Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (504)

Search Parameters:
Keywords = severe cold region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3746 KiB  
Article
Empirical Modelling of Ice-Jam Flood Hazards Along the Mackenzie River in a Changing Climate
by Karl-Erich Lindenschmidt, Sergio Gomez, Jad Saade, Brian Perry and Apurba Das
Water 2025, 17(15), 2288; https://doi.org/10.3390/w17152288 - 1 Aug 2025
Viewed by 169
Abstract
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations [...] Read more.
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. Full article
Show Figures

Figure 1

24 pages, 3366 KiB  
Article
Real-Time Integrative Mapping of the Phenology and Climatic Suitability for the Spotted Lanternfly, Lycorma delicatula
by Brittany S. Barker, Jules Beyer and Leonard Coop
Insects 2025, 16(8), 790; https://doi.org/10.3390/insects16080790 (registering DOI) - 31 Jul 2025
Viewed by 328
Abstract
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The [...] Read more.
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The model was designed for use in the Degree-Day, Establishment Risk, and Phenological Event Maps (DDRP) platform, which is an open-source decision support tool to help to detect, monitor, and manage invasive threats. We validated the model using presence records and phenological observations derived from monitoring studies and the iNaturalist database. The model performed well, with more than >99.9% of the presence records included in the potential distribution for North America, a large proportion of the iNaturalist observations correctly predicted, and a low error rate for dates of the first appearance of adults. Cold and heat stresses were insufficient to exclude the SLF from most areas of the conterminous United States (CONUS), but an inability for the pest to complete its life cycle in cold areas may hinder establishment. The appearance of adults occurred several months earlier in warmer regions of North America and Europe, which suggests that host plants in these areas may experience stronger feeding pressure. The near-real-time forecasts produced by the model are available at USPest.org and the USA National Phenology Network to support decision making for the CONUS. Forecasts of egg hatch and the appearance of adults are particularly relevant for surveillance to prevent new establishments and for managing existing populations. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

30 pages, 4113 KiB  
Article
Genetic Variation Associated with Leaf Phenology in Pedunculate Oak (Quercus robur L.) Implicates Pathogens, Herbivores, and Heat Stress as Selective Drivers
by Jonatan Isaksson, Marcus Hall, Iryna Rula, Markus Franzén, Anders Forsman and Johanna Sunde
Forests 2025, 16(8), 1233; https://doi.org/10.3390/f16081233 - 26 Jul 2025
Viewed by 364
Abstract
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this [...] Read more.
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this leaves genetic signatures allowing for projections of future responses. We investigated environmental correlates and genetic variation putatively associated with spring and autumn leaf phenology in northern range margin oak (Quercus robur L.) populations in Sweden (55.6° N–60.8° N). Results suggested that budburst occurred later at higher latitudes and in locations with colder spring (April) temperatures, whereas leaf senescence occurred earlier at higher latitudes. Several candidate loci associated with phenology were identified (n = 40 for budburst and 47 for leaf senescence), and significant associations between these loci and latitude were detected. Functions associated with some of the candidate loci, as identified in previous studies, included host defence and heat stress tolerance. The proportion of polymorphic candidate loci associated with budburst decreased with increasing latitude, towards the range margin. Overall, the Swedish oak population seems to comprise genetic diversity in phenology-related traits that may provide resilience to a rapidly changing climate. Full article
(This article belongs to the Special Issue Woody Plant Phenology in a Changing Climate, 2nd Edition)
Show Figures

Figure 1

39 pages, 9572 KiB  
Article
Influence and Optimization of Landscape Elements on Outdoor Thermal Comfort in University Plazas in Severely Cold Regions
by Zhiyi Tao, Guoqiang Xu, Guo Li, Xiaochen Zhao, Zhaokui Gao and Xin Shen
Plants 2025, 14(14), 2228; https://doi.org/10.3390/plants14142228 - 18 Jul 2025
Viewed by 398
Abstract
Universities in severely cold regions face the dual challenge of adapting to seasonal climate variations while enhancing outdoor thermal comfort in outdoor leisure plazas. This study takes a university in Hohhot as a case study. Through field investigations conducted in summer and winter, [...] Read more.
Universities in severely cold regions face the dual challenge of adapting to seasonal climate variations while enhancing outdoor thermal comfort in outdoor leisure plazas. This study takes a university in Hohhot as a case study. Through field investigations conducted in summer and winter, thermal benchmarks were established. Based on this, an orthogonal experimental design was developed considering greenery layout, plant types, and surface albedo. ENVI-met was used to simulate and analyze the seasonal regulatory effects of landscape elements on the microclimate. The results show that: (1) the lower limit of the neutral PET range in Hohhot in winter is −11.3 °C, and the upper limit in summer is 31.3 °C; (2) the seasonal contribution of landscape elements to PET ranks as follows: plant types > greenery layout > surface albedo; and (3) the proposed optimization plan achieved a weighted increase of 6.0% in the proportion of activity area within the neutral PET range in both summer and winter. This study is the first to construct outdoor thermal sensation categories for both summer and winter in Hohhot and to establish a thermal comfort optimization evaluation mechanism that considers both diurnal and seasonal weightings. It systematically reveals the comprehensive regulatory effects of landscape elements on the thermal environment in severely cold regions and provides a nature-based solution for the climate-responsive design of campus plazas in such areas. Full article
(This article belongs to the Special Issue Sustainable Plants and Practices for Resilient Urban Greening)
Show Figures

Graphical abstract

21 pages, 1583 KiB  
Review
Valorization of Agricultural Ashes from Cold and Temperate Regions as Alternative Supplementary Cementitious Materials: A Review
by A. Sadoon, M. T. Bassuoni and A. Ghazy
Clean Technol. 2025, 7(3), 59; https://doi.org/10.3390/cleantechnol7030059 - 11 Jul 2025
Viewed by 255
Abstract
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative [...] Read more.
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative supplementary cementitious materials (ASCMs), owing to their inherent pozzolanic properties when appropriately processed. However, the availability and utilization of these ashes have predominantly been concentrated in tropical and subtropical regions, where such biomass is more abundant. This review offers a comprehensive bibliometric analysis to identify and assess agricultural ashes (specifically switchgrass, barley, sunflower, and oat husks) that are cultivated in temperate and cold climates and exhibit potential for SCM application. The analysis aims to bridge the knowledge gap by systematically mapping the existing research landscape and highlighting underexplored resources suitable for cold-region implementation. Key processing parameters, including incineration temperature, retention duration, and post-combustion grinding techniques, are critically examined for their influence on the resulting ash’s physicochemical characteristics and pozzolanic reactivity. In addition, the effect on fresh, hardened, and durability properties was evaluated. Findings reveal that several crops grown in colder regions may produce ashes rich in reactive silica, thereby qualifying them as viable ASCM candidates and bioenergy sources. Notably, the ashes derived from switchgrass, barley, oats, and sunflowers demonstrate significant reactive silica content, reinforcing their potential in sustainable construction practices. Hence, this study underscores the multifaceted benefits of contributing to the decarbonization of the cement industry and circular economy, while addressing environmental challenges associated with biomass waste disposal and uncontrolled open-air combustion. Full article
Show Figures

Figure 1

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 329
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

22 pages, 4467 KiB  
Article
Modification of Airfoil Thickness and Maximum Camber by Inverse Design for Operation Under Icing Conditions
by Ibrahim Kipngeno Rotich and László E. Kollár
Modelling 2025, 6(3), 64; https://doi.org/10.3390/modelling6030064 - 8 Jul 2025
Viewed by 278
Abstract
Wind turbine performance in cold regions is affected by icing which can lead to power reduction due to the aerodynamic degradation of the turbine blade. The development of airfoil shapes applied as blade sections contributes to improving the aerodynamic performance under a wide [...] Read more.
Wind turbine performance in cold regions is affected by icing which can lead to power reduction due to the aerodynamic degradation of the turbine blade. The development of airfoil shapes applied as blade sections contributes to improving the aerodynamic performance under a wide range of weather conditions. The present study considers inverse design coupled with numerical modelling to simulate the effects of varying airfoil thickness and maximum camber. The inverse design process was implemented in MATLAB R2023a, whereas the numerical models were constructed using ANSYS Fluent and FENSAP ICE 2023 R1. The inverse design process applied the modified Garabedian–McFadden (MGM) iterative technique. Shear velocities were calculated from the flow over an airfoil with slip conditions, and then this velocity distribution was modified according to the prevailing icing conditions to obtain the target velocities. A parameter was proposed to consider the airfoil thickness as well when calculating the target velocities. The airfoil generated was then exposed to various atmospheric conditions to check the improvement in the aerodynamic performance. The ice mass and lift-to-drag ratio were determined considering cloud characteristics under varying liquid water content (LWC) from mild to severe (0.1 g/m3 to 1 g/m3), median volume diameter (MVD) of 50 µm, and two ambient temperatures (−4 °C and −20 °C) that characterize freezing drizzle and in-cloud icing conditions. The ice mass on the blade section was not significantly impacted by modifying the shape after applying the process developed (i.e., <5%). However, the lift-to-drag ratio that describes the aerodynamic performance may even be doubled in the icing scenarios considered. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

12 pages, 3441 KiB  
Article
Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments
by Lei Zhang, Ruisen Li, Sheng Li, Han Wang and Qiang Fu
Materials 2025, 18(14), 3220; https://doi.org/10.3390/ma18143220 - 8 Jul 2025
Viewed by 300
Abstract
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) [...] Read more.
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) were cured at environmental temperatures of −20 °C, −40 °C, and −60 °C. The optimal carbon fiber (CF) contents were determined using the initial electric resistivity to ensure a consistent electric-induced heating curing process. The thermal profiles during curing were monitored, and mechanical strength development was systematically evaluated. Hydration characteristics were elucidated through thermogravimetric analysis (TG), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) to identify phase compositions and reaction products. Results demonstrate that electric-induced heating effectively mitigates the adverse effect caused by the ultra-low temperature constraints, with distinct differences in the strength performance and hydration kinetics among supplementary cementitious materials. MK-CM exhibited superior early strength development with strength increasing rates above 10% compared to the Ref. specimen, which was attributed to the accelerated pozzolanic reactions. Microstructural analyses further verified the macroscopic strength test results that showed that electric-induced heating curing can effectively promote the performance development even under severely cold environments with a higher hydration degree and refined micro-pore structure. This work proposes a viable strategy for polar construction applications. Full article
Show Figures

Figure 1

22 pages, 3505 KiB  
Article
Coupled Study on the Building Load Dynamics and Thermal Response of Ground Sources in Shallow Geothermal Heat Pump Systems Under Severe Cold Climate Conditions
by Jianlin Li, Xupeng Qi, Xiaoli Li, Huijie Huang and Jian Gao
Modelling 2025, 6(3), 63; https://doi.org/10.3390/modelling6030063 - 7 Jul 2025
Viewed by 212
Abstract
To address thermal imbalance and ground temperature degradation in shallow geothermal heat pump (GSHP) systems in severely cold climates, this study analyzes a typical logistics building using an hourly dynamic load model. Multiyear simulations were conducted to investigate the coupling between building load [...] Read more.
To address thermal imbalance and ground temperature degradation in shallow geothermal heat pump (GSHP) systems in severely cold climates, this study analyzes a typical logistics building using an hourly dynamic load model. Multiyear simulations were conducted to investigate the coupling between building load variation and soil thermal response. The results indicate that with a cumulative heating load of 14.681 million kWh and cooling load of 6.3948 million kWh, annual heat extraction significantly exceeds heat rejection, causing ground temperature to decline by about 1 °C per year. Over five and ten years, the cumulative drops reached 2.65 °C and 4.71 °C, respectively, leading to a noticeable reduction in borehole heat exchanger performance and system COP. The study quantitatively evaluates ground temperature and heat exchange degradation, highlighting the key role of load imbalance. To mitigate long-term thermal deterioration, strategies such as load optimization, summer heat reinjection, and operational adjustments are proposed. The findings offer guidance for the design and sustainable operation of GSHP systems in cold regions. Full article
Show Figures

Figure 1

15 pages, 2224 KiB  
Article
Estimation of Available Phosphorus Under Phosphorus Fertilization in Paddy Fields of a Cold Region Using Several Extraction Methods: A Case Study from Yamagata, Japan
by Shuhei Tsumuraya, Hisashi Nasukawa and Ryosuke Tajima
Agriculture 2025, 15(13), 1453; https://doi.org/10.3390/agriculture15131453 - 5 Jul 2025
Viewed by 301
Abstract
Assessing available phosphorus (P) in paddy fields is challenging due to waterlogging-induced reducing conditions. This study tested the applicability of the Truog, Bray 2, and Mehlich 3 extraction methods in both air-dried and incubated soils, as well as the ascorbic-acid-reduced Bray 2 (AR [...] Read more.
Assessing available phosphorus (P) in paddy fields is challenging due to waterlogging-induced reducing conditions. This study tested the applicability of the Truog, Bray 2, and Mehlich 3 extraction methods in both air-dried and incubated soils, as well as the ascorbic-acid-reduced Bray 2 (AR Bray 2), which simulates reducing conditions, for evaluating rice growth under P fertilization. In addition, to investigate the chemical characteristics of the extraction methods, active Al and Fe and P sequential extractions were measured. Soil samples from four representative regions in Yamagata Prefecture were used. Pot cultivation tests using ‘Haenuki’ and ‘Tsuyahime’ cultivars were conducted with varying P fertilizer levels. Variations in P availability across soil types were influenced by levels of active Al and Fe. Sequential extractions identified NaHCO3-P and NaOH-P fractions as important for P availability. Bray 2 in both soils and AR Bray 2 were the most effective methods, showing a strong saturating exponential correlation with rice growth and P uptake, whereas Mehlich 3 and Truog showed weaker correlations. Bray 2 and AR Bray 2 show potential but require further evaluation for practical application due to the small number of soils. Future efforts should prioritize developing methods that account for P dynamics under reducing conditions, thereby improving P management strategies and supporting sustainable rice production. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

16 pages, 1421 KiB  
Article
News as a Climate Data Source: Studying Hydrometeorological Risks and Severe Weather via Local Television in Catalonia (Spain)
by Joan Targas, Tomas Molina and Gori Masip
Earth 2025, 6(3), 72; https://doi.org/10.3390/earth6030072 - 3 Jul 2025
Viewed by 381
Abstract
This study analyzes the evolution of hydrometeorological risks and severe weather events in Catalonia through an extensive review of 21,312 news reports aired by Televisió de Catalunya (TVC) between 1984 and 2019, 10,686 (50.1%) of which focused on events within Catalonia. The reports [...] Read more.
This study analyzes the evolution of hydrometeorological risks and severe weather events in Catalonia through an extensive review of 21,312 news reports aired by Televisió de Catalunya (TVC) between 1984 and 2019, 10,686 (50.1%) of which focused on events within Catalonia. The reports are categorized by the type of phenomenon, geographic location, and reported impact, enabling the identification of temporal trends. The results indicate a general increase in the frequency of news coverage of hydrometeorological and severe weather events—particularly floods and heavy rainfall—both in Catalonia and the broader Mediterranean region. This rise is attributed not only to a potential increase in such events, but also to the expansion and evolution of media coverage over time. In the Catalan context, the most frequently reported hazards are snowfalls and cold waves (3203 reports), followed by rainfall and flooding (3065), agrometeorological risks (2589), and wind or sea storms (1456). The study highlights that rainfall and flooding pose the most significant risks in Catalonia, as they account for the majority of the reports involving serious impacts—1273 cases of material damage and 150 involving fatalities. The normalized data reveal a growing proportion of reports on violent weather and floods, and a relative decline in snow-related events. Full article
Show Figures

Figure 1

32 pages, 1758 KiB  
Article
Time-Varying Dynamics and Socioeconomic Determinants of Energy Consumption and Truck Emissions in Cold Regions
by Ge Zhou, Wenhui Zhang, Xiaotian Qiao, Wenjie Lv and Ziwen Song
Energies 2025, 18(13), 3527; https://doi.org/10.3390/en18133527 - 3 Jul 2025
Viewed by 290
Abstract
Facing the increasingly severe challenges of global climate change, China has established clear “dual carbon” goals, with the core objective of achieving carbon peak by 2030 or earlier. However, carbon emissions from the road freight industry have remained higher for many years; understanding [...] Read more.
Facing the increasingly severe challenges of global climate change, China has established clear “dual carbon” goals, with the core objective of achieving carbon peak by 2030 or earlier. However, carbon emissions from the road freight industry have remained higher for many years; understanding and estimating the characteristics of truck carbon emissions are critical for developing a low-carbon transportation system. This study takes Heilongjiang Province, a typically cold region, as a case study. By employing the growth curve method, we predicted the time for achieving carbon peak and constructed an improved STIRPAT model to identify key drivers and pathways for emission reduction in the road freight system. The research results show that only by committing to using the economy to reduce carbon emissions and improve energy intensity can the overall carbon emissions of Heilongjiang Province’s cargo transportation system achieve the “dual carbon” goals as soon as possible. If we develop according to the optimistic scenario proposed in this article, by 2030, the total quantity of trucks will reach about 933,720, and the carbon emissions per vehicle will reach about 178.14 t. If we actively increase the proportion of new energy trucks in the overall quantity of trucks, the peak time is expected to be achieved around 2030. The improvement of technological efficiency (e.g., lowering energy intensity) and the advancement of economic development have been identified as effective pathways for carbon emission reduction. Empirical studies indicate that these measures can achieve emission reduction impacts that are approximately 60 times and 10 times greater, respectively, in terms of efficiency, compared to baseline scenarios. Furthermore, energy intensity improvements and structural shifts toward low-carbon vehicles are critical to expediting peak attainment. This study provides a methodological framework for cold-region emission projections and offers actionable insights for policymakers to design tailored emission reduction pathways in the road freight transportation industry. Full article
Show Figures

Figure 1

22 pages, 9767 KiB  
Article
Freeze–Thaw-Induced Degradation Mechanisms and Slope Stability of Filled Fractured Rock Masses in Cold Region Open-Pit Mines
by Jun Hou, Penghai Zhang, Ning Gao, Wanni Yan and Qinglei Yu
Appl. Sci. 2025, 15(13), 7429; https://doi.org/10.3390/app15137429 - 2 Jul 2025
Viewed by 242
Abstract
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory [...] Read more.
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory FT tests are typically based on uniform temperature settings, which fail to reflect the actual thermal variations at different burial depths, thereby limiting the accuracy of mechanical parameter acquisition. Taking the Wushan open-pit mine as the engineering background, this study establishes a temperature–depth relationship, defines multiple thermal intervals, and conducts direct shear tests on structural plane filling materials under various FT conditions to characterize the evolution of cohesion and internal friction angle. Results from rock mass testing and numerical simulation demonstrate that shear strength parameters exhibit an exponential decline with increasing FT cycles and decreasing burial depth, with the filling material playing a dominant role in the initial stage of degradation. Furthermore, a two-dimensional fracture network model of the rock mass was constructed, and the representative elementary volume (REV) was determined through the evolution of equivalent plastic strain. Based on this, spatial assignment of slope strength was performed, followed by stability analysis. Based on regression fitting using 0–25 FT cycles, regression model predictions indicate that when the number of FT cycles exceeds 42, the slope safety factor drops below 1.0, entering a critical instability state. This research successfully establishes a spatial field of mechanical parameters and evaluates slope stability, providing a theoretical foundation and parameter support for the long-term service evaluation and stability assessment of cold-region open-pit mine slopes. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

18 pages, 289 KiB  
Article
The Kennedy Plan: The Role of Rhetoric in Overcoming the Cuban Threat During 1961
by James Trapani
Histories 2025, 5(3), 30; https://doi.org/10.3390/histories5030030 - 25 Jun 2025
Viewed by 786
Abstract
President John F Kennedy faced an impending crisis upon taking office in January 1961. The revolutionary threat of Cuba held the potential to spread to several neighboring countries. This crisis was the product of decades of neglect from successive US presidents, that ultimately [...] Read more.
President John F Kennedy faced an impending crisis upon taking office in January 1961. The revolutionary threat of Cuba held the potential to spread to several neighboring countries. This crisis was the product of decades of neglect from successive US presidents, that ultimately invited the USSR into the region and fell to Kennedy during his first year as President. Kennedy sought to recast the image of the US in the hemisphere to inoculate against the example of Cuba. The cornerstone of this plan was the Alliance for Progress, a substantial program of economic assistance from the US to Latin America. However, that program has widely been criticized as a failure. Rather than reflect on the economic and social limitations of the Alliance for Progress, this paper will evaluate the diplomatic impact of Kennedy’s approach in forming the anti-Cuban coalition in the first year of his presidency. Kennedy successfully changed the Latin American attitude towards the US prior to the releasing of any substantial economic aid. Therefore, this paper will argue that “The Kennedy Plan” was a diplomatic success that reduced the threat of Castro’s Cuba in the context of the Cold War. Full article
(This article belongs to the Special Issue History of International Relations)
27 pages, 5501 KiB  
Article
The Influence of Thermal History and Air Conditioner Use Behavior Under Different Cooling Set Point Temperature Modes on Health
by Fangning Shi, Nianping Li and Haiyan Yan
Buildings 2025, 15(13), 2211; https://doi.org/10.3390/buildings15132211 - 24 Jun 2025
Viewed by 469
Abstract
Chinese local governments mandate public buildings to maintain a cooling set point temperature (SPT ≥ 26 °C). To explore how thermal history and air conditioner use behavior under different cooling SPT modes influence health, an experimental study and field investigation was carried out [...] Read more.
Chinese local governments mandate public buildings to maintain a cooling set point temperature (SPT ≥ 26 °C). To explore how thermal history and air conditioner use behavior under different cooling SPT modes influence health, an experimental study and field investigation was carried out in split air-conditioned office buildings in China’s cold climate regions. Two categories were established based on energy policy: the H group (SPT ≥ 26 °C) and the L group (SPT < 26 °C). The results showed that L group subjects experienced longer, colder, and higher CO2/formaldehyde exceedance rate exposures in air-conditioned environments, demonstrating greater reliance on air conditioners, although indoor air quality satisfaction showed no significant difference between groups. Air quality perception demonstrates long-term adaptation to indoor air temperature and CO2. Compared with the high SPT mode, the adverse influences and mechanisms of the low SPT mode on health are as follows: making people adapt to cold environments due to colder thermal history and inducing pathological adaptation cycles, thus promoting strong reliance on the air-conditioned environment. This leads to a substantial increase in air conditioner use time, thereby increasing the severity of sick building syndrome (SBS), indoor pollutants, formaldehyde carcinogenic risk, and desensitized air quality perception. China’s government should systematically enhance the enforcement of SPT-related policies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop