Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = serpentinite rock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4312 KiB  
Article
Influence of Rare Earth Elements on the Radiation-Shielding Behavior of Serpentinite-Based Materials
by Ayşe Didem Kılıç and Demet Yılmaz
Appl. Sci. 2025, 15(14), 7837; https://doi.org/10.3390/app15147837 - 13 Jul 2025
Viewed by 444
Abstract
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean [...] Read more.
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean free path (MFP), and effective atomic numbers (Zeff) of serpentinite samples were experimentally measured in the energy range of 80.99–383.85 keV. Theoretical MAC values were calculated. Additionally, fast neutron removal cross-sections, as well as thermal and fast neutron macroscopic cross-sections, were theoretically determined. The absorbed equivalent dose rates of serpentinite samples were also measured. The radiation protection efficiency (RPE) for gamma rays and neutrons were determined. It was observed that the presence of rare earth elements within serpentinite structure has a significant impact on thermal neutron cross-sections, while crystalline water content (LOI) plays an influential role in fast neutron cross-sections. Moreover, it has been observed that the concentration of gadolinium exerts a more substantial influence on the macroscopic cross-sections of thermal neutrons than on those of fast neutrons. The research results reveal the mineralogical, geochemical, morphological and radiation-shielding properties of serpentinite rocks contribute significantly to new visions for the use of this naturally occurring rock as a geological repository for nuclear waste or as a wall-covering material in radiotherapy centers and nuclear facilities instead of concrete. Full article
(This article belongs to the Special Issue Advanced Functional Materials and Their Applications)
Show Figures

Figure 1

23 pages, 7080 KiB  
Article
Distribution Characteristics of High-Background Elements and Assessment of Ecological Element Activity in Typical Profiles of Ultramafic Rock Area
by Jingtao Shi, Junjian Liu, Suduan Hu and Jiangyulong Wang
Toxics 2025, 13(7), 558; https://doi.org/10.3390/toxics13070558 - 30 Jun 2025
Viewed by 372
Abstract
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements [...] Read more.
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements (e.g., chromium (Cr) and nickel (Ni)) through precise sampling, the Tessier five-step sequential extraction method, and a migration coefficient model. Key findings include: (1) Element distribution and controlling mechanisms: The average Cr and Ni contents in the serpentinite profile are significantly higher than those in pyroxenite. However, the semi-weathered pyroxenite layer exhibits an inverted Cr enrichment ratio in relation to serpentinite, 1.8× and 1.2×, respectively, indicating that mineral metasomatic sequences driven by hydrothermal alteration dominate element differentiation; the phenomenon of inverted enrichment of high-background elements occurs in the weathering crust profiles of the two basic rocks. (2) Dual impacts of mining activities on heavy metal enrichment: Direct mining increases topsoil Cr content in serpentinite by 40% by disrupting parent material homology, while indirect activities introduce exogenous Zn and Cd (Spearman correlation coefficients with Cr/Ni are from ρ = 0.58 to ρ = 0.72). Consequently, the bioavailable fraction ratio value of Ni outside the mining area (21.14%) is significantly higher than that within the area (14.30%). (3) Element speciation and ecological element activity: Over 98% of Cr in serpentine exists in residual fractions, whereas the Fe-Mn oxide-bound fraction (F3) of Cr in extra-mining pyroxenite increases to 5.15%. The element activity in ecological systems ranking of Ni in soil active fractions (F1 + F2 = 15%) follows the order: granite > pyroxenite > serpentine. Based on these insights, a scientific foundation for targeted remediation in high-background areas (e.g., prioritizing the treatment of semi-weathered pyroxenite layers) can be provided. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

31 pages, 34129 KiB  
Article
Prediction of Buried Cobalt-Bearing Arsenides Using Ionic Leach Geochemistry in the Bou Azzer-El Graara Inlier (Central Anti-Atlas, Morocco): Implications for Mineral Exploration
by Yassine Lmahfoudi, Houssa Ouali, Said Ilmen, Zaineb Hajjar, Ali El-Masoudy, Russell Birrell, Laurent Sapor, Mohamed Zouhair and Lhou Maacha
Minerals 2025, 15(7), 676; https://doi.org/10.3390/min15070676 - 24 Jun 2025
Viewed by 730
Abstract
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to [...] Read more.
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to the Ouarzazate group outcrop (Ediacarian age): they are composed of volcanic rocks (ignimbrite, andesite, rhyolite, dacite, etc.) covered by the Adoudou detritic formation in angular unconformity. Given the absence of serpentinite outcrops, exploration investigation in this area has been very limited. This paper aims to use ionic leach geochemistry (on samples of soil) to detect the presence of Co-bearing arsenides above hidden ore deposits in this unexplored area of the Bou Azzer inlier. In addition, a detailed structural analysis allowed the identification of four families of faults and fractures with or without filling. Three directional major fault systems of several kilometers in length and variable orientation in both the Cryogenian basement and the Ediacaran cover have been identified: (i) ENE–WSW, (ii) NE–SW, and (iii) NW–SE. Several geochemical anomalies for Co, As, Ni, Ag, and Cu are aligned along three main directions, including NE–SW, NW–SE, and ENE–WSW. They are particularly well-defined in the western zone but are only minor in the central and eastern zones. Some of these anomalies correlate with the primary structural features observed in the studied area. These trends are consistent with those known under mining exploitation in nearby ore deposits, supporting the potential for similar mineralization in the ABED. Based on structural analysis and ionic leach geochemistry, drilling programs were conducted in the study area, confirming the continuity of serpentinites at depth beneath the Ediacaran cover and the presence of Co–Fe-bearing arsenide ores. This validates the ionic geochemistry technique as a reliable method for exploring buried ore deposits. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

22 pages, 11955 KiB  
Article
Coronitic Associations at Gabrish in the Kovdozero Layered Complex in the Southern Part of the Lapland—Belomorian Belt, Kola Peninsula, Russia
by Andrei Y. Barkov, Robert F. Martin, Larisa P. Barkova and Vladimir N. Korolyuk
Minerals 2025, 15(6), 565; https://doi.org/10.3390/min15060565 - 26 May 2025
Viewed by 411
Abstract
The Paleoproterozoic Kovdozero complex, one of largest in the Fennoscandian Shield, was emplaced in a peripheral region of the SB–TB–LBB (Serpentinite Belt–Tulppio Belt–Lapland–Belomorian Belt) megastructure. Coronitic rocks of ultrabasic–basic compositions, investigated along a cross-section in the Gabrish area, are members of a cryptically [...] Read more.
The Paleoproterozoic Kovdozero complex, one of largest in the Fennoscandian Shield, was emplaced in a peripheral region of the SB–TB–LBB (Serpentinite Belt–Tulppio Belt–Lapland–Belomorian Belt) megastructure. Coronitic rocks of ultrabasic–basic compositions, investigated along a cross-section in the Gabrish area, are members of a cryptically layered series. They crystallized from the northern margin inward, as indicated by variations in mineral compositions and geochemical trends. Unsteady conditions of crystallization arose because of uneven cooling of the shallowly emplaced complex. Rapid drops in temperature likely caused the forced deposition of different generations of variously textured pyroxenes and chromian spinel or resulted in the unique development of narrow recurrent rims of orthopyroxene hosted by olivine. The unstable conditions of crystallization are expressed by (1) textural diversity, (2) broad variations in values of Mg#, and (3) virtual presence of double trends of Mg# as a function of distance. The coronitic textures are intimately associated with interstitial grains of plagioclase (An≤65), also present as relics in a rim of calcic amphibole. The coronas are results of (1) rapid cooling leading to unsteady conditions of crystallization, which caused the sudden cessation of olivine crystallization and the development of an orthopyroxene rim on olivine and (2) an intrinsic enrichment in H2O (and essential Cl in scapolite) coupled with a progressive accumulation of Al and alkalis, giving rise to fluid-rich environments in the intercumulus melt at advances stages of crystallization. These processes were followed by deuteric composite rims of calcic amphibole and reaction of fluid with early rims or grains of pyroxenes and late plagioclase. The coronitic sequences Ol → Opx → Cpx → calcic Amp → Pl (plus Qz + Mca) observed at a microscopic scale reproduce, in miniature, the normal order of crystallization in an ultrabasic–basic complex. A composite orthopyroxene + calcic amphibole corona resembles some rocks in complexes of the Serpentinite Belt. The prominence of such coronas may well be characteristic of the crystallization of komatiite-derived melts. Full article
Show Figures

Figure 1

23 pages, 38314 KiB  
Article
Multi-Analytical Characterization of Serpentinite Rocks Employed as Stone Material: An Example from Andalusia (Southern Spain), Basilicata, and Calabria (Southern Italy)
by Roberto Visalli, Rafael Navarro, Roberto Buccione, Valeria Indelicato, Giovanna Rizzo, Rosolino Cirrincione and Rosalda Punturo
Minerals 2025, 15(5), 522; https://doi.org/10.3390/min15050522 - 14 May 2025
Viewed by 639
Abstract
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and [...] Read more.
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and the intricate vein and mesh-like texture, as well as their role in CO2 sequestration when carbonated, have hugely increased interest in studying these rocks over recent decades. Moreover, since antiquity, serpentinites have long been exploited, traded, and exported worldwide as daily tools, as well as in buildings and decorative stones in both internal and external architectural elements, because of their aesthetic appeal, attractiveness, and durability. In this work, we analyzed and compared petrographic features, geochemical signatures, and physical–mechanical properties of serpentinites from historical quarries from Andalusia (southern Spain), Basilicata, and Calabria (southern Italy) where they have been used as dimension stones in religious and civil buildings and as construction materials. We aim to evaluate and assess differences in petrographic, carbonation, uniaxial compressive strength, and seismic behavior, that could affect the efficiency when these serpentinites are used as either building and construction materials or for preservation/renovation purposes in cultural heritage. Results obtained from petrophysical investigations of serpentinites from these regions highlight that these materials are suitable for use in construction to various extents and are considered a valuable georesource, behind a detailed characterization carried out before their implementation in construction or conservation/restoration of architectural heritage. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Figure 1

18 pages, 10685 KiB  
Article
‘Whitestone’—A Specific Polished Stone Tool Raw Material in the Late Neolithic of Southern Hungary
by Veronika Szilágyi, Kata Furholt, Zoltán Kovács, Ildikó Harsányi, Anett Osztás and György Szakmány
Heritage 2025, 8(3), 112; https://doi.org/10.3390/heritage8030112 - 20 Mar 2025
Cited by 1 | Viewed by 868
Abstract
‘Whitestone’ is a characteristic raw material in the Late Neolithic (Tisza and Lengyel culture) polished stone tool (chisel, adze, macehead) archaeological record in Southern Hungary. However, the lithology—the technical term not reflecting a petrographic definition—needs detailed petrographic-analytical investigations (by optical microscopy, PGAA, and [...] Read more.
‘Whitestone’ is a characteristic raw material in the Late Neolithic (Tisza and Lengyel culture) polished stone tool (chisel, adze, macehead) archaeological record in Southern Hungary. However, the lithology—the technical term not reflecting a petrographic definition—needs detailed petrographic-analytical investigations (by optical microscopy, PGAA, and SEM-EDS) to determine the exact rock types and to connect them to specific geological sources. This article identifies the main types of ‘whitestone’ and, furthermore, focuses on the predominant ‘silicified magnesite’ type and the secondary ‘silicified limestone/dolomite’ type. Based on our results, both types originated from the alteration of serpentinized ultramafic assemblages, most probably from the closest magnesitic alteration zones of serpentinite outcrops in Serbia. Thus, the most possible provenance of the Late Neolithic ‘whitestone’ polished stone tools is the Serbian magnesite. These lithologies are in the territory of the Late Neolithic Vinča culture, which was engaged in mass production of ‘whitestone’ tools. This fact indicates the strong relationship of that population with the Tisza and Lengyel communities. Full article
Show Figures

Figure 1

13 pages, 5528 KiB  
Article
Petrogenesis of the Large-Scale Serpentinites in the Kumishi Ophiolitic Mélange, Southwestern Tianshan, China
by Limin Gao, Wenjiao Xiao and Zhou Tan
Minerals 2025, 15(3), 229; https://doi.org/10.3390/min15030229 - 25 Feb 2025
Viewed by 435
Abstract
The Kumishi ophiolitic mélange contains well-preserved large-scale serpentinites and their accompanying granulites in the eastern South Tianshan Accretionary Complex (STAC), southwestern Altaids. Previous studies have mainly focused on the thermodynamic conditions and tectonic setting of granulites. However, the petrogenesis of the widespread serpentinites [...] Read more.
The Kumishi ophiolitic mélange contains well-preserved large-scale serpentinites and their accompanying granulites in the eastern South Tianshan Accretionary Complex (STAC), southwestern Altaids. Previous studies have mainly focused on the thermodynamic conditions and tectonic setting of granulites. However, the petrogenesis of the widespread serpentinites in the Kumishi ophiolitic mélange remains largely unexplored. In this paper, petrological, geochemical, and geochronological studies were carried out on the Kumishi serpentinites, as well as the host sediment and intermediate–felsic volcanic rocks. The serpentinites show variable LOI values of 8.3–16.5 wt% and relatively consistent SiO2/(sum oxides) ratios of 0.81, which demonstrate that the major elements of their protoliths have been preserved well during serpentinization. Multi-trace element and REE diagrams suggest that the protoliths of the Kumishi serpentinites have experienced varying degrees of refertilization, with distinct natures seen between the Yushugou, Tonghuashan, and Liuhuangshan serpentinites. Zircon U-Pb chronology of the Tonghuahsan serpentinites yields a mean age of 355.8 ± 7.3 Ma (MSWD = 1.0, N = 26). Detrital zircons from the host sediment record a maximum depositional age of 375 ± 10 Ma (MSWD = 0.4, N = 3), with a peak at ca.419 Ma. Subduction-related volcanic rocks yield ages of ca.437 Ma. Hence, clues are provided to the petrogenesis of the Kumishi serpentinites, with calls for future in-depth works from an isotopic perspective. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 6606 KiB  
Article
Serpentinite Applications: Effects of Surface-Ions-Modified Natural Silicate Minerals on Cultivation of Magnesium–Manganese-Enriched Garlics
by Fei Shuo Hung
Minerals 2025, 15(1), 62; https://doi.org/10.3390/min15010062 - 9 Jan 2025
Viewed by 855
Abstract
Serpentinite refers to a group of hydrated magnesium-rich natural silicate rocks. Because serpentinite contains metallic elements and has a layered structure, it can release magnesium ions when immersed in water. Garlic is a widely cultivated crop characterized by a rich chemical composition and [...] Read more.
Serpentinite refers to a group of hydrated magnesium-rich natural silicate rocks. Because serpentinite contains metallic elements and has a layered structure, it can release magnesium ions when immersed in water. Garlic is a widely cultivated crop characterized by a rich chemical composition and many health benefits. Magnesium and manganese are essential nutrients for the human body. In garlic, magnesium stabilizes allicin and prevents its decomposition and release, and manganese promotes polysaccharide metabolism. In this study, serpentinite powder was modified using immersion plating and sintering to improve its crystallinity and ion release capability and enable the cultivation of magnesium–manganese-enriched garlic. An experimental analysis of growth characteristics confirmed the layered structure of serpentinite powder, with sintering effectively reducing impurities and enhancing the powder’s crystallinity and ion release capability. An evaluation of the powder’s specific surface area and ion release capability after surface treatment revealed that Mg-Si-Mn-O sintered at 400 °C for 1 h was the optimal powder for preparing magnesium–manganese ion water. Magnesium–manganese garlic grown with this water contained magnesium and manganese at concentrations of 38–43 and 11–17 mg/L, respectively, and had a higher concentration of allicin and sulfur compounds relative to garlic grown with distilled water. After natural drying, the allicin in the magnesium–manganese-enriched garlic remained stable, and the garlic was found to have a high moisture content. These findings jointly demonstrate the high nutritional value and antioxidant properties of garlic in applications involving serpentinite technology. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Graphical abstract

23 pages, 2320 KiB  
Article
Geochemical Distribution of Ni, Cr, and Co in the Main Soil Types of the Čemernica River Basin in Serbia (In a Serpentine Environment)
by Sonja Tošić Jojević, Vesna Mrvić, Olivera Stajković-Srbinović, Marina Jovković, Svetlana Antić Mladenović, Matija Krpović and Snežana Belanović Simić
Land 2024, 13(12), 2075; https://doi.org/10.3390/land13122075 - 2 Dec 2024
Cited by 2 | Viewed by 1328
Abstract
The origin and bioavailability of nickel (Ni), chromium (Cr), and cobalt (Co) have been assessed in the Čemernica River basin among the following soil types: Leptosol on serpentinite and Fluvisol, Vertisol, and Leptosol on sandstone. Alongside the impact of serpentine rocks, part of [...] Read more.
The origin and bioavailability of nickel (Ni), chromium (Cr), and cobalt (Co) have been assessed in the Čemernica River basin among the following soil types: Leptosol on serpentinite and Fluvisol, Vertisol, and Leptosol on sandstone. Alongside the impact of serpentine rocks, part of the region also displays significant anthropogenic activity. A sequential analysis following the modified BCR procedure identified four fractions of heavy metals: F1—exchangeable and acid-soluble, F2—bound to Fe and Mn oxides, F3—bound to organic matter, and F4—residual. The overall content of Ni, Cr, and Co in the soil increases in the following order: Leptosol on sandstone, and Vertisol, Fluvisol, Leptosol on serpentinite. In most samples, the values exceed the maximum allowable concentrations in legal regulations, while in some samples, particularly in serpentine soils, they also exceed the remediation thresholds. The average contribution of nickel in the overall content decreases as follows: F4 > F2 > F3 > F1, chromium as F4 > F3 > F2 > F1, and cobalt in the most samples as F2 > F4 > F1 > F3. The percentage of Ni, Cr, and Co in the fractions of different soil types is similar to that in serpentine soils, though the absolute contents vary significantly, indicating a common origin, which is mostly geochemical. According to the Risk Assessment Code, most samples exhibit a low bioavailability risk. Full article
Show Figures

Figure 1

38 pages, 18293 KiB  
Article
Nephrite Jade and Related Rocks from Western Washington State, USA: A Geologic Overview
by George E. Mustoe
Minerals 2024, 14(12), 1186; https://doi.org/10.3390/min14121186 - 21 Nov 2024
Cited by 1 | Viewed by 4778
Abstract
The geologic framework of western Washington, USA, is the result of collisional tectonics, where oceanic plate materials were subducted beneath the continental margin. As part of this process, fragments of mantle peridotites were transported into the upper crust along deep faults. The hydration [...] Read more.
The geologic framework of western Washington, USA, is the result of collisional tectonics, where oceanic plate materials were subducted beneath the continental margin. As part of this process, fragments of mantle peridotites were transported into the upper crust along deep faults. The hydration of these ultramafic materials produced bodies of serpentinite. Subsequent regional metamorphism caused metasomatism of the serpentinite to produce a variety of minerals, which include nephrite jade, grossular, chlorite, diopside, vesuvianite, and pumpellyite. Many of the nephrite-bearing rocks are located along the Darrington–Devils Mountain Fault Zone in Skagit and Snohomish Counties. Intense prospecting has led to the establishment of many mining claims, but recreational collecting remains a popular activity. Full article
Show Figures

Graphical abstract

29 pages, 7954 KiB  
Article
The Evolution of Neoproterozoic Mantle Peridotites Beneath the Arabian–Nubian Shield: Evidence from Wadi Sodmein Serpentinites, Central Eastern Desert, Egypt
by Khaled M. Abdelfadil, Asran M. Asran, Hafiz U. Rehman, Mabrouk Sami, Alaa Ahmed, Ioan V. Sanislav, Mohammed S. Fnais and Moustafa M. Mogahed
Minerals 2024, 14(11), 1157; https://doi.org/10.3390/min14111157 - 15 Nov 2024
Cited by 4 | Viewed by 1480
Abstract
Serpentinites make up one of the most significant rock units associated with primary suture zones throughout the ophiolite sequence of the Arabian–Nubian Shield. Wadi Sodmein serpentinites (WSSs) represent dismembered parts of the oceanic supra-subduction system in the central Eastern Desert of Egypt. In [...] Read more.
Serpentinites make up one of the most significant rock units associated with primary suture zones throughout the ophiolite sequence of the Arabian–Nubian Shield. Wadi Sodmein serpentinites (WSSs) represent dismembered parts of the oceanic supra-subduction system in the central Eastern Desert of Egypt. In this context, we present whole-rock major, trace, and rare earth elements (REE) analyses, as well as mineral chemical data, to constrain the petrogenesis and geotectonic setting of WSS. Antigorite represents the main serpentine mineral with minor amounts of chrysotile. The predominance of antigorite implies the formation of WSS under prograde metamorphism, similar to typical metamorphic peridotites of harzburgitic protolith compositions. The chemistry of serpentinites points to their refractory composition with notably low Al2O3, CaO contents, and high Mg# (90–92), indicating their origin from depleted supra-subduction zone harzburgites that likely formed in a forearc mantle wedge setting due to high degrees of hydrous partial melting and emplaced owing to the collision of the intra–oceanic arc with Meatiq Gneisses. Spinels of WSS generally exhibit pristine compositions that resemble those of residual mantle peridotites and their Cr# (0.625–0.71) and TiO2 contents (<0.05 wt%) similar to forearc peridotite spinels. Moreover, WSS demonstrates a significant excess of fluid mobile elements (e.g., Th, U, Pb), compared to high-field strength elements (e.g., Ti, Zr, Nb, Ta), implying an interaction between mantle peridotites and fluids derived from the oceanic subducted-slab. The distinct U-shaped REE patterns coupled with high Cr# of spinel from WSS reflect their evolution from mantle wedge harzburgite protolith that underwent extensive melt extraction and re-fertilized locally. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Figure 1

17 pages, 5439 KiB  
Article
Chemical and Thermal Changes in Mg3Si2O5 (OH)4 Polymorph Minerals and Importance as an Industrial Material
by Ahmet Şaşmaz, Ayşe Didem Kılıç and Nevin Konakçı
Appl. Sci. 2024, 14(22), 10298; https://doi.org/10.3390/app142210298 - 8 Nov 2024
Cited by 4 | Viewed by 1574
Abstract
Serpentine (Mg3Si2O5(OH)4), like quartz, dolomite and magnesite minerals, is a versatile mineral group characterized by silica and magnesium silicate contents with multiple polymorphic phases. Among the phases composed of antigorite, lizardite, and chrysotile, lizardite and [...] Read more.
Serpentine (Mg3Si2O5(OH)4), like quartz, dolomite and magnesite minerals, is a versatile mineral group characterized by silica and magnesium silicate contents with multiple polymorphic phases. Among the phases composed of antigorite, lizardite, and chrysotile, lizardite and chrysotile are the most prevalent phases in the serpentinites studied here. The formation process of serpentinites, which arise from the hydrothermal alteration of peridotites, influences the ratio of light rare earth elements (LREE) to heavy rare earth elements (HREE). In serpentinites, the ratio of light rare earth elements (LREE)/heavy rare earth elements (HREE) provides insights into formation conditions, geochemical evolution, and magmatic processes. The depletion of REE compositions in serpentinites indicates high melting extraction for fore-arc/mantle wedge serpentinites. The studied serpentinites show a depletion in REE concentrations compared to chondrite values, with HREE exhibiting a lesser degree of depletion compared to LREE. The high ΣLREE/ΣHREE ratios of the samples are between 0.16 and 4 ppm. While Ce shows a strong negative anomaly (0.1–12), Eu shows a weak positive anomaly (0.1–0.3). This indicates that fluid interacts significantly with rock during serpentinization, and highly incompatible elements (HIEs) gradually become involved in the serpentinization process. While high REE concentrations indicate mantle wedge serpentinites, REE levels are lower in mid-ocean ridge serpentinites. The enrichment of LREE in the analyzed samples reflects melt/rock interaction with depleted mantle and is consistent with rock–water interaction during serpentinization. The gradual increase in highly incompatible elements (HIEs) suggests that they result from fluid integration into the system and a subduction process. The large differential thermal analysis (DTA) peak at 810–830 °C is an important sign of dehydration, transformation reactions and thermal decomposition, and is compatible with H2O phyllosilicates in the mineral structure losing water at this temperature. In SEM images, chrysotile, which has a fibrous structure, and lizardite, which has a flat appearance, transform into talc as a result of dehydration with increasing temperature. Therefore, the sudden temperature drop observed in DTA graphs is an indicator of crystal form transformation and CO2 loss. In this study, the mineralogical and structural properties and the formation of serpentinites were examined for the first time using thermo-gravimetric analysis methods. In addition, the mineralogical and physical properties of serpentinites can be recommended for industrial use as additives in polymers or in the adsorption of organic pollutants. As a result, the high refractory nature of examined serpentine suggests that it is well-suited for applications involving high temperatures. This includes industries such as metallurgy and steel production, glass manufacturing, ceramic production, and the chemical industry. Full article
Show Figures

Figure 1

28 pages, 18261 KiB  
Article
Composite Granitic Plutonism in the Southern Part of the Wadi Hodein Shear Zone, South Eastern Desert, Egypt: Implications for Neoproterozoic Dioritic and Highly Evolved Magma Mingling during Volcanic Arc Assembly
by Khaled M. Abdelfadil, Sherif Mansour, Asran M. Asran, Mohammed H. Younis, David R. Lentz, Abdel-Rahman Fowler, Mohammed S. Fnais, Kamal Abdelrahman and Abdelhady Radwan
Minerals 2024, 14(10), 1002; https://doi.org/10.3390/min14101002 - 1 Oct 2024
Cited by 5 | Viewed by 2033
Abstract
The Abu Farayed Granite (AFG), located in the southeastern desert of Egypt, was intruded during the early to late stages of Pan-African orogeny that prevailed within the Arabian–Nubian Shield. The AFG intrudes an association of gneisses, island arc volcano–sedimentary rocks, and serpentinite masses. [...] Read more.
The Abu Farayed Granite (AFG), located in the southeastern desert of Egypt, was intruded during the early to late stages of Pan-African orogeny that prevailed within the Arabian–Nubian Shield. The AFG intrudes an association of gneisses, island arc volcano–sedimentary rocks, and serpentinite masses. Field observations, supported by remote sensing and geochemical data, reveal a composite granitic intrusion that is differentiated into two magmatic phases. The early granitic phase comprises weakly deformed subduction-related calc–alkaline rocks ranging from diorite to tonalite, while the later encloses undeformed granodiorite and granite. Landsat-8 (OLI) remote sensing data have shown to be highly effective in discriminating among the different varieties of granites present in the area. Furthermore, the data have provided important insights into the structural characteristics of the AFG region. Specifically, the data indicate the presence of major tectonic trends with ENE–WSW and NW–SE directions transecting the AFG area. Geochemically, the AFG generally has a calc–alkaline metaluminous affinity with relatively high values of Cs, Rb, K, Sr, Nd, and Hf but low contents of Nb, Ta, P, and Y. The early magmatic phase has lower alkalis and REEs, while the later phases have higher alkalis and REEs with distinctly negative Eu anomalies. The AFG is structurally controlled, forming a N–S arch, which may be due to the influence of the wadi Hodein major shear zone. The diorite and tonalite are believed to have been originally derived from subduction-related magmatism during regional compression. This began with the dehydration of the descending oceanic crust with differential melting of the metasomatized mantle wedge. Magma ascent was long enough to react with the thickened crust and therefore suffered fractional crystallization and assimilation (AFC) to produce the calc–alkaline diorite–tonalite association. The granodiorite and granites were produced due to partial melting, assimilation, and fractionation of lower crustal rocks (mainly diorite–tonalite of the early stage) after subduction and arc volcanism during a late orogenic relaxation–rebound event associated with uplift transitioning to extension. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 6614 KiB  
Article
The Genesis of Ultramafic Rock Mass on the Northern Slope of Lüliang Mountain in North Qaidam, China
by Haiming Guo, Yanguang Li, Bo Chen, Huishan Zhang, Xiaoyong Yang, Li He, Yongjiu Ma, Yunping Li, Jincheng Luo and Haichao Zhao
Minerals 2024, 14(9), 871; https://doi.org/10.3390/min14090871 - 27 Aug 2024
Viewed by 1002
Abstract
The ultramafic rock located on the northern slope of Lüliang Mountain in the northwestern region of North Qaidam Orogen is altered to serpentinite. The occurrence of disseminated chromite within the serpentinite holds significant implications for understanding the petrogenesis of the protolith. This work [...] Read more.
The ultramafic rock located on the northern slope of Lüliang Mountain in the northwestern region of North Qaidam Orogen is altered to serpentinite. The occurrence of disseminated chromite within the serpentinite holds significant implications for understanding the petrogenesis of the protolith. This work provides strong evidence of a distinct zonal texture in the chromite found in the ultramafic rock, using petrographic microstructure and electron probe composition analysis. The core of the chromite is characterized by high contents of Cr#, with enrichment in Fe3+# (Fe3+/(Cr + Al + Fe3+)) and depletion in Al2O3 and TiO2. The Cr2O3 content ranges from 51.64% to 53.72%, while the Cr# values range from 0.80 to 0.84. The FeO content varies from 24.9% to 27.8%, while the Fe2O3 content ranges from 5.19% to 8.74%. The Al2O3 content ranges from 6.70% to 9.20%, and the TiO2 content is below the detection limit (<0.1%). Furthermore, the rocks exhibit Mg# values ranging from 0.13 to 0.25 and Fe3+# values ranging from 0.07 to 0.12. The mineral chemistry of the chromite core in the ultramafic rock suggests it to be from an ophiolite. This ophiolite originated from the fore-arc deficit asthenosphere in a supra-subduction zone. The estimated average crystallization temperature and pressure of the chromite are 1306.02 °C and 3.41 GPa, respectively. These values suggest that the chromite formed at a depth of approximately 110 km, which is comparable to that of the asthenosphere. The chromite grains are surrounded by thick rims composed of Cr-rich magnetite characterized by enrichment in Fe3+# contents and depletions in Cr2O3, Al2O3, TiO2, and Cr#. The FeO content ranges from 28.25% to 31.15%, while the Fe2O3 content ranges from 44.94% to 68.92%. The Cr2O3 content ranges from 0.18% to 23.59%, and the Al2O3 and TiO2 contents are below the detection limit (<0.1%). Moreover, the rim of the Cr-rich magnetite exhibits Cr# values ranging from 0.90 to 1.00, Mg# values ranging from 0.01 to 0.06, and Fe3+# values ranging from 0.64 to 1.00, indicating late-stage alteration processes. The LA-ICP-MS zircon U-Pb dating of the ultramafic rock yielded an age of 480.6 ± 2.4 Ma (MSWD = 0.46, n = 18), representing the crystallization age of the ultramafic rock. This evidence suggests that the host rock of chromite is an ultramafic cumulate, which is part of the ophiolite suite. It originated from the fore-arc deficit asthenosphere in a supra-subduction zone during the northward subduction of the North Qaidam Ocean in the Ordovician period. Furthermore, clear evidence of Fe-hydrothermal alteration during the post-uplift-denudation stage is observed. Full article
(This article belongs to the Special Issue Metallogenesis of the Central Asian Orogenic Belt)
Show Figures

Figure 1

17 pages, 7084 KiB  
Article
Asbestos Hazard in Serpentinite Rocks: Influence of Mineralogical and Structural Characteristics on Fiber Potential Release
by Lorenzo Marzini, Marco Iannini, Giovanna Giorgetti, Filippo Bonciani, Paolo Conti, Riccardo Salvini and Cecilia Viti
Geosciences 2024, 14(8), 210; https://doi.org/10.3390/geosciences14080210 - 5 Aug 2024
Cited by 3 | Viewed by 3017
Abstract
Naturally occurring asbestos (NOA) represents a matter of social and environmental concern due to its potential release in the atmosphere during rock excavation and grinding in quarry and road tunnel activities. In most cases, NOA occurs in serpentinites, i.e., rocks deriving from low-grade [...] Read more.
Naturally occurring asbestos (NOA) represents a matter of social and environmental concern due to its potential release in the atmosphere during rock excavation and grinding in quarry and road tunnel activities. In most cases, NOA occurs in serpentinites, i.e., rocks deriving from low-grade metamorphic hydration of mantle peridotites. The potential release of asbestos fibers from serpentinite outcrops depends on several features, such as serpentinization degree, rock deformation, weathering, and abundance of fibrous veins. In this study, we selected a set of serpentinite samples from a representative outcrop in Tuscany (Italy), and we analyzed them by Optical, Scanning, and Transmission Electron Microscopies. The samples were treated by grinding tests following the Italian guidelines Decrees 14/5/96 and 152/2006 for the determination of the Release Index (RI), i.e., the fiber amount released through controlled crushing tests. The fine-grained powder released during the tests was analyzed by quantitative Fourier transform infrared spectroscopy (FTIR) to determine the variety and the amount of released fibers and to assess the potential hazard of the different serpentinite samples. Results indicate that the amount of released fibers is mostly related to serpentinite deformation, with the highest RI values for cataclastic and foliated samples, typically characterized by widespread occurrence of fibrous veins. Conversely, massive pseudomorphic serpentinite revealed a very low RI, even if their actual chrysotile content is up to 20–25%. Based on our original findings from the RI results, a preliminary investigation of the outcrop at the mesoscale would be of primary importance to obtain a reliable hazard assessment of NOA sites, allowing the primary distinction among the different serpentinites lithotypes and the effective fiber release. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

Back to TopTop