Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = series-diode linearizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 28452 KiB  
Article
Highly Linear 2.6 GHz Band InGaP/GaAs HBT Power Amplifier IC Using a Dynamic Predistorter
by Hyeongjin Jeon, Jaekyung Shin, Woojin Choi, Sooncheol Bae, Kyungdong Bae, Soohyun Bin, Sangyeop Kim, Yunhyung Ju, Minseok Ahn, Gyuhyeon Mun, Keum Cheol Hwang, Kang-Yoon Lee and Youngoo Yang
Electronics 2025, 14(11), 2300; https://doi.org/10.3390/electronics14112300 - 5 Jun 2025
Viewed by 416
Abstract
This paper presents a highly linear two-stage InGaP/GaAs power amplifier integrated circuit (PAIC) using a dynamic predistorter for 5G small-cell applications. The proposed predistorter, based on a diode-connected transistor, utilizes a supply voltage to accurately control the linearization characteristics by adjusting its dc [...] Read more.
This paper presents a highly linear two-stage InGaP/GaAs power amplifier integrated circuit (PAIC) using a dynamic predistorter for 5G small-cell applications. The proposed predistorter, based on a diode-connected transistor, utilizes a supply voltage to accurately control the linearization characteristics by adjusting its dc current. It is connected in parallel with an inter-stage of the two-stage PAIC through a series configuration of a resistor and an inductor, and features a shunt capacitor at the base of the transistor. These passive components have been optimized to enhance the linearization performance by managing the RF signal’s coupling to the diode. Using these optimized components, the AM−AM and AM−PM nonlinearities arising from the nonlinear resistance and capacitance in the diode can be effectively used to significantly flatten the AM−AM and AM−PM characteristics of the PAIC. The proposed predistorter was applied to the 2.6 GHz two-stage InGaP/GaAs HBT PAIC. The IC was tested using a 5 × 5 mm2 module package based on a four-layer laminate. The load network was implemented off-chip on the laminate. By employing a continuous-wave (CW) signal, the AM−AM and AM−PM characteristics at 2.55–2.65 GHz were improved by approximately 0.05 dB and 3°, respectively. When utilizing the new radio (NR) signal, based on OFDM cyclic prefix (CP) with a signal bandwidth of 100 MHz and a peak-to-average power ratio (PAPR) of 9.7 dB, the power-added efficiency (PAE) reached at least 11.8%, and the average output power was no less than 24 dBm, achieving an adjacent channel leakage power ratio (ACLR) of −40.0 dBc. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 5735 KiB  
Article
Development and Application of a Robust Imine-Based Covalent Organic Framework for Stir Bar Sorptive Extraction of Estrogens in Environmental Water
by Jianing Sun, Xixi Lian, Lianzhi Wang and Zhengchao Duan
Molecules 2024, 29(23), 5763; https://doi.org/10.3390/molecules29235763 - 6 Dec 2024
Cited by 2 | Viewed by 882
Abstract
A covalent organic framework (COF) based on imine was synthesized using 2,5-dihexoxyterephthalaldehyde (DHT) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as starting materials. The TAPB-DHT-COF exhibited satisfactory chemical stability, making it a promising adsorbing material for stir bar sorptive extraction (SBSE) of four estrogens, including estrone [...] Read more.
A covalent organic framework (COF) based on imine was synthesized using 2,5-dihexoxyterephthalaldehyde (DHT) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as starting materials. The TAPB-DHT-COF exhibited satisfactory chemical stability, making it a promising adsorbing material for stir bar sorptive extraction (SBSE) of four estrogens, including estrone (E1), β-estradiol (E2), hexestrol (HES), and mestranol (MeEE2), in ambient water samples. The extracted analytes were subsequently analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD). A series of parameters affecting the SBSE process, such as solution pH, ionic strength, extraction time, and desorption solvent, were investigated by the controlled variable method. Under optimal conditions, the limit of detection (LODs) for the four targeted estrogens ranged from 0.06 to 0.15 µg/L, with a linear range from 0.2 to 100 µg/L. The observed enrichment factor (EF) ranged from 39 to 49, while the theoretical EF was estimated to be 50-fold. This methodology can be applied to the identification of estrogens in three environmental water samples. Full article
(This article belongs to the Special Issue Applied Chemistry in Asia)
Show Figures

Figure 1

15 pages, 5528 KiB  
Article
Design of Nanosecond Pulse Laser Diode Array Driver Circuit for LiDAR
by Chengming Li, Min Tao, Haolun Du, Ziming Wang and Junfeng Song
Appl. Sci. 2024, 14(20), 9557; https://doi.org/10.3390/app14209557 - 19 Oct 2024
Cited by 2 | Viewed by 2749
Abstract
The pulse laser emission circuit plays a crucial role as the emission unit of time-of-flight (TOF) LiDAR. This paper proposes a nanosecond-level pulse laser diode array drive circuit for LiDAR, primarily aimed at addressing the issue of high-speed scanning drive for the laser [...] Read more.
The pulse laser emission circuit plays a crucial role as the emission unit of time-of-flight (TOF) LiDAR. This paper proposes a nanosecond-level pulse laser diode array drive circuit for LiDAR, primarily aimed at addressing the issue of high-speed scanning drive for the laser diode array at the emission end of solid-state LiDAR. Based on the single pulse laser diode drive circuit, this paper innovatively designs a circuit that includes modules such as a boost circuit, linear power supply, high-speed gate driver, GaN field-effect transistor, and pulse narrowing circuit, realizing an 8-channel laser diode array drive circuit. This circuit can achieve a pulse laser array drive with a single channel operating frequency of greater than 100 kHz, an output pulse width of less than 5 ns, a peak power greater than 75 W, and a channel switching time that does not exceed 1 μs. A field programmable gate array (FPGA) is used to control the operation of this circuit and perform a series of performance tests. Experimental results show that this circuit has a high repetition rate, large output power, a narrow pulse width, and fast switching speeds, making it highly suitable for use in the optical emission module of solid-state LiDAR. Full article
Show Figures

Figure 1

21 pages, 3979 KiB  
Article
Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier
by Tommaso Cappello, Sarmad Ozan, Andy Tucker, Peter Krier, Tudor Williams and Kevin Morris
Electronics 2024, 13(19), 3818; https://doi.org/10.3390/electronics13193818 - 27 Sep 2024
Cited by 1 | Viewed by 1585
Abstract
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different [...] Read more.
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different phase relationships between the linear and nonlinear branches, suggesting independent gain and phase expansion characteristics with this topology. This model is used to assess the impact of diode resistance, capacitance, and ideality factors on the APD characteristics. This feature is showcased with two similar GaAs diodes to find the best fit for the considered HPA. The selected diode is characterized and modeled between 1 and 26.5 GHz. A comprehensive APD design and simulation workflow is reported. Before fabrication, the simulated APD is evaluated with the measured HPA to verify linearity improvements. The APD prototype achieves a large-signal bandwidth of 6 GHz with 3 dB gain expansion and 8° phase rotation. This linearizer is demonstrated with a 17–21 GHz GaN HPA with 41 dBm output power and 35% efficiency. Using a wideband 750 MHz signal, this APD improves the noise–power ratio (NPR) by 6.5–8.2 dB over the whole HPA bandwidth. Next, the HPA output power is swept to compare APD vs. power backoff for the same NPR. APD improves the HPA output power by 1–2 W and efficiency by approximately 5–9% at 19 GHz. This efficiency improvement decreases by only 1–2% when including the APD post-amplifier consumption, thus suggesting overall efficiency and output power improvements with APD at K-band frequencies. Full article
Show Figures

Figure 1

10 pages, 4194 KiB  
Article
Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites
by Jaehee Shin, Sungho Ji, Hanchul Cho and Jinhyoung Park
Polymers 2023, 15(5), 1135; https://doi.org/10.3390/polym15051135 - 24 Feb 2023
Cited by 17 | Viewed by 3422
Abstract
The rapid development of portable and wearable electronic devices has led researchers to actively study triboelectric nanogenerators (TENGs) that can provide self-powering capabilities. In this study, we propose a highly flexible and stretchable sponge-type TENG, named flexible conductive sponge triboelectric nanogenerator (FCS-TENG), which [...] Read more.
The rapid development of portable and wearable electronic devices has led researchers to actively study triboelectric nanogenerators (TENGs) that can provide self-powering capabilities. In this study, we propose a highly flexible and stretchable sponge-type TENG, named flexible conductive sponge triboelectric nanogenerator (FCS-TENG), which consists of a porous structure manufactured by inserting carbon nanotubes (CNTs) into silicon rubber using sugar particles. Nanocomposite fabrication processes, such as template-directed CVD and ice freeze casting methods for fabricating porous structures, are very complex and costly. However, the nanocomposite manufacturing process of flexible conductive sponge triboelectric nanogenerators is simple and inexpensive. In the tribo-negative CNT/silicone rubber nanocomposite, the CNTs act as electrodes, increasing the contact area between the two triboelectric materials, increasing the charge density, and improving charge transfer between the two phases. Measurements of the performance of flexible conductive sponge triboelectric nanogenerators using an oscilloscope and a linear motor, under a driving force of 2–7 N, show that it generates an output voltage of up to 1120 V and a current of 25.6 µA. In addition, by using different weight percentages of carbon nanotubes (CNTs), it is shown that the output power increases with the weight percentage of carbon nanotubes (CNTs). The flexible conductive sponge triboelectric nanogenerator not only exhibits good performance and mechanical robustness but can also be directly used in light-emitting diodes connected in series. Furthermore, its output remains extremely stable even after 1000 bending cycles in an ambient environment. In sum, the results demonstrate that flexible conductive sponge triboelectric nanogenerators can effectively power small electronics and contribute to large-scale energy harvesting. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Korea (2022,2023))
Show Figures

Figure 1

13 pages, 2857 KiB  
Article
Development of Static and Dynamic Colorimetric Analysis Techniques Using Image Sensors and Novel Image Processing Software for Chemical, Biological and Medical Applications
by Woo Sik Yoo, Jung Gon Kim, Kitaek Kang and Yeongsik Yoo
Technologies 2023, 11(1), 23; https://doi.org/10.3390/technologies11010023 - 28 Jan 2023
Cited by 5 | Viewed by 3333
Abstract
Colorimetric sensing techniques for point(s), linear and areal array(s) were developed using image sensors and novel image processing software for chemical, biological and medical applications. Monitoring and recording of colorimetric information on one or more specimens can be carried out by specially designed [...] Read more.
Colorimetric sensing techniques for point(s), linear and areal array(s) were developed using image sensors and novel image processing software for chemical, biological and medical applications. Monitoring and recording of colorimetric information on one or more specimens can be carried out by specially designed image processing software. The colorimetric information on real-time monitoring and recorded images or video clips can be analyzed for point(s), line(s) and area(s) of interest for manual and automatic data collection. Ex situ and in situ colorimetric data can be used as signals for process control, process optimization, safety and security alarms, and inputs for machine learning, including artificial intelligence. As an analytical example, video clips of chromatographic experiments using different colored inks on filter papers dipped in water and randomly blinking light-emitting-diode-based decorative lights were used. The colorimetric information on points, lines and areas, with different sizes from the video clips, were extracted and analyzed as a function of time. The video analysis results were both visualized as time-lapse images and RGB (red, green, blue) color/intensity graphs as a function of time. As a demonstration of the developed colorimetric analysis technique, the colorimetric information was expressed as static and time-series combinations of RGB intensity, HSV (hue, saturation and value) and CIE L*a*b* values. Both static and dynamic colorimetric analysis of photographs and/or video files from image sensors were successfully demonstrated using a novel image processing software. Full article
(This article belongs to the Special Issue Image and Signal Processing)
Show Figures

Figure 1

19 pages, 6262 KiB  
Article
A Portable Measurement Device Based on Phenanthroline Complex for Iron Determination in Water
by Samuel Fernandes, Mouhaydine Tlemçani, Daniele Bortoli, Manuel Feliciano and Maria Elmina Lopes
Sensors 2023, 23(3), 1058; https://doi.org/10.3390/s23031058 - 17 Jan 2023
Cited by 5 | Viewed by 3856
Abstract
In this work, a newly developed self-contained, portable, and compact iron measurement system (IMS) based on spectroscopy absorption for determination of Fe2+ in water is presented. One of the main goals of the IMS is to operate the device in the field [...] Read more.
In this work, a newly developed self-contained, portable, and compact iron measurement system (IMS) based on spectroscopy absorption for determination of Fe2+ in water is presented. One of the main goals of the IMS is to operate the device in the field as opposed to instruments commonly used exclusively in the laboratory. In addition, the system has been tuned to quantify iron concentrations in accordance with the values proposed by the regulations for human consumption. The instrument uses the phenanthroline standard method for iron determination in water samples. This device is equipped with an optical sensing system consisting of a light-emitting diode paired with a photodiode to measure absorption radiation through ferroin complex medium. To assess the sensor response, four series of Fe2+ standard samples were prepared with different iron concentrations in various water matrices. Furthermore, a new solid reagent prepared in-house was investigated, which is intended as a “ready-to-use” sample pre-treatment that optimizes work in the field. The IMS showed better analytical performance compared with the state-of-the-art instrument. The sensitivity of the instrument was found to be 2.5 µg Fe2+/L for the measurement range established by the regulations. The linear response of the photodiode was determined for concentrations between 25 and 1000 µg Fe2+/L, making this device suitable for assessing iron in water bodies. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

27 pages, 1497 KiB  
Article
An Accurate Model for Bifacial Photovoltaic Panels
by Emad M. Ahmed, Mokhtar Aly, Manar Mostafa, Hegazy Rezk, Hammad Alnuman and Waleed Alhosaini
Sustainability 2023, 15(1), 509; https://doi.org/10.3390/su15010509 - 28 Dec 2022
Cited by 9 | Viewed by 3074
Abstract
Recently, there has been increasing concerns over bifacial PV (BPV) modules over the conventional monofacial PV (MPV) modules owing to their potential to add extra electrical energy from their rear-side irradiance. However, adding the rear-side irradiance to the front-side irradiance results in the [...] Read more.
Recently, there has been increasing concerns over bifacial PV (BPV) modules over the conventional monofacial PV (MPV) modules owing to their potential to add extra electrical energy from their rear-side irradiance. However, adding the rear-side irradiance to the front-side irradiance results in the increased nonlinearity of the BPV modules compared to MPV modules. Such nonlinearity makes the conventional methods unable to accurately extract the BPV module parameters. In this context, the precise determination of the BPV module parameters is a crucial issue for establishing energy yield estimations and for the proper planning of BPV installations as well. This paper proposes a new model for the BPV modules based on the MPV modeling, in which a new parameter is added to the MPV model to adjust the value of the model series resistance in order to provide a generic model for BPV modules in both monofacial and bifacial operating regions. Moreover, a new determination method for optimizing BPV model parameters using the recently developed enhanced version of the success-history-based adaptive differential evolution (SHADE) algorithm with linear population size reduction, known as the LSHADE method, is applied. The determination process of the model parameters is adapted using a two-stage optimization scheme to model the full operating range of BPV modules. The accuracy of the obtained parameters using the proposed model is compared with the conventional single-diode and double-diode models of the BPV. The obtained results using the proposed model of the BPV module show the performance superiority and accuracy of the LSHADE method over the existing methods in the literature. Furthermore, the LSHADE method provides the successful and accurate extraction of the global optimized parameters to model MPV and BPV modules. Therefore, the proposed method can provide an accurate model for the whole operating range of BPV that would be beneficial for further studies of their economic and technical feasibility for wide installation plans. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

15 pages, 845 KiB  
Article
Separation and Detection of Abamectin, Ivermectin, Albendazole and Three Metabolites in Eggs Using Reversed-Phase HPLC Coupled with a Photo Diode Array Detector
by Yawen Guo, Zhaoyuan He, Yali Zhu, Shuyu Liu, Pengfei Gao, Kaizhou Xie, Tao Zhang and Yuhao Dong
Foods 2022, 11(23), 3894; https://doi.org/10.3390/foods11233894 - 2 Dec 2022
Cited by 7 | Viewed by 3213
Abstract
An innovative and sensitive approach using high-performance liquid chromatography-photo diode array detection (HPLC-PDAD) was developed and optimized for the simultaneous determination of abamectin (ABM), ivermectin (IVM), albendazole (ABZ) and three metabolites in eggs. The samples were extracted with acetonitrile (MeCN)/water (90:10, v/ [...] Read more.
An innovative and sensitive approach using high-performance liquid chromatography-photo diode array detection (HPLC-PDAD) was developed and optimized for the simultaneous determination of abamectin (ABM), ivermectin (IVM), albendazole (ABZ) and three metabolites in eggs. The samples were extracted with acetonitrile (MeCN)/water (90:10, v/v), and the extracts containing the targets were cleaned up and concentrated by a series of liquid–liquid extraction (LLE) steps. A reversed-phase C18 column and a mobile phase consisting of 0.1% trifluoroacetic acid (TFA) aqueous solution and methanol (MeOH) were utilized to perform optimal chromatographic separation. The developed method was validated on the basis of international guidelines. The limits of detection (LODs) and quantitation (LOQs) were 2.1–10.5 µg/kg and 7.8–28.4 µg/kg, respectively. Satisfactory linear relationships were observed for the targets in their corresponding concentration ranges. The mean recoveries ranged from 85.7% to 97.21% at 4 addition levels, with intraday and interday relative standard deviations (RSDs) in the ranges of 1.68–4.77% and 1.74–5.31%, respectively. The presented protocol was demonstrated to be applicable and reliable by being applied for the detection of target residues in locally sourced egg samples. Full article
(This article belongs to the Special Issue Application of Chromatography to Food Analysis)
Show Figures

Graphical abstract

15 pages, 4245 KiB  
Article
Control Strategy for Offshore Wind Farms with DC Collection System Based on Series-Connected Diode Rectifier
by Lijun Xie, Fan Cheng and Jing Wu
Sustainability 2022, 14(13), 7860; https://doi.org/10.3390/su14137860 - 28 Jun 2022
Cited by 5 | Viewed by 2484
Abstract
The DR-HVDC (Diode rectifier-based HVDC) transmission topology was recently proposed for integration on large offshore wind farms due to its low investment cost and high reliability. To further reduce the investment, a DC collection topology based on the series-connected diode rectifiers (DR) is [...] Read more.
The DR-HVDC (Diode rectifier-based HVDC) transmission topology was recently proposed for integration on large offshore wind farms due to its low investment cost and high reliability. To further reduce the investment, a DC collection topology based on the series-connected diode rectifiers (DR) is proposed, where no offshore platform is needed. However, units of series-connected topology (SCU) show coupling issues, such as overvoltage, energy curtailment, and fault isolation. First, the coupling mechanism is analyzed, and a suitable operation mode for SCUs is selected to ensure the safe operation of the DC system. Then, the linear relationship of active power and output DC current and DC voltage of SCUs is analyzed, and a novel coordinate control strategy for DC wind farms is proposed, where an onshore converter adapts a DC current controller and wind turbines adapt a mediate output voltage control strategy. The mediate output voltage control strategy includes a triple loop with power loop, mediate output voltage loop, and current loop. Also, the DC open line fault, DC grounding fault, and AC grounding fault of the onshore grid are investigated, and a protection strategy is proposed. A 160 MW wind farm with a DR-SCU DC collection system is built in PSCAD/EMTDC to verify the validity of the proposed control strategy under unequal wind speeds, DC fault, and onshore AC fault, and the results validate the performance of the proposed strategy. Full article
(This article belongs to the Special Issue Renewable Energy Technologies and Microgrids)
Show Figures

Figure 1

13 pages, 5274 KiB  
Article
Accuracy Improvement of a Laser Diode-Based System for Measuring the Geometric Errors of Machine Tools
by Yindi Cai, Yinghao Gao, Kedi Yin, Qin Fu and Kuangchao Fan
Appl. Sci. 2022, 12(7), 3479; https://doi.org/10.3390/app12073479 - 29 Mar 2022
Cited by 2 | Viewed by 2332
Abstract
Active methods are proposed to improve the measurement accuracy of a compact laser diode-based (LD-based) system, which is designed to measure the geometric errors of machine tools. The LD has some advantages, such as a small size, low cost and high efficiency. However, [...] Read more.
Active methods are proposed to improve the measurement accuracy of a compact laser diode-based (LD-based) system, which is designed to measure the geometric errors of machine tools. The LD has some advantages, such as a small size, low cost and high efficiency. However, the laser spot of the LD is elliptical and the stability in the output power of the LD is low, which limits the accuracy of the measurement system, where the LD is used as the laser source. An active shaping method is proposed to shape the elliptical laser spot of the LD without adding additional optical elements. In addition, the laser beam drifts, including the linear drift and angular drift, are compensated in real-time by a proposed improved active error compensator, which consists of two drift feedback units and a Backpropagation Neural Networks-based PID controller, during the long-distance measurement. A series of experiments were conducted to verify the effectiveness of the proposed methods and the capability of the constructed LD-based system. Full article
(This article belongs to the Special Issue Precision Manufacturing and Intelligent Machine Tools)
Show Figures

Figure 1

11 pages, 2564 KiB  
Article
Comparison of the Nonlinear Dynamic Pre- and Post-LED Equalization
by Jerzy Siuzdak
Sensors 2022, 22(5), 1782; https://doi.org/10.3390/s22051782 - 24 Feb 2022
Viewed by 1624
Abstract
Visible Light Communications (VLC) have gained much popularity lately. In such a system, a white LED (Light-Emitting Diode) plays a double role as a light source and a transmitter. The main problem here is that the LED exhibits a low bandwidth and high [...] Read more.
Visible Light Communications (VLC) have gained much popularity lately. In such a system, a white LED (Light-Emitting Diode) plays a double role as a light source and a transmitter. The main problem here is that the LED exhibits a low bandwidth and high nonlinearity, so the equalization of the LED nonlinear dynamic response is necessary. For this, various equalizers are used. This paper compares the pre- and post-equalizer performance in terms of the received signal quality for a channel that includes a nonlinear element of limited bandwidth, such as an LED. Multilevel Pulse Amplitude Modulation (PAM) was selected as the signal format, as well as a variant of the Volterra series equalizer as the compensating element. The results obtained may be used for the correction of the dynamic characteristics of LEDs applied in VLC systems. For the sake of comparison, we used Modulation Error Ratio (MER) values at the receiver output. The dynamic nonlinear behavior was modeled by a Wiener–Hammerstein device, whereas the post/pre-equalizer was based on the dynamic deviation reduction-based Volterra series. The obtained results indicate that the post- and pre-equalizer performed comparably for the linear/moderately nonlinear channels and for a high noise level. In the case of high nonlinearity and a large SNR (Signal–to–Noise Ratio) values, the post-equalizer performed somewhat better in terms of MER by a few dB at maximum. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 7996 KiB  
Article
Optimal Combination Design of a Light Emitting Diode Matrix Applicable to a Single-Stage Flyback Driver
by Ming-Chang Tsou and Ming-Tse Kuo
Energies 2020, 13(19), 5209; https://doi.org/10.3390/en13195209 - 6 Oct 2020
Cited by 4 | Viewed by 2586
Abstract
The present study analyzed light emitting diodes (LEDs) as an output load and used a Taylor series to describe the characteristic curve based on the exponential characteristic of voltage and current. A prototype circuit of a flyback LED driver system was established to [...] Read more.
The present study analyzed light emitting diodes (LEDs) as an output load and used a Taylor series to describe the characteristic curve based on the exponential characteristic of voltage and current. A prototype circuit of a flyback LED driver system was established to verify whether the theory is consistent with actual results. This study focused on the exponential relationship of LED voltage and current. Conventional simulations usually used linear models to present LED loads. However, the linear model resulted in considerable error between simulation and actual characteristics. Therefore, this study employed a Taylor series to describe the nonlinear characteristic of an LED load. Through precise calculations with Mathcad computation software, the error was effectively reduced. Moreover, the process clarified the influence of temperature on LEDs, which benefited the characteristic analysis of the entire system. Finally, a realized circuit of 120 W flyback LED drivers was established for conducting theory verification, including theoretic analysis and evaluation of the system design process of the flyback converter. The circuit simulation software SIMPLIS was used to demonstrate the system model, which enabled quick understanding of the system framework established in this study. Regarding LEDs, a commercially available aluminum luminaire was used as the output load. The measured results of the actual circuit and the simulation results were remarkably consistent. For the same system at the same temperature, the error between the simulation and actual results was less than 3%, which proved the reliability of the Taylor series simulation. Full article
Show Figures

Figure 1

12 pages, 3464 KiB  
Article
Illumination Adaptation in a Multi-Wavelength Opto-Electronic Patch Sensor
by Liangwen Yan, Yue Yu, Sijung Hu, David Mulvaney, Panagiotis Blanos, Samah Alharbi and Matthew Hayes
Sensors 2020, 20(17), 4734; https://doi.org/10.3390/s20174734 - 21 Aug 2020
Cited by 4 | Viewed by 3424
Abstract
In capturing high-quality photoplethysmographic signals, it is crucial to ensure that appropriate illumination intensities are used. The purpose of the study was to deliver controlled illumination intensities for a multi-wavelength opto-electronic patch sensor that has four separate arrays each consisting of four light-emitting [...] Read more.
In capturing high-quality photoplethysmographic signals, it is crucial to ensure that appropriate illumination intensities are used. The purpose of the study was to deliver controlled illumination intensities for a multi-wavelength opto-electronic patch sensor that has four separate arrays each consisting of four light-emitting diodes (LEDs), the wavelength of the light generated by each array being different. The study achieved the following: (1) a linear constant current source LED driver incorporating series negative feedback using an integrated operational amplifier circuit; (2) the fitting of a linear regression equation to provide rapid determination of the LEDs driver voltage; and (3) an algorithm for the automatic adjustment of the output voltage to ensure suitable LED illumination. The data from a single centrally-located photo detector, which is capable of capturing all four channels of back-light in a time-multiplexed manner, were used to monitor heart rate and blood oxygen saturation. This paper provides circuitry for driving the LEDs and describes an adaptive algorithm implemented on a microcontroller unit that monitors the quality of the photo detector signals received in order to control each of the individual currents being supplied to the LED arrays. The study demonstrated that the operation of the new circuitry in its ability to adapt LED illumination to the strength of the signal received and the performance of the adaptive system was compared with that of a non-adaptive approach. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

18 pages, 5672 KiB  
Article
AC–DC Flyback Dimmable LED Driver with Low-Frequency Current Ripple Reduced and Power Dissipation in BJT Linearly Proportional to LED Current
by Yeu-Torng Yau, Kuo-Ing Hwu and Kun-Jie Liu
Energies 2020, 13(16), 4270; https://doi.org/10.3390/en13164270 - 18 Aug 2020
Cited by 6 | Viewed by 4014
Abstract
In this paper, a dimmable light-emitting diode (LED) driver, along with the low-frequency current ripple decreased and the bipolar junction transistor (BJT) power dissipation reduced, is developed. This driver is designed based on a single-stage flyback converter. On the one hand, the low-frequency [...] Read more.
In this paper, a dimmable light-emitting diode (LED) driver, along with the low-frequency current ripple decreased and the bipolar junction transistor (BJT) power dissipation reduced, is developed. This driver is designed based on a single-stage flyback converter. On the one hand, the low-frequency output current ripple reduction is based on the physical behavior of the linear current regulator. On the other hand, when the voltage across the LED string is decreased/increased due to dimming or temperature, the output voltage of the flyback converter will be automatically regulated down/up, thereby making the power dissipation in the BJT linearly proportional to the LED current. By doing so, not only the power loss in the linear current regulator will be decreased as the LED current is decreased or the LED temperature rises, but also the output current ripple can be reduced. Furthermore, the corresponding power factor (PF) is almost not changed, and the total harmonic distortion (THD) is improved slightly. In addition, the LED dimming is based on voltage division. Eventually, a 30 W LED driver, with an input voltage range from 85 to 295 Vrms and with 24 LEDs in series used as a load, is developed, and accordingly, the feasibility of the proposed LED driver is validated by experimental results. Full article
Show Figures

Graphical abstract

Back to TopTop