Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (273)

Search Parameters:
Keywords = shading density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3046 KB  
Article
Ecophysiological Adaptations of Musa haekkinenii to Light Intensity and Water Quality
by Milagros Ninoska Munoz-Salas, Adam B. Roddy, Arezoo Dastpak, Bárbara Nogueira Souza Costa and Amir Ali Khoddamzadeh
Horticulturae 2025, 11(10), 1188; https://doi.org/10.3390/horticulturae11101188 - 2 Oct 2025
Abstract
Musa haekkinenii is a compact wild banana species with emerging value in ornamental horticulture, yet its adaptive responses to environmental factors remain underexplored. This study investigated the morpho-physiological and anatomical responses of M. haekkinenii to contrasting light regimes and irrigation water qualities to [...] Read more.
Musa haekkinenii is a compact wild banana species with emerging value in ornamental horticulture, yet its adaptive responses to environmental factors remain underexplored. This study investigated the morpho-physiological and anatomical responses of M. haekkinenii to contrasting light regimes and irrigation water qualities to identify optimal cultivation conditions. A 210-day factorial experiment was conducted under subtropical greenhouse conditions using a split-plot design, with light intensity (full sun vs. shade) and irrigation water quality (reverse osmosis vs. well water) as treatment factors. Plants grown under shaded conditions and irrigated with reverse osmosis water exhibited significant increases in plant height, pseudostem diameter, leaf number, and sucker production, alongside enhanced pigment accumulation and photosynthetic performance. In contrast, full-sun plants irrigated with well water showed reduced growth, lower photosynthetic efficiency, and increased substrate salinity, indicating additive effects of light and osmotic stress. Leaf anatomical analysis revealed greater stomatal size and density under shade, particularly when combined with high-quality irrigation. Multivariate analysis further supported the association of favorable trait expression with shaded conditions and reverse osmosis water. These findings highlight the importance of microenvironmental management in enhancing the physiological stability and ornamental quality of M. haekkinenii, supporting its potential application in sustainable urban landscaping. Full article
(This article belongs to the Special Issue Management of Artificial Light in Horticultural Crops)
Show Figures

Graphical abstract

24 pages, 22609 KB  
Article
Terrain-Based High-Resolution Microclimate Modeling for Cold-Air-Pool-Induced Frost Risk Assessment in Karst Depressions
by András Dobos, Réka Farkas and Endre Dobos
Climate 2025, 13(10), 205; https://doi.org/10.3390/cli13100205 - 30 Sep 2025
Abstract
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the [...] Read more.
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the formation, structure, and persistence of CAPs in a Central European karst depression. High-resolution terrain-based modeling was conducted using UAV-derived digital surface models combined with multiple GIS tools (Sky-View Factor, Wind Exposition Index, Cold Air Flow, and Diurnal Anisotropic Heat). These models were validated and enriched by multi-level temperature measurements and thermal imaging under various synoptic conditions. Results reveal that temperature inversions frequently form during clear, calm nights, leading to extreme near-surface cold accumulation within the sinkhole. Inversions may persist into the day due to topographic shading and density stratification. Vegetation and basin geometry influence radiative and turbulent fluxes, shaping the spatial extent and intensity of cold-air layers. The CAP is interpreted as part of a broader interconnected multi-sinkhole system. This integrated approach offers a transferable, cost-effective framework for terrain-driven frost hazard assessment, with direct relevance to precision agriculture, mesoscale model refinement, and site-specific climate adaptation in mountainous or frost-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

27 pages, 19015 KB  
Article
GmSAUR46b Integrates Light Signals to Regulate Leaf Midrib Thickness and Stem Trichome Density in Soybean
by Xiao Li, Bei Liu, Yunhua Yang, Han Gou, Huan Du, Yuhao Chen, Huakun Yu, Jinming Zhao and Fengjie Yuan
Int. J. Mol. Sci. 2025, 26(18), 9200; https://doi.org/10.3390/ijms26189200 - 20 Sep 2025
Viewed by 229
Abstract
Soybean (Glycine max (L.) Merr.) is a vital crop for the global supply of protein and oil, with its growth and development being regulated by genetic, hormonal, and environmental factors, particularly light and hormone signaling. The Small Auxin-Up RNA (SAUR) [...] Read more.
Soybean (Glycine max (L.) Merr.) is a vital crop for the global supply of protein and oil, with its growth and development being regulated by genetic, hormonal, and environmental factors, particularly light and hormone signaling. The Small Auxin-Up RNA (SAUR) gene family plays a crucial role in plant growth regulation; however, the molecular mechanisms by which GmSAUR46 integrates photosynthesis and hormonal networks in soybean remain unclear. In this study, we focused on GmSAUR46b (Glyma.19G182600.1) and employed CRISPR/Cas9-mediated knockout and 35S-driven overexpression lines, alongside wild-type soybean (cv. Williams 82), to investigate its function. RNA sequencing (RNA-Seq) was conducted on shoot apical meristems, stems, and leaves at three developmental stages (V1, V2, V3), followed by transcriptomic analyses, including differential gene expression (DEG) identification and functional enrichment (GO, KEGG, KOG). Anatomical studies using paraffin sectioning and scanning electron microscopy (SEM) assessed the leaf midrib thickness and stem trichome density under varying light conditions. The transcriptomic results revealed DEGs enriched in pathways related to cell wall metabolism, hormone response, and photosynthesis. Anatomical analyses demonstrated that GmSAUR46b specifically regulates the leaf midrib thickness and stem trichome density in a light-dependent manner: under shade, the overexpression lines exhibited increased midrib thickness and trichome density, whereas the knockout lines showed reduced trichome density. Additionally, novel transcripts associated with stress resistance, hormone metabolism, and photosynthesis were identified, expanding the known soybean gene repertoire. Collectively, GmSAUR46b functions as a central hub integrating light signals with hormone and cell wall pathways to modulate soybean growth, particularly leaf and stem traits. This study advances understanding of SAUR gene function in soybean and provides valuable insights for molecular breeding aimed at improving adaptability and yield under diverse environmental conditions. Full article
Show Figures

Figure 1

21 pages, 6257 KB  
Article
A Data-Driven Framework to Identify Tree Planting Potential in Urban Areas: A Case Study from Dortmund, Germany
by Vanessa Reinhart, Luise Wolf, Panagiotis Sismanidis and Benjamin Bechtel
Urban Sci. 2025, 9(9), 381; https://doi.org/10.3390/urbansci9090381 - 17 Sep 2025
Viewed by 380
Abstract
Urban areas increasingly face heat-related climate risks, necessitating targeted, nature-based interventions such as tree planting to improve resilience, livability, and public health. This study presents a data-driven workflow to identify urban tree planting potential (TPP) in the city of Dortmund, Germany. The approach [...] Read more.
Urban areas increasingly face heat-related climate risks, necessitating targeted, nature-based interventions such as tree planting to improve resilience, livability, and public health. This study presents a data-driven workflow to identify urban tree planting potential (TPP) in the city of Dortmund, Germany. The approach integrates high-resolution spatial datasets capturing land cover, shading, thermal comfort, population density, and critical infrastructure. All variables were harmonized within a 50 m hexagonal grid, normalized, and combined into a composite TPP score using weighting schemes informed by expert judgment and sensitivity testing. Spatial and non-spatial clustering were applied to group urban areas by shared characteristics, and a connectivity analysis evaluated the spatial coherence of high-potential cells and their relationship to existing green infrastructure. The findings demonstrate the potential to strengthen urban green infrastructure and guide coordinated planting strategies while addressing both ecological and social priorities. The presented workflow offers a flexible, transferable tool to support municipalities in prioritizing effective greening interventions and integrating climate adaptation objectives into urban development planning. Full article
Show Figures

Figure 1

25 pages, 3452 KB  
Article
Characterizing the Thermal Effects of Urban Morphology Through Unsupervised Clustering and Explainable AI
by Feng Xu, Ye Shen, Minrui Zheng, Xiaoyuan Zhang, Yuqiang Zuo, Xiaoli Wang and Mengdi Zhang
Remote Sens. 2025, 17(18), 3211; https://doi.org/10.3390/rs17183211 - 17 Sep 2025
Viewed by 319
Abstract
The urban thermal environment poses a significant challenge to public health and sustainable urban development. Conventional pre-defined classification schemes, such as the Local Climate Zone (LCZ) system, often fail to capture the highly heterogeneous structure of complex urban areas, thus limiting their applicability. [...] Read more.
The urban thermal environment poses a significant challenge to public health and sustainable urban development. Conventional pre-defined classification schemes, such as the Local Climate Zone (LCZ) system, often fail to capture the highly heterogeneous structure of complex urban areas, thus limiting their applicability. This study introduces a novel framework for urban thermal environment analysis, leveraging multi-source data and eXplainable Artificial Intelligence to investigate the driving mechanisms of Land Surface Temperature (LST) across various urban form types. Focusing on the area within Beijing’s 5th Ring Road, this study employs a K-Means clustering algorithm to classify urban blocks into nine distinct types based on their building morphology. Subsequently, an eXtreme Gradient Boosting (XGBoost) model, coupled with the SHapley Additive exPlanations (SHAP) method, is utilized to analyze the non-linear impacts of ten selected driving factors on LST. The findings reveal that: (1) The Compact Mid-rise type exhibits the highest annual average LST at 296.59 K, with a substantial difference of 11.29 K observed between the hottest and coldest block types. (2) SHAP analysis identifies the Normalized Difference Built-up Index (NDBI) as the most significant warming factor across all types, while the Sky View Factor (SVF) plays a crucial cooling role in high-rise areas. Conversely, road density (RD) shows a negative correlation with LST in Open Low-rise areas. (3) The influence of urban form is twofold: increased building height (BH) can induce warming by trapping heat while simultaneously providing a cooling effect through shading. (4) The impact of land use functional zones on LST is significantly modulated by urban form, with temperature differences of up to 2 K observed between different functional zones within compact block types. The analytical framework proposed herein holds significant theoretical and practical implications for achieving fine-grained thermal environment governance and fostering sustainable development in the context of global urbanization. Full article
(This article belongs to the Special Issue Remote Sensing for Landscape Dynamics)
Show Figures

Figure 1

27 pages, 4756 KB  
Article
Penumbra Shadow Representation in Photovoltaics: Comparing Dynamic and Constant Intensity
by Matthew Axisa, Luciano Mule’ Stagno and Marija Demicoli
Appl. Sci. 2025, 15(17), 9820; https://doi.org/10.3390/app15179820 - 8 Sep 2025
Viewed by 1022
Abstract
This study is the first to directly compare natural dynamic penumbra shadows with experimentally replicated constant-intensity shadows on photovoltaic modules, providing new insights into the limitations of conventional shadow approximations found in the existing body of knowledge. Neutral density filters were deemed the [...] Read more.
This study is the first to directly compare natural dynamic penumbra shadows with experimentally replicated constant-intensity shadows on photovoltaic modules, providing new insights into the limitations of conventional shadow approximations found in the existing body of knowledge. Neutral density filters were deemed the most appropriate method for replicating a constant-intensity shadow, as they reduce visible light relatively uniformly across the primary silicon wavelength range. Preliminary experiments established the intensity values for each neutral density filter chosen to be able to match with the 29 dynamic penumbra shadows being replicated by both the size of shadow and the averaged intensity. The results revealed that while constant-intensity shadows and dynamic penumbra shadows produced similar overall power loss magnitudes, the constant-intensity shadows consistently led to higher losses, averaging 9.65% more, despite having the same average intensity and shadow size. Regression modelling showed similar curvature trends for both shading types (Adjusted R2 = 0.895 for constant-intensity shadows and Adjusted R2 = 0.743 for dynamic-intensity shadows), but statistical analyses, including the Mann–Whitney U-test (p = 0.00229), confirmed a significant difference between the power loss output for the two penumbra shadow conditions. Consequently, the null hypothesis was rejected, confirming that the simplified constant-intensity shadows represented in the literature cannot accurately replicate the behaviour of dynamic-intensity penumbra on photovoltaic modules. Full article
Show Figures

Figure 1

18 pages, 5537 KB  
Article
Effect of Singlet Oxygen on the Stomatal and Cell Wall of Rice Seedling Under Different Stresses
by Yao Xiao, Zhong-Wei Zhang, Xin-Yue Yang, Lin-Bei Xie, Li-Ping Chen, Yang-Er Chen, Ming Yuan, Guang-Deng Chen and Shu Yuan
Int. J. Mol. Sci. 2025, 26(17), 8382; https://doi.org/10.3390/ijms26178382 - 28 Aug 2025
Viewed by 381
Abstract
Singlet oxygen (1O2), a reactive oxygen species, can oxidize lipids, proteins, and DNA at high concentrations, leading to cell death. Despite its extremely short half-life (10−5 s), 1O2 acts as a critical signaling molecule, triggering a [...] Read more.
Singlet oxygen (1O2), a reactive oxygen species, can oxidize lipids, proteins, and DNA at high concentrations, leading to cell death. Despite its extremely short half-life (10−5 s), 1O2 acts as a critical signaling molecule, triggering a retrograde pathway from chloroplasts to the nucleus to regulate nuclear gene expression. In this study, rice seeds were treated with 0, 5, 20 and 80 μM Rose Bengal (RB, a photosensitizer) under moderate light for 3 days to induce 1O2 generation. Treatment with 20 μM RB reduced stomatal density by approximately 25% in three-leaf-stage rice seedlings, while increasing the contents of pectin, hemicellulose, and cellulose in root cell walls by 30–40%. Under drought, salinity, or shading stress, 20 μM RB treatment significantly improved rice tolerance, as evidenced by higher relative water contents (49–58%) and chlorophyll contents (60–76%) and lower malondialdehyde (37–43%) and electrolyte leakage (29–37%) compared to the control. Moreover, RT-qPCR analysis revealed that the significant up-regulation of stomatal development genes (OsTMM and OsβCA1) and cell wall biosynthesis genes (OsF8H and OsLRX2) was associated with RB-induced 1O2 production. Thus, under controlled environmental conditions, 1O2 may regulate stomatal development and cell wall remodeling to enhance rice tolerance to multiple abiotic stresses. These results provide new perspectives for the improvement of rice stress tolerance. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition: 2nd Edition)
Show Figures

Figure 1

22 pages, 5908 KB  
Article
The Effect of Far-Red Light on the Growth of Tobacco Leaves
by Lei Liu, Shujie Gai, Chuanke Liu, Zouguo Zeng, Xudong Tan, Jiawei Li and Zhi Zhou
Plants 2025, 14(16), 2520; https://doi.org/10.3390/plants14162520 - 13 Aug 2025
Viewed by 520
Abstract
To investigate how far-red (FR) light affects tobacco leaf growth, we established different light conditions, namely, CK: white (WL), T1: red (R), T2: red–white (R+WL) combination, T3: white–far-red (WL+FR) combination, and T4: white–red–far-red (WL+R+FR) combination; conducted supplemental light experiments on tobacco; and evaluated [...] Read more.
To investigate how far-red (FR) light affects tobacco leaf growth, we established different light conditions, namely, CK: white (WL), T1: red (R), T2: red–white (R+WL) combination, T3: white–far-red (WL+FR) combination, and T4: white–red–far-red (WL+R+FR) combination; conducted supplemental light experiments on tobacco; and evaluated the growth of tobacco leaves by determining the biomass, size of the leaves, etc. In addition, the auxin (IAA) content and expression of leaf growth-related genes were examined to further reveal the mechanism of the FR regulation of tobacco leaf growth. The results show a maximum reduction in leaf area size of more than 90% and in fresh dry mass of more than 85%, while the chlorophyll content increased by more than 28%. in tobacco leaves exposed to FR compared with those exposed to white light. Meanwhile, levels of auxin IAA were increased by 113% (T3) and 17% (T4) under far-red light treatment. The anatomical structure of the tobacco leaves showed that FR reduced the number of epidermal cells in the leaves but increased the cell size. Subsequent findings revealed that FR’s impact on leaf growth was mediated through the PHYB–PIF7–IAA signaling pathway, wherein it regulated cell division and growth-related genes. This substantiates that FR diminishes the tobacco leaf area by impeding cell division rather than inhibiting cell growth. In this study, we explored the effects of far-red (FR) light on tobacco leaf growth changes and constructed a model of the related signaling pathways. Our results reveal a novel mechanism by which far-red light regulates the growth of tobacco leaves, elucidating how far-red light affects their growth and response to shading conditions. This finding not only provides a scientific basis for the optimization of high-density tobacco planting but also helps to improve photosynthetic efficiency and yield, providing strong support for the sustainable development of tobacco farming. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 2865 KB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Cited by 1 | Viewed by 588
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 5557 KB  
Article
Optimal Spatial Configuration for Energy and Solar Use in Alpine-Frigid Resettlement Communities
by Bo Liu, Wei Song, Yu Liu, Chuanming Wang and Jie Song
Buildings 2025, 15(15), 2691; https://doi.org/10.3390/buildings15152691 - 30 Jul 2025
Viewed by 374
Abstract
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates [...] Read more.
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates solar-optimized spatial configurations that enhance passive energy performance while addressing functional settlement needs. Through parametric modeling and climate-responsive simulations, four key spatial parameters are examined: building spacing, courtyard depth, density, and volumetric ratio. The findings highlight the dominant role of front–rear spacing in solar access, with optimal values at 3–4 m for single-story and 5–10 m for two-story buildings, balancing radiation gain and land use efficiency. Courtyard depths under 2.7 m significantly limit south façade exposure due to shading from the opposite courtyard wall under low-angle winter sun. This reduction results in the south façade attaining only 55.7–79.6% of the solar radiation acquisition by an unobstructed south façade (the baseline). Meanwhile, clustered orientations reduce inter-building shading losses by 38–42% compared to dispersed layouts. A three-tiered design framework is proposed: (1) macro-scale solar orientation zoning, (2) meso-scale spacing tailored to building height, and (3) micro-scale courtyard modulation for low-angle winter radiation. Together, these strategies provide practical, scalable guidelines for energy-efficient, climate-responsive settlement design in the alpine regions of Qinghai. Full article
Show Figures

Figure 1

20 pages, 3263 KB  
Article
Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023
by Tallal Abdel Karim Bouzir, Djihed Berkouk, Safieddine Ounis, Sami Melik, Noradila Rusli and Mohammed M. Gomaa
Urban Sci. 2025, 9(7), 282; https://doi.org/10.3390/urbansci9070282 - 18 Jul 2025
Viewed by 539
Abstract
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), [...] Read more.
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), Nefta (Tunisia), Ghadames (Libya), and Siwa (Egypt) over the period 2000–2023, using Landsat satellite imagery. A three-step analysis was employed: calculation of NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index), and LST, followed by supervised land cover classification and statistical tests to examine the relationships between the studied variables. The results reveal substantial reductions in bare soil (e.g., 48.10% in Siwa) and notable urban expansion (e.g., 136.01% in Siwa and 48.46% in Ghadames). Vegetation exhibited varied trends, with a slight decline in Tolga (0.26%) and a significant increase in Siwa (+27.17%). LST trends strongly correlated with land cover changes, demonstrating increased temperatures in urbanized areas and moderated temperatures in vegetated zones. Notably, this study highlights that traditional urban designs integrated with dense palm groves significantly mitigate thermal stress, achieving lower LST compared to modern urban expansions characterized by sparse, heat-absorbing surfaces. In contrast, areas dominated by fragmented vegetation or seasonal crops exhibited reduced cooling capacity, underscoring the critical role of vegetation type, spatial arrangement, and urban morphology in regulating oasis microclimates. Preserving palm groves, which are increasingly vulnerable to heat-driven pests, diseases and the introduction of exotic species grown for profit, together with a revival of the traditional compact urban fabric that provides shade and has been empirically confirmed by other oasis studies to moderate the microclimate more effectively than recent low-density extensions, will maintain the crucial synergy between buildings and vegetation, enhance the cooling capacity of these settlements, and safeguard their tangible and intangible cultural heritage. Full article
(This article belongs to the Special Issue Geotechnology in Urban Landscape Studies)
Show Figures

Figure 1

14 pages, 1990 KB  
Article
Hierarchic Branch Morphology, Needle Chlorophyll Content, and Needle and Branch Non-Structural Carbohydrate Concentrations (NSCs) Imply Young Pinus koraiensis Trees Exhibit Diverse Responses Under Different Light Conditions
by Bei Li, Wenkai Li, Sudipta Saha, Xiao Ma, Yang Liu, Haibo Wu, Peng Zhang and Hailong Shen
Horticulturae 2025, 11(7), 844; https://doi.org/10.3390/horticulturae11070844 - 17 Jul 2025
Viewed by 425
Abstract
Research on young trees’ adaptation to shade has predominantly focused on leaf-level responses, overlooking critical structural and functional adaptations in branch systems. In this study, we address this gap by investigating hierarchical branch morphology–physiology integration in 20-year-old Pinus koraiensis specimens across four distinct [...] Read more.
Research on young trees’ adaptation to shade has predominantly focused on leaf-level responses, overlooking critical structural and functional adaptations in branch systems. In this study, we address this gap by investigating hierarchical branch morphology–physiology integration in 20-year-old Pinus koraiensis specimens across four distinct light conditions classified by photosynthetic photon flux density (PPFD): three in the understory (low light, LL: 0–25 μmol/m2/s; moderate light, ML: 25–50 μmol/m2/s; and high levels of light, HL: 50–100 μmol/m2/s) and one under full light as a control (FL: 1300–1700 μmol/m2/s). We measured branch base diameter, length, and angle as well as chlorophyll and NSCs content in branches and needles. Branch base diameter and length were more than 1.5-fold higher in the FL Korean pine trees compared to the understory-grown ones, while the branching angle and ratio in the LL Korean pine trees were more than two times greater than those in the FL trees. As light levels increased, Chlorophyll a and b and total chlorophyll (Chla, Chlb, and Chl) concentrations in the needles all significantly decreased. Starch, glucose, and NSC (Starch + Soluble Sugars) concentrations in both needles and branches were the highest in the trees under FL and lowest under ML (except for soluble sugars in branches). Understory young P. koraiensis trees morphologically and physiologically adapt to limited light conditions, growing to be more horizontal, synthesizing more chlorophyll in needles, and attempting to increase their light-foraging ability. We recommend gradually expanding growing spaces to increase light availability for 20-year-old Korean pine trees grown under canopy level. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

26 pages, 918 KB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Cited by 2 | Viewed by 4039
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

28 pages, 4750 KB  
Article
A Multi-Objective Optimization Study on a Certain Lecture Hall Based on Thermal and Visual Comfort
by Hui Xi, Shichao Guo, Wanjun Hou and Bo Wang
Buildings 2025, 15(13), 2287; https://doi.org/10.3390/buildings15132287 - 29 Jun 2025
Viewed by 374
Abstract
Lecture halls are characterized by large spatial dimensions, deep floor plans, and high occupant densities. Lectures are typically conducted using multimedia and blackboard-based teaching, placing higher demands on the indoor light and thermal environment compared to standard classrooms. This study aims to simulate [...] Read more.
Lecture halls are characterized by large spatial dimensions, deep floor plans, and high occupant densities. Lectures are typically conducted using multimedia and blackboard-based teaching, placing higher demands on the indoor light and thermal environment compared to standard classrooms. This study aims to simulate the interrelationships between multiple building envelope parameters and building performance, in order to improve visual and thermal comfort while reducing energy consumption in cold-region lecture halls. Based on seven key envelope parameters—including openable window area ratio, west-facing window-to-wall ratio, exterior insulation thickness, shading element spacing, angle and width, and window glass type—a multi-objective optimization framework was established. The optimization process targeted three key performance indicators—useful daylight illuminance (UDI), energy use intensity (EUI), and thermal comfort percentage (TCP)—in the context of a stepped classroom. The results show that increasing the thickness of exterior insulation and reducing the width of shading components contribute positively to photothermal comfort without compromising thermal and visual performance. Compared with the baseline design, optimized schemes that incorporate appropriate west-facing window-to-wall ratios, openable window areas, insulation thicknesses, and external shading designs can reduce annual energy consumption by up to 10.82%, and increase UDI and TCP by 12.79% and 36.41%, respectively. These improvements are also found to be economically viable. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 5026 KB  
Article
Quantifying the Thermal and Energy Impacts of Urban Morphology Using Multi-Source Data: A Multi-Scale Study in Coastal High-Density Contexts
by Chenhang Bian, Chi Chung Lee, Xi Chen, Chun Yin Li and Panpan Hu
Buildings 2025, 15(13), 2266; https://doi.org/10.3390/buildings15132266 - 27 Jun 2025
Cited by 1 | Viewed by 453
Abstract
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate [...] Read more.
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate the high-density urban thermal environment in subtropical climates. The results reveal that compact, high-density morphologies reduce outdoor heat stress (UTCI) through self-shading but lead to significantly higher cooling loads, energy use intensity (EUI), and poorer daylight autonomy (DA) due to restricted ventilation and limited sky exposure. In contrast, more open, vegetation-rich forms improve ventilation and reduce indoor energy demand, yet exhibit higher UTCI values in exposed areas and increased lighting energy use in poorly oriented spaces. This study also proposes actionable design strategies, including optimal building spacing (≥15 m), façade orientation (30–60° offset from west), SVF regulation (0.4–0.6), and the integration of vertical greenery to balance solar access, ventilation, and shading. These findings offer evidence-based guidance for embedding morphological performance metrics into planning policies and building design codes. This work advances the integration of outdoor and indoor performance evaluation and supports climate-adaptive urban form design through quantitative, policy-relevant insights. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop