizomes, thereby boosting ginger yield. These findings provide valuable insights into optimizing light conditions for ginger cultivation, highlighting the importance of a balanced blue-to-white light ratio and extended photoperiods in improving ginger growth and productivity. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

27 pages, 10493 KB  
Article
Mechanical Evaluation of Casing in Multiple Thermal Recovery Cycles for Offshore Heavy Oil Wells
by Yuxian He, Yongpeng Song, Shenghua Hu, Hangming Liu and Xianchi Ge
J. Mar. Sci. Eng. 2025, 13(3), 597; https://doi.org/10.3390/jmse13030597 - 18 Mar 2025
Viewed by 1222
Abstract
China’s offshore heavy oil resources are abundant but underutilized. Circulating steam stimulation enhances production while increasing casing failure risks in thermal recovery wells. Accurately assessing casing performance after repeated thermal cycles is crucial for ensuring wellbore integrity. This paper presents tensile and creep [...] Read more.
China’s offshore heavy oil resources are abundant but underutilized. Circulating steam stimulation enhances production while increasing casing failure risks in thermal recovery wells. Accurately assessing casing performance after repeated thermal cycles is crucial for ensuring wellbore integrity. This paper presents tensile and creep experiments on TP110H casing under cyclic temperatures. The temperature distribution within the “casing-cement sheath-stratum” system is derived using heat transfer theory. Stress and displacement equations are established based on thick-walled cylinder theory and thermo-elasticity. Thermal coupling analysis assesses casing stress in straight, inclined, and sidetrack well sections. Key factors, including steam injection pressure, in situ stress, cement modulus, and prestress, are analyzed for their effects on cumulative strain below the packer. Strain-based methods evaluate casing safety. Results show that under thermal cycling at 350 °C, after 16 cycles, the casing’s elastic modulus, yield strength, and tensile strength decrease by 15.3%, 13.1%, and 10.1%, respectively, while the creep rate increases by 16.0%. Above the packer, the casing remains safe, but the lower section may be at risk. Using low-elasticity cement, higher steam injection pressure, and prestressing can help improve casing performance. This study provides guidance on enhancing casing safety and optimizing steam stimulation parameters. Full article
Show Figures

Figure 1

17 pages, 1858 KB  
Article
Sugarcane Responses to Water Deficit Are Modulated by Environmental CO2 Concentration in a Genotype and Scale Dependent-Manner
by Zulma Catherine Cardenal-Rubio, Elberth Hernando Pinzón-Sandoval, Paulo Cássio Alves Linhares, Antonia Almeida da Silva, Claudia Rita de Souza, Mewael Kiros Assefa, João Paulo Rodrigues Alves Delfino Barbosa and Paulo Eduardo Ribeiro Marchiori
Agronomy 2025, 15(3), 726; https://doi.org/10.3390/agronomy15030726 - 18 Mar 2025
Cited by 1 | Viewed by 1445
Abstract
Events by changes in climate alter the growth and physiology of sugarcane. In this context, the study aimed to investigate the morphological, anatomical, and physiological responses of two different sugarcane varieties under a condition of high carbon dioxide (CO2) associated with [...] Read more.
Events by changes in climate alter the growth and physiology of sugarcane. In this context, the study aimed to investigate the morphological, anatomical, and physiological responses of two different sugarcane varieties under a condition of high carbon dioxide (CO2) associated with water deficit, testing the hypothesis that sugarcane responses to drought are modulated by high (CO2) in different plant scales. Thirty days after sprouting, the plants were grown under two (CO2) in the atmosphere (400 and 680 μmol CO2 mol−1 of air) and under water restriction conditions. At the morphological level, we assessed total biomass, plant height, stem diameter, leaf area, and root-shoot ratio; at the physiological level, relative water content, water use efficiency, in vivo maximum rate of Rubisco, and PEPC carboxylation, photosynthesis, total organic carbon, and nitrogen, and carbon-nitrogen ratio. At the anatomical level, we assessed stomatal density at adaxial and abaxial surfaces and wall thickness bundle sheath cells. The results indicate that at all levels, the response of sugarcane plants exposed to high CO2 concentration and drought is genotype-dependent. In general, variety RB855536 showed greater physiological responses: a better water use efficiency and alteration in the carboxylation rate of Rubisco enzyme, while variety RB867515 showed a greater morphological response determined by changes in biomass allocation and anatomical alterations of stomatal densities and functionality. The sugarcane varieties exposed to water deficit and high CO2 concentration developed different strategies based on morphological, physiological, and/or anatomical changes that are useful for facing climate change scenarios, and the effects of drought can be mitigated by the high (CO2) in the air. Full article
Show Figures

Figure 1

23 pages, 16749 KB  
Article
A Thermo-Hydro-Mechanical Damage Coupling Model for Stability Analysis During the In Situ Conversion Process
by Guoping Li, Juan Jin, Weixi Chen, Minghui Zhao, Jiandong Liu, Bo Fang and Tingfu Ye
Energies 2025, 18(6), 1424; https://doi.org/10.3390/en18061424 - 13 Mar 2025
Viewed by 1050
Abstract
This study addresses stability challenges in oil shale reservoirs during the in situ conversion process by developing a thermo-hydro-mechanical damage (THMD) coupling model. The THMD model integrates thermo-poroelasticity theory with a localized gradient damage approach, accounting for thermal expansion and pore pressure effects [...] Read more.
This study addresses stability challenges in oil shale reservoirs during the in situ conversion process by developing a thermo-hydro-mechanical damage (THMD) coupling model. The THMD model integrates thermo-poroelasticity theory with a localized gradient damage approach, accounting for thermal expansion and pore pressure effects on stress evolution and avoiding mesh dependency issues present in conventional local damage models. To capture tensile–compressive asymmetry in geotechnical materials, an equivalent strain based on strain energy density is introduced, which regularizes the tensile component of the elastic strain energy density. Additionally, the model simulates the multi-layer wellbore structure and the dynamic heating and extraction processes, recreating the in situ environment. Validation through a comparison of numerical solutions with both experimental and analytical results confirms the accuracy and reliability of the proposed model. Wellbore stability analysis reveals that damage tends to propagate in the horizontal direction due to the disparity between horizontal and vertical in situ stresses, and the damaged area at a heating temperature of 600 °C is nearly three times that at a heating temperature of 400 °C. In addition, a cement sheath thickness of approximately 50 mm is recommended to optimize heat transfer efficiency and wellbore integrity to improve economic returns. Our study shows that high extraction pressure (−4 MPa) nearly doubles the reservoir’s damage area and increases subsidence from −3.6 cm to −6.5 cm within six months. These results demonstrate the model’s ability to guide improved extraction efficiency and mitigate environmental risks, offering valuable insights for optimizing in situ conversion strategies. Full article
(This article belongs to the Special Issue Advanced Technologies in Oil Shale Conversion)
Show Figures

Figure 1

18 pages, 3668 KB  
Article
Sustainable Farming: Nanofiber from the Pupunha Heart of Palm Sheath (Bactris gasipaes)-Enhanced Diets for Growing Rabbits and Their Health Impacts
by Geovane Rosa de Oliveira, Carla de Andrade, Celina Tie Nishimori Duque, Antonio Diego Brandão Melo, Cristina Santos Sotomaior, Washington Luiz Esteves Magalhães, Saulo Henrique Weber, Fernando Bittencourt Luciano and Leandro Batista Costa
Vet. Sci. 2025, 12(3), 263; https://doi.org/10.3390/vetsci12030263 - 12 Mar 2025
Viewed by 3498
Abstract
The use of nanofibers in farm animal diets can enhance nutrient absorption, minimize environmental problems, and generate a sustainable source of income. In this study, we investigated the effects of the partial inclusion of nanofibers produced from the pupunha heart of the palm [...] Read more.
The use of nanofibers in farm animal diets can enhance nutrient absorption, minimize environmental problems, and generate a sustainable source of income. In this study, we investigated the effects of the partial inclusion of nanofibers produced from the pupunha heart of the palm sheath (nanopupunha) in the diet of growing New Zealand White rabbits on zootechnical performance, organ morphometry, digestive content pH, intestinal histology, biochemical and immunological parameters, and cecum microbiota. Twenty-four male and female New Zealand White rabbits were distributed into the control group fed a basal diet with 14% crude fiber and treatment groups with the basal diet supplemented with 3.5% or 10.5% of nanopupunha, according to their initial weight. After euthanasia on day 42, we analyzed the pH of the stomach contents, jejunum, and cecum, and the relative weights of the digestive tract, liver, kidneys, and spleen. Duodenal and jejunal samples were collected for structural and ultrastructural analyses of the intestinal villi. Additionally, blood samples were collected to analyze blood glucose, cholesterol, triglycerides, and immunological analysis (IgG and IgM), and digesta samples from the cecum were collected to count enterobacteria and lactic acid bacteria. The inclusion of dietary nanopupunha did not affect the zootechnical performance of animals, but resulted in a linear decrease in the relative weight of the stomach and a linear increase in the relative weight of the spleen. No significant differences were observed in the pH of the digestive tract. Nanopupunha inclusion also resulted in a linear increase in the crypt depth of the duodenum, total mucosal thickness, and total cholesterol levels in growing rabbits. Including 10.5% of nanopupunha added to the diet showed the best results in terms of the intestinal health of the growing rabbits. Full article
(This article belongs to the Special Issue Effects of Diet on Small Animal Health—2nd Edition)
Show Figures

Graphical abstract

23 pages, 3542 KB  
Article
Numerical Study on In-Plane Behaviour of Light Timber-Framed Wall Elements Under a Horizontal Load Impact
by Miroslav Premrov and Erika Kozem Šilih
Buildings 2025, 15(5), 778; https://doi.org/10.3390/buildings15050778 - 27 Feb 2025
Viewed by 1206
Abstract
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame [...] Read more.
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame elements (internal or external wall elements). The analysis simultaneously considers bending, shear, and timber-to-framing connection flexibility, while assuming stiff-supported wall elements as prescribed by Eurocode 5. Particular emphasis is placed on the sliding deformation between sheathing boards and the timber frame, which can significantly reduce the overall stiffness of LTF wall elements. The influence of fastener spacing (s) on sliding deformation and overall stiffness is comprehensively analysed, as well as the different bending and shear behaviours of the various sheathing materials. The results show that reducing the fastener spacing can significantly improve the stiffness of OSB wall elements, while it is less critical for FPB elements used in mid-rise timber buildings. A comparison of external and internal wall elements revealed a minimal difference in racking stiffness (3.3%) for OSB and FPB specimens, highlighting their comparable performance. The inclusion of RC sheathing on one side of the LTF elements showed significant potential to improve torsional behaviour and in-plane racking stiffness, making it a viable solution for strengthening prefabricated multi-storey timber buildings. These findings provide valuable guidance for optimizing the design of LTF walls, ensuring improved structural performance and extended application possibilities in modern timber construction. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

14 pages, 4839 KB  
Article
Development of Thermally Insulating Nonwovens from Milkweed Fibers Using an Air-Laid Spike Process
by Deborah Lupescu, Mathieu Robert, Simon Sanchez-Diaz and Said Elkoun
Textiles 2025, 5(1), 5; https://doi.org/10.3390/textiles5010005 - 22 Jan 2025
Cited by 2 | Viewed by 2309
Abstract
Milkweed (MW) fiber is a natural fiber that provides tremendous thermal insulation properties due to its lightweight hollow structure. This study aimed to investigate the effect of milkweed fiber as a thermal fiber in nonwovens. Milkweed fibers were blended with a low-melt fiber [...] Read more.
Milkweed (MW) fiber is a natural fiber that provides tremendous thermal insulation properties due to its lightweight hollow structure. This study aimed to investigate the effect of milkweed fiber as a thermal fiber in nonwovens. Milkweed fibers were blended with a low-melt fiber consisting of a polyethylene terephthalate core, a polyolefin sheath (LM 2.2), and polylactic acid (PLA) fiber. Nonwovens with different fiber contents were manufactured using an air-laid Spike process to determine their effect on thermal and mechanical properties. Then, the nonwovens were compared with Thinsulate® and Primaloft®, two commercially synthetic insulation products. Structural properties, including mass per unit area, thickness, and porosity and thermal properties were studied. Furthermore, compression and short-term compression recovery were also evaluated. The results revealed that milkweed-based nonwovens that contained 50 wt% or 70 wt% of milkweed presented a lower thermal conductivity than synthetic nonwovens. Milkweed nonwovens of the same thickness provided identical thermal resistance as Thinsulate® and Primaloft. Sample 3, composed of 50 wt% MW, 20 wt% LM 2.2, and 30 wt% PLA, demonstrated the same thermal insulation as Thinsulate® with a weight three times lighter. Milkweed nonwovens presented higher moisture regain values than Thinsulate® and Primaloft®, without affecting thermal conductivity. Full article
Show Figures

Figure 1

19 pages, 8870 KB  
Article
The Casing Collapse Mechanism in Salt Formations in Deepwater Fields in Brazil
by Chunwei Gu, Ming Xiang, Mengbo Li, Haifeng Zhu, Qinyue Zhang, Zixiao Xing, Mingchun Wang, Zhe Zhang and Chuanliang Yan
Processes 2025, 13(2), 301; https://doi.org/10.3390/pr13020301 - 22 Jan 2025
Cited by 3 | Viewed by 1678
Abstract
Salt formations are commonly encountered during oil and gas drilling. Due to the rheological properties of salt rocks, casing collapse accidents happen frequently. Under action of nonuniform geostress, casing failure has become an important influencing factor that restricts the exploration and development benefits [...] Read more.
Salt formations are commonly encountered during oil and gas drilling. Due to the rheological properties of salt rocks, casing collapse accidents happen frequently. Under action of nonuniform geostress, casing failure has become an important influencing factor that restricts the exploration and development benefits of deep and ultra-deep wells. Casing stress in a period after well cementation in the salt formation of Brazilian deepwater fields was analyzed. Results show that the nonuniform geostress is instantaneously applied on the cement sheath when well cementation is completed in the salt formation and then transferred to the casing. Stress on the inner wall grows with an increase in the angle with the direction of the maximum horizontal principal stress and it reaches the maximum in the direction of the minimum horizontal principal stress. As the creep continues, stress on the inner wall of casings gradually enlarges and the circumferential stress in inner rings tends to be uniform, which means that creep of the formation weakens the nonuniformity of casing deformation. The collapse pressure on the outer wall of casings tends to increase at first and then decrease as the angle with the direction of maximum horizontal principal stress enlarges. Stress on the inner wall of casings in the salt formation reduces with the increasing thickness of casings selected, and the casing strength is improved as the wall thickness increases. The research results provide certain theoretical guidance for the strength check of casings in well cementation engineering in salt formations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop