Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3590 KiB  
Article
Mesocricetus auratus (Golden Syrian Hamster) Experimental Model of SARS-CoV-2 Infection Reveals That Lung Injury Is Associated with Phenotypic Differences Between SARS-CoV-2 Variants
by Daniela del Rosario Flores Rodrigues, Alexandre dos Santos da Silva, Arthur Daniel Rocha Alves, Bárbara Araujo Rossi, Richard de Almeida Lima, Sarah Beatriz Salvador Castro Faria, Oswaldo Gonçalves Cruz, Rodrigo Muller, Julio Scharfstein, Amanda Roberta Revoredo Vicentino, Aline da Rocha Matos, João Paulo Rodrigues dos Santos, Pedro Paulo Abreu Manso, Milla Bezerra Paiva, Debora Ferreira Barreto-Vieira, Gabriela Cardoso Caldas, Marcelo Pelajo Machado and Marcelo Alves Pinto
Viruses 2025, 17(8), 1048; https://doi.org/10.3390/v17081048 - 28 Jul 2025
Viewed by 470
Abstract
Despite the current level of public immunity to SARS-CoV-2, the early inflammatory events associated with respiratory distress in COVID-19 patients are not fully elucidated. Syrian golden hamsters, facultative hibernators, recapitulate the phenotype of SARS-CoV-2-induced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—induced severe acute [...] Read more.
Despite the current level of public immunity to SARS-CoV-2, the early inflammatory events associated with respiratory distress in COVID-19 patients are not fully elucidated. Syrian golden hamsters, facultative hibernators, recapitulate the phenotype of SARS-CoV-2-induced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—induced severe acute lung injury seen in patients. In this study, we describe the predominance of the innate immune response in hamsters inoculated with four different SARS-CoV-2 variants, underscoring phenotypic differences among them. Severe inflammatory lung injury was chronologically associated with acute and significant weight loss, mainly in animals inoculated with A.2 and Delta variants. Omicron-infected animals had lower overall histopathology scores compared to other variants. We highlight the central role of endothelial injury and activation in the pathogenesis of experimental SARS-CoV-2 infection in hamsters, characterised by the presence of proliferative type I and type II pneumocytes with abundant surfactant expression, thereby maintaining hyperinflated alveolar fields. Additionally, there was evidence of intrapulmonary lymphatic vessel proliferation, which was accompanied by a lack of detectable microthrombosis in the lung parenchyma. However, white microthrombi were observed in lymphatic vessels. Our findings suggest that the physiological compensatory mechanisms that maintain respiratory homeostasis in Golden Syrian hamsters prevent severe respiratory distress and death after SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Emerging Concepts in SARS-CoV-2 Biology and Pathology, 3rd Edition)
Show Figures

Figure 1

16 pages, 720 KiB  
Article
Demographic and Clinical Profile of Patients with Osteogenesis Imperfecta Hospitalized Due to Coronavirus Disease (COVID)-19: A Case Series of 13 Patients from Brazil
by Luana Lury Morikawa, Luiz Felipe Azevedo Marques, Adriele Evelyn Ferreira Silva, Patrícia Teixeira Costa, Lucas Silva Mello, Andrea de Melo Alexandre Fraga and Fernando Augusto Lima Marson
Healthcare 2025, 13(15), 1779; https://doi.org/10.3390/healthcare13151779 - 23 Jul 2025
Viewed by 265
Abstract
Background: Osteogenesis imperfecta (OI) is a rare genetic connective tissue disorder characterized by bone fragility, most often caused by pathogenic variants in type I collagen genes. In this context, we aimed to describe the clinical and epidemiological characteristics of patients with OI who [...] Read more.
Background: Osteogenesis imperfecta (OI) is a rare genetic connective tissue disorder characterized by bone fragility, most often caused by pathogenic variants in type I collagen genes. In this context, we aimed to describe the clinical and epidemiological characteristics of patients with OI who were hospitalized for coronavirus disease (COVID)-19 in Brazil between 2020 and 2024. Methods: We conducted a retrospective descriptive analysis using data from the Brazilian Unified Health System (SUS, which stands for the Portuguese Sistema Único de Saúde) through the Open-Data-SUS platform. Patients with a confirmed diagnosis of OI and hospitalization due to COVID-19 were included. Descriptive statistical analysis was performed to evaluate demographic, clinical, and outcome-related variables. We included all hospitalized COVID-19 cases with a confirmed diagnosis of OI between 2020 and 2024. Results: Thirteen hospitalized patients with OI and COVID-19 were identified. Most were adults (9; 69.2%), male (7; 53.8%), self-identified as White (9; 69.2%), and all were residents of urban areas (13; 100.0%). The most frequent symptoms were fever (10; 76.9%), cough (9; 69.2%), oxygen desaturation (9; 69.2%), dyspnea (8; 61.5%), and respiratory distress (7; 53.8%). Two patients had heart disease, one had chronic lung disease, and one was obese. As for vaccination status, five patients (38.5%) had been vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Four patients (30.8%) required admission to an intensive care unit (ICU), and six (46.2%) required noninvasive ventilatory support. Among those admitted to the ICU, only two required invasive mechanical ventilation. The clinical outcome was death in two cases (15.4%). Both patients were male, White, and had not been vaccinated against SARS-CoV-2. One was 47 years old, was not admitted to the ICU, but required noninvasive ventilation. Despite the underlying condition most patients had favorable outcomes, consistent with an international report. Conclusions: This is the first report to describe the clinical and epidemiological profile of patients with OI hospitalized for COVID-19 in Brazil, providing initial insights into how a rare bone disorder intersects with an acute respiratory infection. The generally favorable outcomes observed—despite the underlying skeletal fragility—suggest that individuals with OI are not necessarily at disproportionate risk of severe COVID-19, particularly when appropriately monitored. The occurrence of deaths only among unvaccinated patients underscores the critical role of SARS-CoV-2 vaccination in this population. Although pharmacological treatment data were unavailable, the potential protective effects of bisphosphonates and vitamin D merit further exploration. These findings support the need for early preventive strategies, systematic vaccination efforts, and dedicated clinical protocols for rare disease populations during infectious disease outbreaks. Full article
Show Figures

Figure 1

27 pages, 8834 KiB  
Article
Genetic and Immunological Profiling of Recent SARS-CoV-2 Omicron Subvariants: Insights into Immune Evasion and Infectivity in Monoinfections and Coinfections
by Nadine Alvarez, Irene Gonzalez-Jimenez, Risha Rasheed, Kira Goldgirsh, Steven Park and David S. Perlin
Viruses 2025, 17(7), 918; https://doi.org/10.3390/v17070918 - 27 Jun 2025
Viewed by 570
Abstract
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact on public health continue to demand attention as the virus continues to evolve, demonstrating a remarkable ability to adapt to diverse selective pressures including immune responses, therapeutic treatments, and [...] Read more.
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact on public health continue to demand attention as the virus continues to evolve, demonstrating a remarkable ability to adapt to diverse selective pressures including immune responses, therapeutic treatments, and prophylactic interventions. The SARS-CoV-2 variant landscape remains dynamic, with new subvariants continuously emerging, many harboring spike protein mutations linked to immune evasion. In this study, we characterized a panel of live SARS-CoV-2 strains, including those key subvariants implicated in recent waves of infection. Our findings revealed a significant variability in mutation patterns in the spike protein across the strains analyzed. Commercial antibodies and human convalescent plasma (HCoP) samples from unvaccinated donors were ineffective in neutralizing the most recent Omicron subvariants, particularly after the emergence of JN.1 subvariant. Using human airway epithelial cells derived from healthy bronchiolar tissue (hBAEC), we established both monoinfections and coinfections involving SARS-CoV-2, Influenza A virus H1N1 (IFAV_H1N1) and Respiratory Syncytial Virus (RSV). Assessments were conducted to compare viral infectivity and the production and release of immune mediators in the apical and basolateral compartments. Notably, Omicron KP.3.1.1 subvariant induced a more pronounced cytopathic effect in hBAEC compared to its parental strain JN.1 and even surpassed the impact observed with the ancestral wild-type virus (WA1/2020, Washington strain). Furthermore, the coinfection of KP.3.1.1 subvariant with IFAV_H1N1 or RSV did not attenuate SARS-CoV-2 infectivity; instead, it significantly exacerbated the pathogenic synergy in the lung epithelium. Our study demonstrated that pro-inflammatory cytokines IL-6, IFN-β, and IL-10 were upregulated in hBAEC following SARS-CoV-2 monoinfection with recent Omicron subvariants as well as during coinfection with IFAV_H1N1 and RSV. Taken together, our findings offer new insights into the immune evasion strategies and pathogenic potential of evolving SARS-CoV-2 Omicron subvariants, as well as their interactions with other respiratory viruses, carrying important implications for therapeutic development and public health preparedness. Full article
(This article belongs to the Special Issue COVID-19 Complications and Co-infections)
Show Figures

Graphical abstract

21 pages, 1578 KiB  
Article
ISG15 as a Potent Immune Adjuvant in MVA-Based Vaccines Against Zika Virus and SARS-CoV-2
by Juan García-Arriaza, Michela Falqui, Patricia Pérez, Rocío Coloma, Beatriz Perdiguero, Enrique Álvarez, Laura Marcos-Villar, David Astorgano, Irene Campaña-Gómez, Carlos Óscar S. Sorzano, Mariano Esteban, Carmen Elena Gómez and Susana Guerra
Vaccines 2025, 13(7), 696; https://doi.org/10.3390/vaccines13070696 - 27 Jun 2025
Viewed by 638
Abstract
Background: Vaccines represent one of the most affordable and efficient tools for controlling infectious diseases; however, the development of efficacious vaccines against complex pathogens remains a major challenge. Adjuvants play a relevant role in enhancing vaccine-induced immune responses. One such molecule is interferon-stimulated [...] Read more.
Background: Vaccines represent one of the most affordable and efficient tools for controlling infectious diseases; however, the development of efficacious vaccines against complex pathogens remains a major challenge. Adjuvants play a relevant role in enhancing vaccine-induced immune responses. One such molecule is interferon-stimulated gene 15 (ISG15), a key modulator of antiviral immunity that acts both through ISGylation-dependent mechanisms and as a cytokine-like molecule. Methods: In this study, we assessed the immunostimulatory potential of ISG15 as an adjuvant in Modified Vaccinia virus Ankara (MVA)-based vaccine candidates targeting Zika virus (ZIKV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Early innate responses and immune cell infiltration were analyzed in immunized mice by flow cytometry and cytokine profiling. To elucidate the underlying mechanism of action of ISG15, in vitro co-infection studies were performed in macrophages. Finally, we evaluated the magnitude and functional quality of the elicited antigen-specific cellular immune responses in vivo. Results: Analysis of early innate responses revealed both platform- and variant-specific effects. ISG15AA preferentially promoted natural killer (NK) cell recruitment at the injection site, whereas ISG15GG enhanced myeloid cell infiltration in draining lymph nodes (DLNs), particularly when delivered via MVA. Moreover, in vitro co-infection of macrophages with MVA-based vaccine vectors and the ISG15AA mutant led to a marked increase in proinflammatory cytokine production, highlighting a dominant role for the extracellular, ISGylation-independent functions of ISG15 in shaping vaccine-induced immunity. Notably, co-infection of ISG15 with MVA-ZIKV and MVA-SARS-CoV-2 vaccine candidates enhanced the magnitude of antigen-specific immune responses in both vaccine models. Conclusions: ISG15, particularly in its ISGylation-deficient form, acts as a promising immunomodulatory adjuvant for viral vaccines, enhancing both innate and adaptive immune responses. Consistent with previous findings in the context of Human Immunodeficiency virus type 1 (HIV-1) vaccines, this study further supports the potential of ISG15 as an effective adjuvant for vaccines targeting viral infections such as ZIKV and SARS-CoV-2. Full article
(This article belongs to the Special Issue Protective Immunity and Adjuvant Vaccines)
Show Figures

Figure 1

19 pages, 1219 KiB  
Review
Carboxylesterase Factors Influencing the Therapeutic Activity of Common Antiviral Medications Used for SARS-CoV-2 Infection
by Yue Shen, William Eades, Linh Dinh and Bingfang Yan
Pharmaceutics 2025, 17(7), 832; https://doi.org/10.3390/pharmaceutics17070832 - 26 Jun 2025
Viewed by 588
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, remains a major global health threat. The virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. Several small-molecule antiviral drugs, including molnupiravir, favipiravir, remdesivir, and nirmatrelvir have [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, remains a major global health threat. The virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. Several small-molecule antiviral drugs, including molnupiravir, favipiravir, remdesivir, and nirmatrelvir have been shown to inhibit SARS-CoV-2 replication and are approved for treating SARS-CoV-2 infections. Nirmatrelvir inhibits the viral main protease (Mpro), a key enzyme for processing polyproteins in viral replication. In contrast, molnupiravir, favipiravir, and remdesivir are prodrugs that target RNA-dependent RNA polymerase (RdRp), which is crucial for genome replication and subgenomic RNA production. However, undergoing extensive metabolism profoundly impacts their therapeutic effects. Carboxylesterases (CES) are a family of enzymes that play an essential role in the metabolism of many drugs, especially prodrugs that require activation through hydrolysis. Molnupiravir is activated by carboxylesterase-2 (CES2), while remdesivir is hydrolytically activated by CES1 but inhibits CES2. Nirmatrelvir and remdesivir are oxidized by the same cytochrome P450 (CYP) enzyme. Additionally, various transporters are involved in the uptake or efflux of these drugs and/or their metabolites. It is well established that drug-metabolizing enzymes and transporters are differentially expressed depending on the cell type, and these genes exhibit significant polymorphisms. In this review, we examine how CES-related cellular and genetic factors influence the therapeutic activities of these widely used COVID-19 medications. This article highlights implications for improving product design, targeted inhibition, and personalized medicine by exploring genetic variations and their impact on drug metabolism and efficacy. Full article
(This article belongs to the Special Issue ADME Properties in the Drug Delivery)
Show Figures

Figure 1

14 pages, 1700 KiB  
Article
Delayed Viral Clearance Accompanied by Early Impaired Humoral and Virus-Specific T-Cell Response in Patients with Coronavirus Disease 2019 and Interstitial Lung Disease
by Jiaying Zhong, Juan Li, Rui Wei, Bingpeng Guo, Tingting Cui, Peiyu Huang, Zhongfang Wang, Qun Luo and Qian Han
Vaccines 2025, 13(6), 655; https://doi.org/10.3390/vaccines13060655 - 19 Jun 2025
Viewed by 496
Abstract
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence [...] Read more.
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence of immune disorders and immunosuppressive therapy. This results in poor control of viral infections following SARS-CoV-2 infection. We aimed to highlight the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Methods: We compared viral clearance, antibody levels, and T-cell immune response between healthy controls and patients with connective tissue disease-related ILD (CTD-ILD) or interstitial pneumonia with autoimmune features (IPAF). Results: Patients with ILD exhibited a higher viral load than the control group (1.58 × 106 vs. 2.37 × 103 copies/mL, p = 0.018), as well as a significantly lower level of neutralizing antibodies against the wild-type (WT) virus (7.01 vs. 625.6, p < 0.0001) and Omicron BA.5 (7.19 vs. 128.4, p < 0.001). Similarly, a lower virus-specific T-cell (VST) immune response was observed 14 days post-symptom onset in the ILD group (CD4+ VSTs: 0.018 vs. 0.082, p = 0.005; CD8+ VSTs: 0.0008 vs. 0.047, p = 0.004). The ILD group had no other heightened inflammatory biomarkers compared with the control group. Conclusions: Our study provides novel evidence of the underlying interaction between virus clearance and host immune status and sheds light on the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

13 pages, 2604 KiB  
Article
A Novel SARS-CoV-2-Derived Infectious Vector System
by Ghada Elfayres, Yong Xiao, Qinghua Pan, Chen Liang, Benoit Barbeau and Lionel Berthoux
Microbiol. Res. 2025, 16(6), 125; https://doi.org/10.3390/microbiolres16060125 - 11 Jun 2025
Viewed by 954
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. The development of antiviral drugs for COVID-19 has been hampered by the requirement of a biosafety level 3 (BSL3) laboratory for experiments related to SARS-CoV-2, and by the lack of [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. The development of antiviral drugs for COVID-19 has been hampered by the requirement of a biosafety level 3 (BSL3) laboratory for experiments related to SARS-CoV-2, and by the lack of easy and precise methods for quantification of infection. Here, we developed a SARS-CoV-2 viral vector composed of all four SARS-CoV-2 structural proteins constitutively expressed in lentivirally transduced cells, combined with an RNA replicon deleted for SARS-CoV-2 structural protein genes S, M, and E, and expressing a luciferase–GFP fusion protein. We show that, after concentrating viral stocks by ultracentrifugation, the SARS-CoV-2 viral vector is able to infect two human cell lines expressing receptors ACE2 and TMPRSS2. Both luciferase activity and GFP fluorescence were detected, and transduction was remdesivir-sensitive. We also show that this vector is inhibited by three type I interferon (IFN-I) subtypes. Although improvements are needed to increase infectious titers, this vector system may prove useful for antiviral drug screening and SARS-CoV-2-related investigations. Full article
Show Figures

Figure 1

23 pages, 2512 KiB  
Article
Bioprinted Four-Cell-Type Lung Model for Viral Infection Studies Under Air–Liquid Interface Conditions
by Johanna Berg, Julian Heinze, Daniela Niemeyer, Josefin Hellgren, Himjyot Jaiswal, Anna Löwa, Andreas Hocke, Itedale Namro, Christian Drosten, Jens Kurreck and Beatrice Tolksdorf
Int. J. Mol. Sci. 2025, 26(12), 5543; https://doi.org/10.3390/ijms26125543 - 10 Jun 2025
Viewed by 905
Abstract
Viral lung infections are a never-ending threat to public health due to the emergence of new variants and their seasonal nature. While vaccines offer some protection, the need for effective antiviral drugs remains high. The existing research methods using 2D cell culture and [...] Read more.
Viral lung infections are a never-ending threat to public health due to the emergence of new variants and their seasonal nature. While vaccines offer some protection, the need for effective antiviral drugs remains high. The existing research methods using 2D cell culture and animal models have their limitations. Human cell-based tissue engineering approaches hold great promise for bridging this gap. Here, we describe a microextrusion bioprinting approach to generate three-dimensional (3D) lung models composed of four cell types: endothelial cells, primary fibroblasts, macrophage cells, and epithelial cells. A549 and Calu-3 cells were selected as epithelial cells to simulate the cells of the lower and upper respiratory tract, respectively. Cells were bioprinted in a hydrogel consisting of alginate, gelatin, hyaluronic acid, collagen, and laminin-521. The models were cultured under air–liquid interface (ALI) conditions to further enhance their physiological relevance as lung cells. Their viability, metabolic activity, and expression of specific cell markers were analyzed during long-term culture for 21 days. The constructs were successfully infected with both a seasonal influenza A virus (IAV) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant, demonstrating their potential for studying diverse viral infections. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

18 pages, 3425 KiB  
Article
SARS-CoV-2 ORF7a Protein Impedes Type I Interferon-Activated JAK/STAT Signaling by Interacting with HNRNPA2B1
by Yujie Wen, Chaochao Li, Tian Tang, Chao Luo, Shan Lu, Na Lyu, Yongxi Li and Rong Wang
Int. J. Mol. Sci. 2025, 26(12), 5536; https://doi.org/10.3390/ijms26125536 - 10 Jun 2025
Viewed by 505
Abstract
The pandemic of Coronavirus Disease 2019 has triggered a worldwide public health emergency. Its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed multiple strategies for effectively evading the host immune defenses, including inhibition of interferon (IFN) signaling. Several viral proteins of [...] Read more.
The pandemic of Coronavirus Disease 2019 has triggered a worldwide public health emergency. Its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed multiple strategies for effectively evading the host immune defenses, including inhibition of interferon (IFN) signaling. Several viral proteins of SARS-CoV-2 are believed to interfere with IFN signaling. In this study, we found that the SARS-CoV-2 accessory protein ORF7a considerably impaired IFN-activated Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling via suppression of the nuclear translocation of IFN-stimulated gene factor 3 (ISGF3) and the activation of STAT2. ORF7a dampened STAT2 activation without altering the expression and phosphorylation of Janus kinases (JAKs). A co-immunoprecipitation (co-IP) assay was performed to gather ORF7a protein, but it failed to precipitate STAT2. Interestingly, mass spectrometry and immunoblotting analyses of the ORF7a co-IP product revealed that ORF7a interacted with an RNA-binding protein, heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), and HNRNPA2B1 was related to the inhibitory effect of ORF7a on STAT2 phosphorylation. Moreover, examination of ORF7a deletion constructs revealed that the C-terminal region of ORF7a (amino acids 96 to 122) is crucial for suppressing IFN-induced JAK/STAT signaling activation. In conclusion, we discovered that SARS-CoV-2 ORF7a antagonizes type I IFN-activated JAK/STAT signaling by interacting with HNRNPA2B1, and the C-terminal region of ORF7a is responsible for its inhibitory effect. Full article
(This article belongs to the Special Issue COVID-19: Molecular Research and Novel Therapy)
Show Figures

Figure 1

18 pages, 2033 KiB  
Article
Imiquimod, a Promising Broad-Spectrum Antiviral, Prevents SARS-CoV-2 and Canine Coronavirus Multiplication Through the MAPK/ERK Signaling Pathway
by Josefina Vicente, Freddy Armando Peñaranda Figueredo, Stefania Mantovani, Daniela Laura Papademetrio, Sergio Ivan Nemirovsky, Andrea Alejandra Barquero, Carina Shayo and Carlos Alberto Bueno
Viruses 2025, 17(6), 801; https://doi.org/10.3390/v17060801 - 31 May 2025
Viewed by 873
Abstract
Respiratory viruses can cause life-threatening conditions such as sepsis and acute respiratory distress syndrome. However, vaccines and effective antivirals are available for only a limited number of infections. The majority of approved antivirals are direct-acting agents, which target viral proteins essential for infection. [...] Read more.
Respiratory viruses can cause life-threatening conditions such as sepsis and acute respiratory distress syndrome. However, vaccines and effective antivirals are available for only a limited number of infections. The majority of approved antivirals are direct-acting agents, which target viral proteins essential for infection. Unfortunately, mutations have already emerged that confer resistance to these antivirals. In addition, there is an urgent need for broad-spectrum antivirals to address the unpredictable emergence of new viruses with pandemic potential. One promising strategy involves modulating the innate immune response and cellular signaling. Imiquimod, a Toll-like receptor 7 (TLR7) agonist, has shown efficacy in murine models of influenza and respiratory syncytial virus (RSV). Additionally, it demonstrates antiviral activity against herpes simplex virus type 1 (HSV-1) and RSV independent of the TLR7/nuclear factor kappa B (NF-κB) pathway, with protein kinase A (PKA) as a crucial downstream effector. In this study, we demonstrate that imiquimod exhibits concentration-dependent antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and canine coronavirus (CCoV) in epithelial cells, underscoring its broad-spectrum action against coronaviruses. Moreover, its anti-coronavirus effect appears to be independent of the TLR/NF-κB and PKA/exchange protein directly activated by cyclic adenosine monophosphate (EPAC) pathways and may instead be linked to the activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. The ability of imiquimod to inhibit coronavirus replication via the MEK/ERK pathway, coupled with its immunomodulatory properties, highlights its potential as a broad-spectrum antiviral. Full article
Show Figures

Figure 1

21 pages, 1089 KiB  
Article
Discrepancy Between Vaccination Willingness and Actual SARS-CoV-2 Vaccination Status in People with Multiple Sclerosis: A Longitudinal Study
by Felicita Heidler, Michael Hecker, Niklas Frahm, Julia Baldt, Silvan Elias Langhorst, Pegah Mashhadiakbar, Barbara Streckenbach, Katja Burian, Jörg Richter and Uwe Klaus Zettl
J. Clin. Med. 2025, 14(11), 3689; https://doi.org/10.3390/jcm14113689 - 24 May 2025
Viewed by 510
Abstract
Background/Objectives: Infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) poses a significant health risk, especially for individuals with chronic medical conditions. Multiple sclerosis (MS) is the most prevalent chronic, immune-mediated neurological disorder, and vaccinations are essential to its management. This study [...] Read more.
Background/Objectives: Infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) poses a significant health risk, especially for individuals with chronic medical conditions. Multiple sclerosis (MS) is the most prevalent chronic, immune-mediated neurological disorder, and vaccinations are essential to its management. This study aimed to compare the reported willingness to be vaccinated against SARS-CoV-2 with the actual vaccination status among people with MS (pwMS) and identify factors explaining the discrepancy. Methods: In a longitudinal, two-center study, we analyzed 149 patients aged 18 or older with a diagnosis of clinically isolated syndrome or MS. The participants completed three surveys: a baseline survey (from June 2019 to June 2020), a pre-vaccine follow-up (from May to July 2020), and a post-vaccine follow-up (from October 2021 to January 2022). The data included sociodemographic, clinical, and psychological information. Results: Among the 149 participants, 122 (81.9%) received a SARS-CoV-2 vaccination, while 27 (18.1%) did not. The pwMS who were unwilling to become vaccinated and remained unvaccinated were less likely to live with a partner, had higher smoking rates, took more medications, had a higher number of previously discontinued disease-modifying therapies, and found pandemic policies inappropriate. No significant associations were found between vaccination willingness/status and factors like age, sex, depression, or anxiety. Conclusions: This study highlights the gap between vaccination willingness and actual status in pwMS, revealing factors associated with vaccine hesitancy. The findings of this study offer insights into addressing vaccine uptake. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

26 pages, 1846 KiB  
Review
Receptor Binding for the Entry Mechanisms of SARS-CoV-2: Insights from the Original Strain and Emerging Variants
by Mohamed Mahdi, Irene Wanjiru Kiarie, János András Mótyán, Gyula Hoffka, Aya Shamal Al-Muffti, Attila Tóth and József Tőzsér
Viruses 2025, 17(5), 691; https://doi.org/10.3390/v17050691 - 10 May 2025
Cited by 3 | Viewed by 1183
Abstract
Since its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, giving rise to multiple variants that have significantly altered the trajectory of the COVID-19 pandemic. These variants have resulted in multiple waves of the pandemic, exhibiting characteristic [...] Read more.
Since its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, giving rise to multiple variants that have significantly altered the trajectory of the COVID-19 pandemic. These variants have resulted in multiple waves of the pandemic, exhibiting characteristic mutations in the spike (S) protein that may have affected receptor interaction, tissue tropism, and cell entry mechanisms. While the virus was shown to primarily utilize the angiotensin-converting enzyme 2 (ACE2) receptor and host proteases such as transmembrane serine protease 2 (TMPRSS2) for entry into host cells, alterations in the S protein have resulted in changes to receptor binding affinity and use of alternative receptors, potentially expanding the virus’s ability to infect different cell types or tissues, contributing to shifts in clinical presentation. These changes have been linked to variations in disease severity, the emergence of new clinical manifestations, and altered transmission dynamics. In this paper, we overview the evolving receptor utilization strategies of SARS-CoV-2, focusing on how mutations in the S protein may have influenced viral entry mechanisms and clinical outcomes across the ongoing pandemic waves. Full article
(This article belongs to the Special Issue Mechanism of Receptor Recognition in Coronavirus, 2nd Edition)
Show Figures

Figure 1

16 pages, 1234 KiB  
Article
Antiviral Effect of Erdosteine in Cells Infected with Human Respiratory Viruses
by Pierachille Santus, Sergio Strizzi, Fiammetta Danzo, Mara Biasin, Irma Saulle, Claudia Vanetti, Marina Saad, Dejan Radovanovic and Daria Trabattoni
Pathogens 2025, 14(4), 388; https://doi.org/10.3390/pathogens14040388 - 15 Apr 2025
Viewed by 1030
Abstract
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial [...] Read more.
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial properties, but less is known about its antiviral effects. We performed in vitro studies to investigate the antiviral and anti-inflammatory activity of erdosteine in A549-hACE2 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or respiratory syncytial virus (RSV) and in Caco-2 human colon carcinoma cells infected with influenza A virus (H1N1). The cells were treated with different concentrations of erdosteine or its active metabolite 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MET-1) before and after viral infection. The viral replication/load in the cell culture supernatants was measured by real-time quantitative polymerase chain reaction (RT-qPCR) assay and digital droplet PCR. The gene expression of innate immune response signaling pathways and oxidative stress was analyzed by reverse transcription PCR custom-array. The results showed that erdosteine and its active metabolite, at concentrations consistent with an approved therapeutic human dosage, were not directly cytotoxic and had significant antiviral effects in cells pre-infected with SARS-CoV-2, RSV, and H1N1. The transcriptome analysis showed that erdosteine activated innate immune responses by stimulating overexpression of type I interferon and inflammasome pathways and modulated oxidative stress by inducing the modulation of oxidative stress and GSH pathways. These findings suggest that erdosteine may be a useful treatment for respiratory viral infections. Full article
(This article belongs to the Special Issue Virus–Host Cell Interactions and Research of New Antivirals)
Show Figures

Figure 1

13 pages, 3304 KiB  
Article
Using Nano-Luciferase Binary (NanoBiT) Technology to Assess the Interaction Between Viral Spike Protein and Angiotensin-Converting Enzyme II by Aptamers
by Meng-Wei Lin, Cheng-Han Lin, Hua-Hsin Chiang, Irwin A. Quintela, Vivian C. H. Wu and Chih-Sheng Lin
BioTech 2025, 14(1), 20; https://doi.org/10.3390/biotech14010020 - 15 Mar 2025
Viewed by 1355
Abstract
Nano-luciferase binary technology (NanoBiT)-based pseudoviral sensors are innovative tools for monitoring viral infection dynamics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells via its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme II (hACE2) receptor. This interaction is [...] Read more.
Nano-luciferase binary technology (NanoBiT)-based pseudoviral sensors are innovative tools for monitoring viral infection dynamics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells via its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme II (hACE2) receptor. This interaction is crucial for viral entry and serves as a key target for therapeutic interventions against coronavirus disease 2019 (COVID-19). Aptamers, short single-stranded DNA (ssDNA) or RNA molecules, are highly specific, high-affinity biorecognition elements for detecting infective pathogens. Despite their potential, optimizing viral infection assays using traditional protein–protein interaction (PPI) methods often face challenges in optimizing viral infection assays. In this study, we selected and evaluated aptamers for their ability to interact with viral proteins, enabling the dynamic visualization of infection progression. The NanoBiT-based pseudoviral sensor demonstrated a rapid increase in luminescence within 3 h, offering a real-time measure of viral infection. A comparison of detection technologies, including green fluorescent protein (GFP), luciferase, and NanoBiT technologies for detecting PPI between the pseudoviral spike protein and hACE2, highlighted NanoBiT’s superior sensitivity and performance, particularly in aptamer selection. This bioluminescent system provides a robust, sensitive, and early-stage quantitative approach to studying viral infection dynamics. Full article
Show Figures

Figure 1

13 pages, 868 KiB  
Brief Report
Prevalence of EBV, HHV6, HCMV, HAdV, SARS-CoV-2, and Autoantibodies to Type I Interferon in Sputum from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients
by Ulf Hannestad, Annika Allard, Kent Nilsson and Anders Rosén
Viruses 2025, 17(3), 422; https://doi.org/10.3390/v17030422 - 14 Mar 2025
Viewed by 3065
Abstract
An exhausted antiviral immune response is observed in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-SARS-CoV-2 syndrome, also termed long COVID. In this study, potential mechanisms behind this exhaustion were investigated. First, the viral load of Epstein–Barr virus (EBV), human adenovirus (HAdV), human cytomegalovirus [...] Read more.
An exhausted antiviral immune response is observed in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-SARS-CoV-2 syndrome, also termed long COVID. In this study, potential mechanisms behind this exhaustion were investigated. First, the viral load of Epstein–Barr virus (EBV), human adenovirus (HAdV), human cytomegalovirus (HCMV), human herpesvirus 6 (HHV6), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was determined in sputum samples (n = 29) derived from ME/CFS patients (n = 13), healthy controls (n = 10), elderly healthy controls (n = 4), and immunosuppressed controls (n = 2). Secondly, autoantibodies (autoAbs) to type I interferon (IFN-I) in sputum were analyzed to possibly explain impaired viral immunity. We found that ME/CFS patients released EBV at a significantly higher level compared to controls (p = 0.0256). HHV6 was present in ~50% of all participants at the same level. HAdV was detected in two cases with immunosuppression and severe ME/CFS, respectively. HCMV and SARS-CoV-2 were found only in immunosuppressed controls. Notably, anti-IFN-I autoAbs in ME/CFS and controls did not differ, except in a severe ME/CFS case showing an increased level. We conclude that ME/CFS patients, compared to controls, have a significantly higher load of EBV. IFN-I autoAbs cannot explain IFN-I dysfunction, with the possible exception of severe cases, also reported in severe SARS-CoV-2. We forward that additional mechanisms, such as the viral evasion of IFN-I effect via the degradation of IFN-receptors, may be present in ME/CFS, which demands further studies. Full article
(This article belongs to the Special Issue Saliva in the Diagnosis of Viral Diseases)
Show Figures

Figure 1

Back to TopTop