Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,631)

Search Parameters:
Keywords = sequestration potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4950 KB  
Study Protocol
An Integrated Monitoring Protocol to Study the Effects of Management on the C Sequestration Potential of Mediterranean Pine Ecosystems
by Nikoleta Eleftheriadou, Efstathia D. Mantzari, Natasa Kiorapostolou, Christodoulos I. Sazeides, Georgios Xanthopoulos, Nikos Markos, Gavriil Spyroglou, Evdoxia Bintsi-Frantzi, Alexandros Gouvas, Panayiotis G. Dimitrakopoulos, Mariangela N. Fotelli, Kalliopi Radoglou and Nikolaos M. Fyllas
Methods Protoc. 2026, 9(1), 18; https://doi.org/10.3390/mps9010018 - 26 Jan 2026
Abstract
This article describes a field- and laboratory-based framework that can be used to monitor the C balance in Mediterranean pine forest ecosystems under different management practices that determine their structure and function. By jointly monitoring stand structure, gas exchange, litter, and decomposition dynamics, [...] Read more.
This article describes a field- and laboratory-based framework that can be used to monitor the C balance in Mediterranean pine forest ecosystems under different management practices that determine their structure and function. By jointly monitoring stand structure, gas exchange, litter, and decomposition dynamics, this protocol enables the assessment of how management-driven changes regulate carbon uptake, turnover, and losses, thereby affecting carbon sequestration potential. As an example, we suggest the implementation of the protocol at ten (10) permanent monitoring plots across three study areas located in Greece. The first group of plots represents a post-fire chronosequence in pine stands with no management interventions. The second group includes pine stands that exhibit variation in overstory and understory density driven by differences in microclimate and management history. The third group consists of peri-urban pine stands subjected to thinning of varying intensity. The monitoring protocol is implemented across all plots and the collected data can be classified into three analytical domains: (a) demography, encompassing measurements of tree growth and mortality; (b) litter and decomposition dynamics, involving the quantification of litterfall and its seasonality and the estimation of its decomposition rates; and (c) gas exchange, focusing on measurements of leaf photosynthesis and respiration (including relevant leaf functional traits) and monitoring of soil respiration. These three data domains can be used to comparatively consider the effect of forest management on key ecosystem processes and to constrain local-scale vegetation dynamics models. Full article
(This article belongs to the Section Synthetic and Systems Biology)
Show Figures

Figure 1

20 pages, 3190 KB  
Article
Differential Cadmium Responses in Two Salvia Species: Implications for Tolerance and Ecotoxicity
by Douaa Bekkai, Natalizia Miceli, Francesco Cimino, Carmelo Coppolino, Maria Fernanda Taviano, Francesco Cacciola, Giovanni Toscano, Luigi Calabrese and Patrizia Trifilò
Plants 2026, 15(3), 375; https://doi.org/10.3390/plants15030375 - 25 Jan 2026
Abstract
Heavy metal contamination poses critical challenges for the cultivation of medicinal plants. This study explores cadmium (Cd)-induced morpho-physiological and metabolic responses in Salvia officinalis (So) and the rare endemic Salvia ceratophylloides (Sc). Plants were exposed to cadmium contamination corresponding to 5 and 10 [...] Read more.
Heavy metal contamination poses critical challenges for the cultivation of medicinal plants. This study explores cadmium (Cd)-induced morpho-physiological and metabolic responses in Salvia officinalis (So) and the rare endemic Salvia ceratophylloides (Sc). Plants were exposed to cadmium contamination corresponding to 5 and 10 mg kg−1 Cd (100% and 200% of the Italian regulatory limit) and assessed through gas exchange, leaf anatomy, mineral profiling, polyphenol composition, antioxidant activity, and a preliminary ecotoxicological evaluation using the Artemia salina lethality bioassay. Cd predominantly accumulated in roots, reflecting a partial exclusion strategy, and caused alterations in leaf traits, water relations, and nutrient balance. While total polyphenols generally declined, species-specific responses emerged: S. ceratophylloides increased caffeic acid derivatives, whereas S. officinalis accumulated caffeic acid, lithospermic acid A, quercetin 3-O-glucuronide, and apigenin-O-pentoside at the highest Cd exposure. Polyphenol shifts were strongly associated with antioxidant capacity. Despite higher growth sensitivity, S. ceratophylloides extracts exhibited no toxicity in the A. salina assay, indicating effective metal sequestration and low bioavailability, whereas S. officinalis extracts induced moderate to high toxicity. These findings reveal contrasting Cd tolerance and detoxification strategies, highlighting the potential of integrating plant stress physiology with ecotoxicological assessment and phytostabilization approaches to safely cultivate medicinal species on contaminated soils. Full article
(This article belongs to the Special Issue Heavy Metal Contamination in Plants and Soil)
Show Figures

Figure 1

26 pages, 1666 KB  
Review
Agroforestry as a Climate-Smart Economic Strategy: Carbon Benefits, Adaptation Pathways, and Global Evidence from Smallholder Systems
by Muhammad Asad Abbas, Suhail Asad, Jianqiang Zhang, Altyeb Ali Abaker Omer, Wajee ul Hassan, Muhammad Ameen, Chen Niu and Ya Li
Forests 2026, 17(2), 159; https://doi.org/10.3390/f17020159 - 25 Jan 2026
Abstract
Smallholder agricultural systems in tropical and subtropical regions are threatened by climate change. This systematic review of 218 peer-reviewed studies (2000–2024) synthesizes evidence on agroforestry’s role as a climate-smart economic strategy across Africa, Asia, and Latin America. Using a PRISMA-guided approach, we evaluated [...] Read more.
Smallholder agricultural systems in tropical and subtropical regions are threatened by climate change. This systematic review of 218 peer-reviewed studies (2000–2024) synthesizes evidence on agroforestry’s role as a climate-smart economic strategy across Africa, Asia, and Latin America. Using a PRISMA-guided approach, we evaluated carbon sequestration pathways, biophysical adaptation benefits, and socioeconomic outcomes. Findings indicate that agroforestry systems can sequester 0.5–5 Mg C ha−1 yr−1 in biomass and soils. The results show that agroforestry has the potential to improve above- and below-ground carbon stocks, moderate microclimates, decrease erosion and improve functional biodiversity. The results, however, differ greatly depending on the type of system, ecology and practice. The socioeconomic advantages can be diversification of income and stability of the yield, and adoption is limited due to barriers related to the economy, lack of security in tenure, information asymmetry, and insufficient policy encouragement. We find that agroforestry is a multifunctional and climate resistant land-use approach, but the potential that agroforestry has cannot be fulfilled without context-specific policies, better extension services and inclusive carbon financing schemes. Full article
Show Figures

Figure 1

19 pages, 4443 KB  
Article
Optimized Water Management Promotes Greenhouse Gas Mitigation in Global Rice Cultivation Without Compromising Yield
by Shangkun Liu, Yujie Wang, Yuanyuan Yin and Qianjing Jiang
Agronomy 2026, 16(3), 301; https://doi.org/10.3390/agronomy16030301 - 25 Jan 2026
Abstract
Rice is a vital staple food crop worldwide and also one of the major sources of greenhouse gas (GHG) emissions, generating substantial methane (CH4) and nitrous oxide (N2O). As one of the key management practices for rice production, the [...] Read more.
Rice is a vital staple food crop worldwide and also one of the major sources of greenhouse gas (GHG) emissions, generating substantial methane (CH4) and nitrous oxide (N2O). As one of the key management practices for rice production, the GHG mitigation potential of water management has attracted extensive attention, whereas its global scalability remains to be further investigated. Based on 15,458 global observations of field experimental data, we employed advanced machine learning methods to quantify the GHGs and soil carbon sequestration of global rice systems around 2020. Furthermore, we identified the optimal spatial distribution of GHG mitigation for five rice water management practices (continuous flooding (CF), flooding–midseason drainage–reflooding (FDF), alternate wetting and drying irrigation (AWD), flooding–midseason drainage–intermittent irrigation (FDI), and rainfed cultivation (RF)) through scenario simulation, under the premise of no yield reduction. The results of machine learning simulation showed that optimizing water management could reduce global rice greenhouse gas emissions by 39.17%, equivalent to 340.46 Mt CO2 eq, while increasing rice yields by 3.55%. This study provides valuable insights for the optimization of agricultural infrastructure and the realization of agricultural sustainable development. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

21 pages, 5515 KB  
Article
Short-Term Effects of Biochar on Soil Fluxes of Methane, Carbon Dioxide, and Water Vapour in a Tea Agroforestry System
by Md Abdul Halim, Md Rezaul Karim, Nigel V. Gale and Sean C. Thomas
Soil Syst. 2026, 10(2), 21; https://doi.org/10.3390/soilsystems10020021 - 24 Jan 2026
Viewed by 46
Abstract
Tea (Camellia sinensis) cultivation is a major global industry that faces sustainability challenges due to soil degradation and greenhouse gas (GHG) emissions from intensive management. Biochar—charcoal designed and used as a soil amendment—has emerged as a potential tool to improve soil [...] Read more.
Tea (Camellia sinensis) cultivation is a major global industry that faces sustainability challenges due to soil degradation and greenhouse gas (GHG) emissions from intensive management. Biochar—charcoal designed and used as a soil amendment—has emerged as a potential tool to improve soil health, enhance carbon sequestration, and mitigate GHG fluxes in agroecosystems. However, field-scale evidence of its effects on GHG dynamics in woody crops like tea remains limited, particularly regarding methane (CH4). Here, we present, to our knowledge, the first field assessment of biochar impacts on CO2, CH4, and H2O vapour fluxes in a subtropical tea agroforestry system with and without shade trees in northeastern Bangladesh. Using a closed dynamic chamber and real-time gas analysis, we found that biochar application (at 7.5 t·ha−1) significantly enhanced average soil methane (CH4) uptake by 84%, while soil respiration (CO2 efflux) rose modestly (+18%) and water-vapour fluxes showed a marginal increase. Canopy conditions modulated these effects: biochar strongly enhanced CH4 uptake under both shaded and open canopies, whereas biochar effects on water-vapour flux were detectable only when biochar was combined with a shade-tree canopy. Structural equation modelling suggests that CH4 flux was primarily governed by biochar-induced changes in soil pH, moisture, nutrient status, and temperature, while CO2 and H2O fluxes were shaped by organic matter availability, temperature, and phosphorus dynamics. These findings demonstrate that biochar can promote CH4 uptake and alter soil carbon–water interactions during the dry season in tea plantation systems and support operational biochar use in combination with shade-tree agroforestry. Full article
26 pages, 2406 KB  
Article
Ecological Change in Minnesota’s Carbon Sequestration and Oxygen Release Service: A Multidimensional Assessment Using Multi-Temporal Remote Sensing Data
by Donghui Shi
Remote Sens. 2026, 18(3), 391; https://doi.org/10.3390/rs18030391 - 23 Jan 2026
Viewed by 76
Abstract
Carbon sequestration and oxygen release (CSOR) are core regulating functions of terrestrial ecosystems. However, regional assessments often fail to (i) separate scale-driven high supply from per-area efficiency, (ii) detect structural instability and degradation risk from long-term trajectories, and (iii) provide evidence that is [...] Read more.
Carbon sequestration and oxygen release (CSOR) are core regulating functions of terrestrial ecosystems. However, regional assessments often fail to (i) separate scale-driven high supply from per-area efficiency, (ii) detect structural instability and degradation risk from long-term trajectories, and (iii) provide evidence that is comparable across units for management prioritization. Using Minnesota, USA, we integrated satellite-derived net primary productivity (NPP; 1998–2021) with a Quantity–Intensity–Structure (Q–I–S) framework to quantify CSOR, detect trends and change points (Mann–Kendall and Pettitt tests), map spatial clustering and degradation risk (Exploratory Spatial Data Analysis, ESDA), and attribute natural and human drivers (principal component regression and GeoDetector). CSOR increased overall from 1998 to 2021, with a marked shift around 2013 from a slight, variable decline to sustained recovery. Spatially, CSOR showed a persistent north–south gradient, with higher and improving services in northern Minnesota and lower, more degraded services in the south; persistent degradation was concentrated in a central high-risk belt. The Q–I–S framework also revealed inconsistencies between total supply and condition, identifying high-supply yet degrading areas and low-supply areas with recovery potential that are not evident from the totals alone. Climate variables primarily controlled CSOR quantity and structure, whereas human factors more strongly influenced intensity; the interactions of the two further shaped observed patterns. These results provide an interpretable and transferable basis for diagnosing degradation and prioritizing restoration under long-term environmental change. Full article
18 pages, 2671 KB  
Article
Combined Neutron and X-Ray Diffraction Study of Ibuprofen and Atenolol Adsorption in Zeolite Y
by Annalisa Martucci, Maura Mancinelli, Tatiana Chenet, Luca Adami, Caterina D’anna, Emmanuelle Suard and Luisa Pasti
Molecules 2026, 31(2), 384; https://doi.org/10.3390/molecules31020384 - 22 Jan 2026
Viewed by 43
Abstract
The widespread occurrence of pharmaceutical residues in aquatic environments necessitates the development of advanced porous materials for efficient remediation. This study investigates the adsorption mechanisms of ibuprofen and atenolol within the high-silica zeolite Y. Batch adsorption experiments demonstrated significant uptake, with loading capacities [...] Read more.
The widespread occurrence of pharmaceutical residues in aquatic environments necessitates the development of advanced porous materials for efficient remediation. This study investigates the adsorption mechanisms of ibuprofen and atenolol within the high-silica zeolite Y. Batch adsorption experiments demonstrated significant uptake, with loading capacities of 191.6 mg/g for ibuprofen and 273.0 mg/g for atenolol, confirming the material’s effectiveness. Using a combination of neutron and X-ray powder diffraction, complemented by Rietveld refinement and simulated annealing algorithms, we achieved the exact localization of the guest molecules. While the pristine zeolite maintains cubic symmetry Fd3¯, the incorporation of pharmaceutical molecules induces significant residual nuclear density and anisotropic lattice distortions. To accurately model these perturbations, a systematic symmetry reduction to the acentric triclinic space group F1 was implemented. This approach enabled an ab initio refinement of the structure, revealing that drug uptake of each guest is governed by distinct chemical drivers. Ibuprofen is stabilized via steric confinement and long-range dispersive interactions. In contrast, atenolol stability is governed by electrostatic charge compensation within the zeolitic voids. Our results suggest that the final adsorption geometry is dictated by the spatial orientation of functional groups and host–guest proximity rather than molecular chirality. These results provide a microscopic model describing the fundamental host–guest interactions in FAU zeolites. This structural understanding is an essential step towards the potential use of zeolitic materials in environmental remediation and complex guest sequestration. Full article
Show Figures

Figure 1

14 pages, 1009 KB  
Article
Blue Carbon in the Persian Gulf: Evidence of Phytoplankton Contribution to Carbon in Sediments
by Saif Uddin, Nazima Habibi, Montaha Behbehani, Mohammad Faizuddin, Yasmeen Al-Babtain, Shua’a Al-Rouwayeh, Maha Al-Sinan and Ghadeer Al-Qadeeri
Sustainability 2026, 18(2), 1102; https://doi.org/10.3390/su18021102 - 21 Jan 2026
Viewed by 79
Abstract
Blue carbon ecosystems, such as mangroves, seagrasses, and tidal marshes, are critical for carbon sequestration and climate change mitigation to ensure environmental sustainability. This study provides a review of the limited inventories of blue carbon habitats in the Persian/Arabian Gulf, highlighting limited spatial [...] Read more.
Blue carbon ecosystems, such as mangroves, seagrasses, and tidal marshes, are critical for carbon sequestration and climate change mitigation to ensure environmental sustainability. This study provides a review of the limited inventories of blue carbon habitats in the Persian/Arabian Gulf, highlighting limited spatial and temporal coverage as well as the uncertainties in estimates that are quantified using inconsistent methodologies and satellite resolution limitations. The main focus of this paper is a discussion on the consideration of phytoplankton in blue carbon dynamics, which remains understudied, in the Gulf. To underpin the evidence of phytoplankton permanent burial in marine sediments, shotgun metagenomic sequencing was used and 26 phytoplankton species were identified in sediment cores, showing the dominance of Aureococcus anophagefferens and Thalassiosira pseudonana, and underscoring their potential role in carbon sequestration in the northern Gulf, though their inclusion in blue carbon frameworks is complicated by taxonomic diversity and uncertain sequestration pathways. The permanent burial of phytoplankton in these shallow marine and coastal areas brings an important discussion on their inclusion in blue carbon estimates. The use of remotely sensed data for blue carbon habitat mapping needs standardisation and the use of high spatial and spectral resolution remote sensing to improve blue carbon assessments in the region. This study provides firm evidence of phytoplankton presence using eDNA calls for refining the carbon accounting frameworks in the Gulf and beyond, underscoring the importance of refining blue carbon assessments to support evidence-based environmental sustainability and climate action. By integrating phytoplankton contributions into carbon sequestration, more realistic and inclusive frameworks can be developed, enhancing regional strategies for climate change mitigation and coastal ecosystem conservation. Full article
Show Figures

Figure 1

48 pages, 4602 KB  
Article
Sequential Extraction Evaluation of Rock-Hosted Elements Using a pH Range Relevant to CO2 Geo-Sequestration
by Grant K. W. Dawson, Suzanne D. Golding, Dirk Kirste and Julie K. Pearce
Geosciences 2026, 16(1), 49; https://doi.org/10.3390/geosciences16010049 - 21 Jan 2026
Viewed by 71
Abstract
Detailed geochemical modelling of the potential groundwater impacts of CO2 geo-sequestration requires site-specific knowledge of how mobile elements are hosted within rocks. We present a simple sequential extraction procedure analogous to pH conditions produced by different partial pressures of carbon dioxide (CO [...] Read more.
Detailed geochemical modelling of the potential groundwater impacts of CO2 geo-sequestration requires site-specific knowledge of how mobile elements are hosted within rocks. We present a simple sequential extraction procedure analogous to pH conditions produced by different partial pressures of carbon dioxide (CO2) in contact with water. The procedure consists of three sequential steps: water at pH 7; acetic acid–ammonium acetate at pH 5 and then at pH 3, with the amounts of specific elements extracted by each step considered with respect to the whole rock total element abundance. Our purpose in developing this procedure is three-fold: (1) identify readily mobilized suites of elements for groundwater baseline and monitor bore studies; (2) provide insights regarding the mode/s of occurrence of easily extracted elements within rock samples; and (3) suggest possible mechanisms for the mobilization of rock-sourced elements into groundwater under neutral to moderately acidic pH that can inform the reactive transport modelling of carbon storage sites. In our case study, the second step extracted most of the main mobile elements of interest. Full article
Show Figures

Figure 1

48 pages, 681 KB  
Review
Organic Amendments for Sustainable Agriculture: Effects on Soil Function, Crop Productivity and Carbon Sequestration Under Variable Contexts
by Oluwatoyosi O. Oyebiyi, Antonio Laezza, Md Muzammal Hoque, Sounilan Thammavongsa, Meng Li, Sophia Tsipas, Anastasios J. Tasiopoulos, Antonio Scopa and Marios Drosos
C 2026, 12(1), 7; https://doi.org/10.3390/c12010007 - 19 Jan 2026
Viewed by 335
Abstract
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. [...] Read more.
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. This review synthesizes current knowledge on a wide range of soil amendments, including compost, biosolids, green and animal manure, biochar, hydrochar, bagasse, humic substances, algae extracts, chitosan, and newer engineered options such as metal–organic framework (MOF) composites, highlighting their underlying principles, modes of action, and contributions to soil function, crop productivity, and soil carbon dynamics. Across the literature, three main themes emerge: improvement of soil physicochemical properties, enhancement of nutrient cycling and nutrient-use efficiency, and reinforcement of plant resilience to biotic and abiotic stresses. Organic nutrient-based amendments mainly enrich the soil and build organic matter, influencing soil carbon inputs and short- to medium-term increases in soil organic carbon stocks. Biochar, hydrochar, and related materials act mainly as soil conditioners that improve structure, water retention, and soil function. Biostimulant-type amendments, such as algae extracts and chitosan, influence plant physiological responses and stress tolerance. Humic substances exhibit multifunctional effects at the soil–root interface, contributing to improved nutrient efficiency and, in some systems, enhanced carbon retention. The review highlights that no single amendment is universally superior, with outcomes governed by soil–crop context. Its novelty lies in its mechanism-based, cross-amendment synthesis that frames both yield and carbon outcomes as context-dependent rather than universally transferable. Within this framework, humic substances and carbon-rich materials show potential for climate-smart soil management, but long-term carbon sequestration effects remain uncertain and context-dependent. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

17 pages, 1589 KB  
Article
Soil Organic Carbon Sequestration of Long-, Two-Term Rotational Tillage in a Semiarid Region: Aggregate-Associated OC Concentrations and Mineralization
by Shixiang Zhao, Shuwei Shen, Shaoqi Xue, Xudong Wang and Xia Zhang
Agronomy 2026, 16(2), 233; https://doi.org/10.3390/agronomy16020233 - 19 Jan 2026
Viewed by 235
Abstract
Rotational tillage is considered a potential option to improve soil organic carbon (SOC) stock and mitigate climate change. However, the mechanisms underlying SOC sequestration under rotational tillage remain poorly understood due to insufficient data on SOC concentration and mineralization within soil aggregates. A [...] Read more.
Rotational tillage is considered a potential option to improve soil organic carbon (SOC) stock and mitigate climate change. However, the mechanisms underlying SOC sequestration under rotational tillage remain poorly understood due to insufficient data on SOC concentration and mineralization within soil aggregates. A 12-year field experiment was conducted in Northwest China to evaluate the effects of tillage on SOC stocks, soil aggregate stability, aggregate-associated OC concentrations and mineralization. The results showed that rotational tillage had more crop residue and less soil disturbance, thus improving soil aggregate stability, aggregate-associated OC concentrations and SOC stocks. The highest MWD and SOC stocks were found in no-tillage rotated with subsoiling (NS), which were 36.0–69.7% and 16.3% higher than plowing, respectively. Macroaggregates had higher cumulative OC mineralization and lower OC mineralizability, due to physical protection. Rotational tillage treatments with higher soil aggregation contributed to decreasing OC mineralizability and increasing SOC sequestration. Meanwhile, rotational tillage decreased OC mineralization loss, mineralizability, and decomposition rate within microaggregates and silt–clay fractions. Among all treatments, NS treatment had the lowest total OC mineralization, which was lower by 5.94–27.3% than plowing at 0–40 cm depths. Considering soil structure stability, SOC mineralization and sequestration, NS treatment was a promising strategy in semiarid regions. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 4859 KB  
Article
Numerical Investigation of CO2 Mineralization and Geomechanical Response During CO2 Storage in Saline Aquifer
by Guang Li, Shuyan Wang, Haigang Lao and Pengtao Wang
Processes 2026, 14(2), 317; https://doi.org/10.3390/pr14020317 - 16 Jan 2026
Viewed by 161
Abstract
Utilizing saline aquifers for carbon mineralization has proven to be a reliable approach for CO2 storage. However, less attention has been given to CO2 mineralization and geomechanical response at engineering durations and spatial scales. The objective of the study is to [...] Read more.
Utilizing saline aquifers for carbon mineralization has proven to be a reliable approach for CO2 storage. However, less attention has been given to CO2 mineralization and geomechanical response at engineering durations and spatial scales. The objective of the study is to evaluate the feasibility of a potential CO2 sequestration site in the Ordos Basin, located at a depth of approximately 1100 m, using the CMG-GEM numerical simulator. A coupled hydraulic–mechanical–chemical model was formulated, accounting for multiphase fluid flow, geochemical reactions, and geomechanical response. The simulation results indicated the following: (1) When CO2 is injected into a saline formation, it can react with minerals. These chemical reactions may lead to the precipitation of certain minerals (e.g., calcite, kaolinite) and the dissolution of others (e.g., anorthite), potentially affecting the porosity and permeability of the storage formation; however, the study found that the effect on porosity is negligible, with only a 1.2% reduction observed. (2) The extent of ground uplift caused by CO2 injection is strongly influenced by the injection rate. The maximum vertical ground displacements after 25 years is 6.1 cm at an injection rate of 16,000 kg/day; when the rate is increased to 24,000 kg/day, the maximum displacement rises to 9.4 cm, indicating a 54% increase. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

20 pages, 1399 KB  
Review
Nature-Based Solutions for Resilience: A Global Review of Ecosystem Services from Urban Forests and Cover Crops
by Anastasia Ivanova, Reena Randhir and Timothy O. Randhir
Diversity 2026, 18(1), 47; https://doi.org/10.3390/d18010047 - 15 Jan 2026
Viewed by 221
Abstract
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. [...] Read more.
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. However, their benefits are often viewed separately. This review combines 20 years of research to explore how these strategies, together, improve provisioning, regulating, supporting, and cultural ecosystem services across various landscapes. Urban forests help reduce urban heat islands, improve air quality, manage stormwater, and offer cultural and health benefits. Cover crops increase soil fertility, regulate water, support nutrient cycling, and enhance crop yields, with potential for carbon sequestration and biofuel production. We identify opportunities and challenges, highlight barriers to adopting these strategies, and suggest integrated frameworks—including spatial decision-support tools, incentive programs, and education—to encourage broader use. By connecting urban and rural systems, this review underscores vegetation as a versatile tool for resilience, essential for reaching global sustainability goals. Full article
(This article belongs to the Special Issue 2026 Feature Papers by Diversity's Editorial Board Members)
Show Figures

Graphical abstract

11 pages, 1772 KB  
Article
Species and Functional Trait Determinants of Biochar Carbon Retention: Insights from Uniform Smoldering Experiments
by Jingyuan Wang
Forests 2026, 17(1), 116; https://doi.org/10.3390/f17010116 - 14 Jan 2026
Viewed by 134
Abstract
Understanding the influence of tree species and their intrinsic traits on biochar yield and carbon retention is essential for optimizing the conversion of biomass to biochar in carbon-negative systems. While it is well-established that pyrolysis temperature and broad feedstock categories significantly affect biochar [...] Read more.
Understanding the influence of tree species and their intrinsic traits on biochar yield and carbon retention is essential for optimizing the conversion of biomass to biochar in carbon-negative systems. While it is well-established that pyrolysis temperature and broad feedstock categories significantly affect biochar properties, the extent of species-level variation within woody biomass under standardized pyrolysis conditions remains insufficiently quantified. Here, we synthesized biochar from seven common subtropical tree species at 600 °C under oxygen-limited smoldering conditions and quantified three key indices: biochar yield (Y), carbon recovery efficiency (ηC), and carbon enrichment factor (EC). We further examined the relationships of these indices with feedstock characteristics (initial carbon content, wood density) and functional group identity (conifer vs. broadleaf). Analysis of variance revealed significant interspecific differences in ηC but weaker effects on Y, indicating that species identity primarily governs carbon retention rather than total mass yield. Broadleaf species (Liquidambar formosana, Castanea mollissima) exhibited consistently higher ηC and EC than conifers (Pinus massoniana, P. elliottii), reflecting higher lignin content and wood density that favor aromatic char formation. Principal component and cluster analyses clearly separated coniferous and broadleaf taxa, accounting for over 80% of total variance in carbon-related traits. Regression models showed that feedstock carbon content, biochar carbon content, and wood density together explained 15.5% of the variance in ηC, with feedstock carbon content exerting a significant negative effect, whereas wood density correlated positively with carbon retention. These findings demonstrate that tree species and their functional traits jointly determine carbon fixation efficiency during smoldering. High initial carbon content alone does not guarantee enhanced carbon recovery; instead, wood density and lignin-derived structural stability dominate retention outcomes. Our results underscore the need for trait-based feedstock selection to improve biochar quality and carbon sequestration potential, and provide a mechanistic framework linking species identity, functional traits, and carbon stabilization in biochar production. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 4114 KB  
Article
Hydrological Changes Drive the Seasonal Vegetation Carbon Storage of the Poyang Lake Floodplain Wetland
by Zili Yang, Shaoxia Xia, Houlang Duan and Xiubo Yu
Remote Sens. 2026, 18(2), 276; https://doi.org/10.3390/rs18020276 - 14 Jan 2026
Viewed by 142
Abstract
Wetlands are a critical component of the global biogeochemical cycle and have great potential for carbon sequestration under the changing climate. However, previous studies have mainly focused on the dynamics of soil organic carbon while paying little attention to the vegetation carbon storage [...] Read more.
Wetlands are a critical component of the global biogeochemical cycle and have great potential for carbon sequestration under the changing climate. However, previous studies have mainly focused on the dynamics of soil organic carbon while paying little attention to the vegetation carbon storage in wetlands. Poyang Lake is the largest freshwater lake in China, where intra-annual and inter-annual variations in water levels significantly affect the vegetation carbon storage in the floodplain wetland. Therefore, we assessed the seasonal distribution and carbon storage of six typical plant communities (Arundinella hirta, Carex cinerascens, Miscanthus lutarioriparius, Persicaria hydropiper, Phalaris arundinacea, and Phragmites australis) in Poyang Lake wetlands from 2019 to 2024 based on field surveys, the literature, and remote sensing data. Then, we used 16 preseason meteorological and hydrological variables for two growing seasons to investigate the impacts of environmental factors on vegetation carbon storage based on four correlation and regression methods (including Pearson and partial correlation, ridge, and elastic net regression). The results show that the C. cinerascens community was the most dominant contributor to vegetation carbon storage, occupying 12.68% to 44.22% of the Poyang Lake wetland area. The vegetation carbon storage in the Poyang Lake wetland was significantly (p < 0.01) higher in spring (87.75 × 104 t to 239.10 × 104 t) than in autumn (77.32 × 104 t to 154.78 × 104 t). Water body area emerged as a key explanatory factor, as it directly constrains the spatial extent available for vegetation colonization and growth by alternating inundation and exposure. In addition, an earlier start or end to floods could both enhance vegetation carbon storage in spring or autumn. However, preseason precipitation and temperature are negative to carbon storage in spring but exhibited opposite effects in autumn. These results assessed the seasonal dynamics of dominant vegetation communities and helped understand the response of the wetland carbon cycle under the changing climate. Full article
Show Figures

Figure 1

Back to TopTop