Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = sequencing batch reactors (SBR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3624 KiB  
Article
Modelling a Lab-Scale Continuous Flow Aerobic Granular Sludge Reactor: Optimisation Pathways for Scale-Up
by Melissa Siney, Reza Salehi, Mohamed G. Hassan, Rania Hamza and Ihab M. T. A. Shigidi
Water 2025, 17(14), 2131; https://doi.org/10.3390/w17142131 - 17 Jul 2025
Viewed by 677
Abstract
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, [...] Read more.
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, lowering the land footprint and improving efficiency. This research investigates the optimisation of a lab-scale sequencing batch reactor (SBR) into a continuous flow reactor through mathematical modelling, sensitivity analysis, and a computational fluid dynamic model. This is all applied for the future goal of scaling up the model designed to a full-scale continuous flow reactor. The mathematical model developed analyses microbial kinetics, COD degradation, and mixing flows using Reynolds and Froude numbers. To perform a sensitivity analysis, a Python code was developed to investigate the stability when influent concentrations and flow rates vary. Finally, CFD simulations on ANSYS Fluent evaluated the mixing within the reactor. An 82% COD removal efficiency was derived from the model and validated against the SBR data and other configurations. The sensitivity analysis highlighted the reactor’s inefficiency in handling high-concentration influents and fast flow rates. CFD simulations revealed good mixing within the reactor; however, they did show issues where biomass washout would be highly likely if applied in continuous flow operation. All of these results were taken under deep consideration to provide a new reactor configuration to be studied that may resolve all these downfalls. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

17 pages, 3221 KiB  
Article
Removal of Chemical Oxygen Demand (COD) from Swine Farm Wastewater by Corynebacterium xerosis H1
by Jingyi Zhang, Meng Liu, Heshi Tian, Lingcong Kong, Wenyan Yang, Lianyu Yang and Yunhang Gao
Microorganisms 2025, 13(7), 1621; https://doi.org/10.3390/microorganisms13071621 - 9 Jul 2025
Viewed by 274
Abstract
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate [...] Read more.
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate an effective COD-degrading strain of SW, characterize (at the molecular level) its transformation of SW, and apply it to practical production. A strain of Corynebacterium xerosis H1 was isolated and had a 27.93% ± 0.68% (mean ± SD) degradation rate of COD in SW. This strain precipitated growth in liquids, which has the advantage of not needing to be immobilized, unlike other wastewater-degrading bacteria. Based on analysis by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), this bacterium removed nitrogen-containing compounds in SW, with proteins and lipids decreasing from 41 to 10% and lignins increasing from 51 to 82%. Furthermore, the enhancement of the sequencing batch reactor (SBR) with strain H1 improved COD removal in effluent, with reductions in the fluorescence intensity of aromatic protein I, aromatic protein II, humic-like acids, and fulvic acid regions. In addition, based on 16S rRNA gene sequencing analysis, SBRH1 successfully colonized some H1 bacteria and had a higher abundance of functional microbiota than SBRC. This study confirms that Corynebacterium xerosis H1, as a carrier-free efficient strain, can be directly applied to swine wastewater treatment, reducing carrier costs and the risk of secondary pollution. The discovery of this strain enriches the microbial resource pool for SW COD degradation and provides a new scheme with both economic and environmental friendliness for large-scale treatment. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Investigation of TiO2 Nanoparticles Added to Extended Filamentous Aerobic Granular Sludge System: Performance and Mechanism
by Jun Liu, Songbo Li, Shunchang Yin, Zhongquan Chang, Xiao Ma and Baoshan Xing
Water 2025, 17(14), 2052; https://doi.org/10.3390/w17142052 - 9 Jul 2025
Viewed by 302
Abstract
The widely utilized TiO2 nanoparticles (NPs) tend to accumulate in wastewater and affect microbial growth. This work investigated the impacts of prolonged TiO2 NP addition to filamentous aerobic granular sludge (AGS) using two identical sequencing batch reactors (SBRs, R1 and R2). [...] Read more.
The widely utilized TiO2 nanoparticles (NPs) tend to accumulate in wastewater and affect microbial growth. This work investigated the impacts of prolonged TiO2 NP addition to filamentous aerobic granular sludge (AGS) using two identical sequencing batch reactors (SBRs, R1 and R2). R1 (the control) had no TiO2 NP addition. In this reactor, filamentous bacteria from large AGS grew rapidly and extended outward, the sludge volume index (SVI30) quickly increased from 41.2 to 236.8 mL/g, mixed liquid suspended solids (MLSS) decreased from 4.72 to 0.9 g/L, and AGS disintegrated on day 40. Meanwhile, the removal rates of COD and NH4+-N both exhibited significant declines. In contrast, 5–30 mg/L TiO2 NPs was added to R2 from day 21 to 100, and the extended filamentous bacteria were effectively controlled on day 90 under a 30 mg/L NP dosage, leading to significant reductions in COD and NH4+-N capabilities, particularly the latter. Therefore, NP addition was stopped on day 101, and AGS became dominant in R2, with an SVI30 and MLSS of 48.5 mL/g and 5.67 g/L on day 130. COD and NH4+-N capabilities both increased to 100%. Microbial analysis suggested that the dominant filamentous bacteria—Proteobacteria, Bacteroidetes, and Acidobacteria—were effectively controlled by adding 30 mg/L TiO2 NPs. XRF analysis indicated that 11.7% TiO2 NP accumulation made the filamentous bacteria a framework for AGS recovery and operation without NPs. Functional analysis revealed that TiO2 NPs had stronger inhibitory effects on nitrogen metabolism compared to carbon metabolism, and both metabolic pathways recovered when NP addition was discontinued in a timely manner. These findings offer critical operational guidance for maintaining the stable performance of filamentous AGS systems treating TiO2 NP wastewater in the future. Full article
Show Figures

Figure 1

22 pages, 4495 KiB  
Article
The Application of Sn2 in Autotrophic Denitrification Process for Advanced Nitrogen Removal in Wastewater Treatment
by Yingxue Sun, Xiaolei Zhang, Chenli Ye, Ziying He, Hongjie Wang and Ji Li
Separations 2025, 12(6), 157; https://doi.org/10.3390/separations12060157 - 8 Jun 2025
Viewed by 417
Abstract
This study presents a cost-effective and feasible technique for the deep denitrification of wastewater, based on sulfur autotrophic denitrification mediated by polysulfides (Sn2). Various polysulfides were used as electron donors in an aerobic/anoxic sequencing batch reactor (SBR) to [...] Read more.
This study presents a cost-effective and feasible technique for the deep denitrification of wastewater, based on sulfur autotrophic denitrification mediated by polysulfides (Sn2). Various polysulfides were used as electron donors in an aerobic/anoxic sequencing batch reactor (SBR) to simulate nitrification and denitrification processes. The performance of different polysulfide species and their respective dosages were evaluated to determine the optimal conditions for nitrogen removal. Under optimal nitrogen removal conditions with a dosing of 19.2 mg S/L from Na2S3, the system was operated continuously for 38 days, with low sludge production during the process. During stable operation, the system achieved an average removal of 7.3 mg/L of NO3-N, corresponding to a removal efficiency of 23.1%. No significant accumulation of NO2-N was observed in the effluent, and the average utilization efficiency of Na2S3 reached 83.7%. Continuous dosing of Na2S3 promoted the enrichment of sulfur autotrophic denitrification-related microorganisms within the system. Full article
(This article belongs to the Topic Sustainable Technologies for Water Purification)
Show Figures

Figure 1

17 pages, 3064 KiB  
Article
Winery Wastewater Innovative Biotreatment Using an Immobilized Biomass Reactor Followed by a Sequence Batch Reactor: A Case Study in Australia
by Ofir A. Menashe, Ezra Orlofsky, Piotr Bankowski and Eyal Kurzbaum
Processes 2025, 13(5), 1375; https://doi.org/10.3390/pr13051375 - 30 Apr 2025
Viewed by 510
Abstract
A pilot-scale treatment system was developed to manage winery wastewater (WWW) generated by small and medium wineries. The system incorporated three stages: pre-treatment for suspended solids removal and a two-step aerobic biotreatment. The biotreatment phase utilized a bioaugmented bioreactor with encapsulated Pseudomonas putida [...] Read more.
A pilot-scale treatment system was developed to manage winery wastewater (WWW) generated by small and medium wineries. The system incorporated three stages: pre-treatment for suspended solids removal and a two-step aerobic biotreatment. The biotreatment phase utilized a bioaugmented bioreactor with encapsulated Pseudomonas putida F1, employing the Small Bioreactor Platform (SBP) technology. This innovative encapsulation method enhanced the breakdown of recalcitrant compounds and accelerated the biodegradation process. The second reactor was operated as a Sequence Batch Bioreactor (SBR) to remove the remaining organics and solids. Over the 100 days of operation, the mean WWW flow rate was 0.5 m3/d with average organic loads of 3950 mg/L COD (chemical oxygen demand) and 2220 mg/L BOD (biological oxygen demand), operating with a hydraulic retention time (HRT) of 4 days. Reductions of up to 96% in BOD and 90% in COD values were observed with stable removal rates over time. The novelty of this study is that it offers a new, effective aerobic biological treatment process, embracing bioaugmentation of encapsulated biomass followed by SBR for WWW with a relatively short HRT, high organics removal, and a stable treatment process. The effluent quality from this treatment system met the regulatory requirements for release to a municipal wastewater treatment plant and potentially also for irrigation. Full article
(This article belongs to the Special Issue Latest Research on Wastewater Treatment and Recycling)
Show Figures

Figure 1

16 pages, 3243 KiB  
Article
Enhanced Nitrification of High-Ammonium Reject Water in Lab-Scale Sequencing Batch Reactors (SBRs)
by Sandeep Gyawali, Eshetu Janka and Carlos Dinamarca
Water 2025, 17(9), 1344; https://doi.org/10.3390/w17091344 - 30 Apr 2025
Viewed by 478
Abstract
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well [...] Read more.
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well as for nitrate capture in biochar to be used as a slow-release fertilizer is proposed. This study attempted to accomplish enhanced nitrification by tuning the operating parameters in two lab-scale sequential-batch reactors (SBRs), which were fed reject water (containing 520 ± 55 mg NH4-N/L). Sufficient alkalinity as per stoichiometric value was needed to maintain the pH and free nitrous acid (FNA) within the optimum range. A nitrogen loading rate (NLR) of 0.14 ± 0.01 kg/m3·d and 3.34 days hydraulic retention time (HRT) helped to achieved complete 100% nitrification in reactor 1 (R1) on day 61 and in reactor 2 (R2) on day 82. After a well-developed bacterial biomass, increasing the NH4-N concentration up to 750 ± 85 mg/L and NLR to 0.23 ± 0.03 kg/m3·d did not affect the nitrification process. Moreover, a feeding sequence once a day provided adequate contact time between nitrifying sludge and reject water, resulting in complete nitrification. It can be concluded that enhanced stable nitrification of reject water can be achieved with quick adjustment of loading, alkalinity, and HRT in SBRs. Full article
Show Figures

Graphical abstract

17 pages, 2637 KiB  
Article
Achieving High-Efficiency Wastewater Treatment with Sequencing Batch Reactor Grundfos Technology
by Tomasz Sionkowski, Wiktor Halecki, Paweł Jasiński and Krzysztof Chmielowski
Processes 2025, 13(4), 1173; https://doi.org/10.3390/pr13041173 - 12 Apr 2025
Cited by 2 | Viewed by 1109
Abstract
Sequencing batch reactor Grundfos technology (SBR-GT) system efficiently treats municipal and selected industrial wastewater, designed for small and medium-scale facilities. It offers advanced solutions for biodegradable wastewater, including municipal and food industry effluents. Important features include stable sedimentation under fluctuating influent conditions, no [...] Read more.
Sequencing batch reactor Grundfos technology (SBR-GT) system efficiently treats municipal and selected industrial wastewater, designed for small and medium-scale facilities. It offers advanced solutions for biodegradable wastewater, including municipal and food industry effluents. Important features include stable sedimentation under fluctuating influent conditions, no need for sludge recirculation, and full process automation. The system uses a static decanter and constant chamber filling for optimal oxygenation efficiency and reduced costs. The system uses a static decanter and constant chamber filling for optimal oxygenation efficiency and reduced costs. It is ideal for small settlements with variable inflow, such as towns, allowing flexible operation and cost-effective maintenance. Implementations showed stable parameters for COD (chemical oxygen demand), BOD5 (biochemical oxygen demand), total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) and up to 99% pollutant reduction, demonstrating high effectiveness in regular and stormwater conditions. Using multivariate multiple linear regression, significant relationships were identified. A multiple regression analysis revealed a strong relationship between water quality parameters. Total suspended solids, Total nitrogen, and Total phosphorus collectively and significantly influenced both chemical oxygen demand and biochemical oxygen demand (p < 0.01 for all). The models explained a high proportion of variance, with R2 values of 0.99 for COD and 0.93 for BOD5 (p < 0.001 for both). Specifically, TSS had a strong positive effect on COD (p < 0.001), while TN and TP also significantly affected COD (p < 0.01). Although the overall BOD5 model was highly significant, the individual effects of TSS, TN, and TP on BOD5 were not statistically significant in this model. This method demonstrated high effectiveness in both regular and stormwater conditions, enhancing overall treatment performance. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

17 pages, 8569 KiB  
Article
Transforming Prediction into Decision: Leveraging Transformer-Long Short-Term Memory Networks and Automatic Control for Enhanced Water Treatment Efficiency and Sustainability
by Cheng Qiu, Qingchuan Li, Jiang Jing, Ningbo Tan, Jieping Wu, Mingxi Wang and Qianglin Li
Sensors 2025, 25(6), 1652; https://doi.org/10.3390/s25061652 - 7 Mar 2025
Viewed by 921
Abstract
The study addresses the critical issue of accurately predicting ammonia nitrogen (NH3-N) concentration in a sequencing batch reactor (SBR) system, achieving reduced consumption through automatic control technology. NH3-N concentration serves as a key indicator of treatment efficiency and environmental [...] Read more.
The study addresses the critical issue of accurately predicting ammonia nitrogen (NH3-N) concentration in a sequencing batch reactor (SBR) system, achieving reduced consumption through automatic control technology. NH3-N concentration serves as a key indicator of treatment efficiency and environmental impact; however, its complex dynamics and the scarcity of measurements pose significant challenges for accurate prediction. To tackle this problem, an innovative Transformer-long short-term memory (Transformer-LSTM) network model was proposed, which effectively integrates the strengths of both Transformer and LSTM architectures. The Transformer component excels at capturing long-range dependencies, while the LSTM component is adept at modeling sequential patterns. The innovation of the proposed methodology resides in the incorporation of dissolved oxygen (DO), electrical conductivity (EC), and oxidation-reduction potential (ORP) as input variables, along with their respective rate of change and cumulative value. This strategic selection of input features enhances the traditional utilization of water quality indicators and offers a more comprehensive dataset for prediction, ultimately improving model accuracy and reliability. Experimental validation on NH3-N datasets from the SBR system reveals that the proposed model significantly outperforms existing advanced methods in terms of root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). Furthermore, by integrating real-time sensor data with the Transformer-LSTM network and automatic control, substantial improvements in water treatment processes were achieved, resulting in a 26.9% reduction in energy or time consumption compared with traditional fixed processing cycles. This methodology provides an accurate and reliable tool for predicting NH3-N concentrations, contributing significantly to the sustainability of water treatment and ensuring compliance with emission standards. Full article
(This article belongs to the Topic Water and Energy Monitoring and Their Nexus)
Show Figures

Figure 1

28 pages, 2817 KiB  
Article
Sequencing Batch Reactor: A Sustainable Wastewater Treatment Option for the Canned Vegetable Industry
by Sedolfo Carrasquero-Ferrer, Jean Pino-Rodríguez and Altamira Díaz-Montiel
Sustainability 2025, 17(3), 818; https://doi.org/10.3390/su17030818 - 21 Jan 2025
Cited by 5 | Viewed by 2587
Abstract
The treatment of wastewater from the food processing industry, such as canned soup production, presents challenges due to its high organic load and limited nutrient concentrations. This study evaluated the efficiency of a sequencing batch reactor (SBR) in the removal of organic matter, [...] Read more.
The treatment of wastewater from the food processing industry, such as canned soup production, presents challenges due to its high organic load and limited nutrient concentrations. This study evaluated the efficiency of a sequencing batch reactor (SBR) in the removal of organic matter, color, turbidity, and nutrients under different solid retention times (SRTs) and operational cycle times (OCTs). The reactor operated with SRTs of 15 and 25 days and an 8-h cycle, and parameters such as COD, BOD5, color, turbidity, nitrogen content, and phosphorus content, as well as COD fractionation were analyzed to assess biodegradability. The results showed high removal rates of organic matter, with 84.8% COD and >90% BOD5, revealing that 54.3% of the COD was readily biodegradable. Significant reductions in color (72.3%) and turbidity (83.3%) were achieved, improving the quality of the treated effluent. Nitrogen removal occurred primarily through assimilation due to the absence of anoxic conditions, while phosphorus was also removed via biomass assimilation. The addition of macronutrients did not significantly influence treatment efficiency, reducing the need for additional inputs and operational costs. This study demonstrates the flexibility and effectiveness of the SBR in treating wastewater with a high organic load and low nutrient concentrations, highlighting its ability to produce a high-quality effluent suitable for discharge or reuse. The novelty of this work lies in combining COD fractionation analysis, nutrient removal mechanisms, and water quality parameters, providing key insights for optimizing biological processes in industrial contexts. Full article
(This article belongs to the Special Issue Research on Sustainable Wastewater Treatment)
Show Figures

Figure 1

15 pages, 3022 KiB  
Article
Zero-Valent Iron-Enhanced Nutrient Removal in Simultaneous Nitrification Denitrification and Phosphorus Removal Process: Performance, Microbial Community and Potential Mechanism
by Ju Zhang, Xiaoling Zhang, Shuting Xie, Shuhan Lei, Wenjuan Yang, Ying Chen, Aixia Chen and Jianqiang Zhao
Water 2024, 16(24), 3666; https://doi.org/10.3390/w16243666 - 19 Dec 2024
Viewed by 1031
Abstract
The efficacy of zero-valent iron (ZVI) for the simultaneous nitrification denitrification and phosphorus removal (SNDPR) process is unclear, although it has been shown in numerous studies to help improve nitrate removal in biological wastewater treatment systems. This study investigated the response of the [...] Read more.
The efficacy of zero-valent iron (ZVI) for the simultaneous nitrification denitrification and phosphorus removal (SNDPR) process is unclear, although it has been shown in numerous studies to help improve nitrate removal in biological wastewater treatment systems. This study investigated the response of the SNDPR process to ZVI addition in an anaerobic/aerobic/anoxic (An/O/A)-sequencing batch reactor (SBR). The results indicated that ZVI addition could promote the removal of phosphorus and total inorganic nitrogen (TIN). The phosphorus removal by ZVI was mainly attributed to iron precipitation due to the in situ oxidation of ZVI by oxygen or nitrate. The TIN removal by ZVI was attributed to the chemical denitrification reaction, which reduces nitrate to nitrite and nitrogen gas. The nanoscale zero-valent iron (nZVI) was more favorable for TIN removal than microscale zero-valent iron (mZVI) in the SNDPR process. The average removal efficiency of PO43−-P and TIN increased from 50.37 ± 7.55% to 99.29 ± 1.24% and 73.15 ± 5.92% to 76.75 ± 5.05% with nZVI addition. The relative abundance of Dechloromonas sp. decreased by 0.65% and that of Nitrospira sp. increased by 3.78% with the addition of ZVI, indicating that ZVI could weaken the activity of polyphosphate-accumulating organisms (PAOs) and promote the activity of nitrite-oxidizing bacteria. These results provide a new and environmentally friendly approach for applying ZVI in SNDPR systems, reducing the dependence on organic carbon sources. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

19 pages, 20336 KiB  
Article
Comparative Investigation of the Anammox Process Using Free-Floating Carriers of Activated Sludge-Attached Biocenosis
by Yury A. Nikolaev, Timur A. Kanapatskiy, Vladimir A. Grachev, Alexander G. Dorofeev, Yury V. Litti, Andrey V. Mardanov, Alexey Yu. Kozhusko, Evgeny V. Gruzdev, Yulia Yu. Berestovskaya and Nikolay V. Pimenov
Water 2024, 16(23), 3363; https://doi.org/10.3390/w16233363 - 22 Nov 2024
Viewed by 1015
Abstract
For ammonium removal from wastewater, anammox technologies are among the most efficient and rapidly developing ones. Due to the low growth rate of anammox bacteria and their sensitivity to various inhibitors, technologies using attached biocenosis carriers (ABCs) provide for reliable operation. The goal [...] Read more.
For ammonium removal from wastewater, anammox technologies are among the most efficient and rapidly developing ones. Due to the low growth rate of anammox bacteria and their sensitivity to various inhibitors, technologies using attached biocenosis carriers (ABCs) provide for reliable operation. The goal of the present work was to investigate a new ABC type, ETEK biochips based on a nonwoven fibrous material. The work involved the techniques of materials science (design of a new ABC type) and physical modeling of the anammox process (in a laboratory bioreactor), as well as electron microscopy and molecular profiling of activated sludge communities. Comparison of the ETEK biochips with the ABCs of foamed polyethylene BF33 and Mutag revealed more rapid accumulation (5-fold) of the activated sludge biomass on ETEK biochips upon reactor launching, as well as comparable buoyancy and reactor productivity regarding N removal. The specific rate of nitrogen removal obtained with ETEK biochips considerably exceeded that for foamed polyethylene with a filler: 1.5–3 times higher per chip and 1.5 times higher per activated sludge biomass unit. The studied ABC shared the same issue of floating to the surface due to the active formation of gas (N2). The algorithm for calculating the downward flows in bioreactors with rapidly surfacing ABC is proposed, and a new hydrodynamic type of a bioreactor (with hybrid hydrodynamics) is described, a moving bed–sequencing batch reactor (MB-SBR). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 2374 KiB  
Article
Biomethane Production and Methanogenic Microbiota Restoration After a pH Failure in an Anaerobic Sequencing Batch Reactor (A-SBR) Treating Tequila Vinasse
by Adriana Serrano-Meza, Iván Moreno-Andrade, Edson B. Estrada-Arriaga, Sergio A. Díaz-Barajas, Liliana García-Sánchez and Marco A. Garzón-Zúñiga
Fermentation 2024, 10(11), 557; https://doi.org/10.3390/fermentation10110557 - 31 Oct 2024
Viewed by 1299
Abstract
Precise control of operational parameters in anaerobic digestion reactors is crucial to avoid imbalances that could affect biomethane production and alterations in the microbiota. Restoring the methanogenic microbiota after a failure is essential for recovering methane production, yet no published strategies exist for [...] Read more.
Precise control of operational parameters in anaerobic digestion reactors is crucial to avoid imbalances that could affect biomethane production and alterations in the microbiota. Restoring the methanogenic microbiota after a failure is essential for recovering methane production, yet no published strategies exist for this recovery. In this study, we restored the methanogenic microbiota in an anaerobic SBR reactor that operates with both biofilm and suspended biomass simultaneously, aiming to treat tequila vinasses. Four strategies were evaluated for restoring the methanogenic microbiota: reducing the initial vinasse concentration, increasing the reaction time (RT), adjusting the carbon/nitrogen (C/N) ratio, and progressively increasing the initial vinasse concentration. Among these, adjusting the C/N ratio emerged as a critical parameter for restoring organic matter removal efficiency and reestablishing methanogenic microbiota. The operational conditions under which the methanogenic activity and microbiota were restored were as follows: Operating the A-SBR with an initial vinasse concentration of 60%, an RT of 168 h, a pH of 6.9 ± 0.2, a temperature of 35 ± 2 °C, and a C/N ratio adjusted to 100/1.9 resulted in stable COD removal efficiency of 93 ± 3% over a year and a high percentage of methanogenic microorganisms in both the suspended microbiota (69%) and biofilm (52%). The normalized methane production (0.332 NL CH4/g CODr) approached the theoretical maximum value (0.35 L CH4/g CODr) after restoring the population and methanogenic activity within the reactor. Full article
(This article belongs to the Special Issue New Research on Biomethane Production)
Show Figures

Figure 1

15 pages, 3757 KiB  
Article
Characteristics of Nitrogen Removal from an Integrated Fixed-Film Activated Sludge (IFAS) System and the Relationship Between Activated Sludge and Biofilm Interactions
by Zishuo Tuo, Long Bai, Baoping Zhang, Shuangyi Jing, Chenxi Li and Shike Tang
Water 2024, 16(21), 3040; https://doi.org/10.3390/w16213040 - 23 Oct 2024
Cited by 1 | Viewed by 1315
Abstract
In order to investigate the enhancement mechanism of modified three-dimensional elastic filler (MTEF) on the nitrogen removal performance of the integrated fixed-film activated sludge (IFAS) process, and to clarify the interactions between competition and synergy between activated sludge and biofilm in the IFAS [...] Read more.
In order to investigate the enhancement mechanism of modified three-dimensional elastic filler (MTEF) on the nitrogen removal performance of the integrated fixed-film activated sludge (IFAS) process, and to clarify the interactions between competition and synergy between activated sludge and biofilm in the IFAS system, an IFAS reactor (T2) filled with MTEF was employed for the study, while a sequencing batch reactor activated sludge process (SBR) reactor (T1) was utilized for comparison. IFAS and SBR reactors were operated over an extended period at ambient temperature to assess the enhancement of pollutant removal performance with the addition of the filler to investigate the competitive dynamics between activated sludge and biofilm under varying influent water qualities (C/N, N/P, and organic loading), and to analyze the synergistic relationship between activated sludge and biofilm at the microbial level using high-throughput sequencing technology. The results demonstrate that throughout the entire operational phase, reactor T2 exhibited superior pollutant removal efficiency. Compared to reactor T1, reactor T2 achieved an average increase in the removal rates of COD, ammonia nitrogen, and total nitrogen by 13.07%, 12.26%, and 28.96%, respectively. The findings on the competitive dynamics between activated sludge and biofilm indicate that the nitrification volumetric load of the IFAS system is significantly higher than that of a pure activated sludge system, suggesting that the IFAS system possesses enhanced nitrification capabilities. Furthermore, when dealing with wastewater characterized by low C/N ratios and high phosphorus pollution, or under substantial organic loads, the biofilm holds a competitive edge and the IFAS system exhibits improved stability. High-throughput sequencing data reveal that the microbial community structures in activated sludge and biofilm can influence each other, thereby enabling the IFAS system to effectively enrich denitrification-related functional microbial populations. Additionally, the biofilm has a certain enhancing effect on the expression levels of nitrogen metabolism-related functional genes in the activated sludge phase microorganisms, indicating that, in addition to competitive interactions, there is also a synergistic effect between the biofilm and activated sludge. Full article
(This article belongs to the Special Issue Advanced Technologies for Wastewater Treatment and Water Reuse)
Show Figures

Figure 1

10 pages, 1683 KiB  
Article
Free Ammonia Strategy for Nitrite-Oxidizing Bacteria (NOB) Suppression in Mainstream Nitritation Start-Up
by Soyeon Jeong, Seongjae Park, Hojun Kim, Seongwon Yoon, Sewon Park, Doheung Kim, Jeongmi Kim, Yeonju Kim, Jaecheul Yu and Taeho Lee
Appl. Sci. 2024, 14(17), 7801; https://doi.org/10.3390/app14177801 - 3 Sep 2024
Cited by 3 | Viewed by 1702
Abstract
The partial nitritation (PN)–anammox (PN/A) process offers a sustainable alternative to nitrogen management in wastewater treatment, addressing the high costs and increasing the low eco-friendliness associated with traditional nitrification/denitrification processes. Stable partial nitritation (PN) is critical for effective PN/A operation, and this study [...] Read more.
The partial nitritation (PN)–anammox (PN/A) process offers a sustainable alternative to nitrogen management in wastewater treatment, addressing the high costs and increasing the low eco-friendliness associated with traditional nitrification/denitrification processes. Stable partial nitritation (PN) is critical for effective PN/A operation, and this study specifically focused on the need to suppress nitrite-oxidizing bacteria (NOB) to facilitate the enrichment of ammonia-oxidizing bacteria (AOB). Utilizing two sequencing batch reactors (SBRs), PN1 and PN2 with different free ammonia (FA) concentrations, this study aimed to evaluate the NOB suppression strategy while enriching AOB. The PN2 reactor, which operated with a higher initial FA concentration (50 mg/L), successfully maintained high nitritation activity, with 96.1% ammonium removal efficiency (ARE) and 95.1% nitrite accumulation efficiency (NAE) at reduced influent NH4+-N concentrations (50 mg NH4+-N/L, FA 10 mg/L). In contrast, PN1 showed inadequate NOB suppression due to lower FA concentrations (10 mg/L). These results suggest that initiating the nitritation process with higher FA concentrations can effectively suppress NOB, enhancing the stability and efficiency of PN/A processes in mainstream applications. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

15 pages, 3259 KiB  
Article
Reconstruction of the Municipal Wastewater-Treatment Plant According to the Principles of Aerobic Granular Sludge Cultivation
by Miroslav Hutňan, Barbora Jankovičová, Lenka Jajcaiová, Mikhael Sammarah, Karol Kratochvíl and Nikola Šoltýsová
Processes 2024, 12(9), 1782; https://doi.org/10.3390/pr12091782 - 23 Aug 2024
Cited by 1 | Viewed by 1693
Abstract
The work presents the concept of aerobic granular sludge (AGS) and its potential for wastewater treatment. The work also evaluates the condition of the SBR (Sequencing Batch Reactor) type of municipal wastewater-treatment plant (WWTP) after its reconstruction into a system with AGS. The [...] Read more.
The work presents the concept of aerobic granular sludge (AGS) and its potential for wastewater treatment. The work also evaluates the condition of the SBR (Sequencing Batch Reactor) type of municipal wastewater-treatment plant (WWTP) after its reconstruction into a system with AGS. The WWTP parameters achieved before and after reconstruction were compared. Operational measurements of the process during the individual phases of the treatment process showed a balanced concentration profile of the monitored parameters in the span of the semicontinuous cycle. Laboratory tests showed that the sludge from the WWTP has nitrification and denitrification rates comparable to the rates achieved for flocculent sludge, and it is also comparable to the nitrification and denitrification rates of AGS with size of granules below 400 µm. Despite the fact that complete sludge granulation was not achieved, the results measured at the WWTP confirmed the advantages of the AGS concept. Neither anaerobic nor anoxic conditions were identified in the SBR during the individual phases of operation, yet high removal efficiencies of ammonia and nitrate nitrogen and orthophosphate phosphorus were achieved. The concentration of ammonia and nitrate nitrogen at the WWTP effluent was below 5 mg/L, and the concentration of phosphorus was below 0.5 mg/L. Full article
(This article belongs to the Special Issue Municipal Wastewater Treatment and Removal of Micropollutants)
Show Figures

Figure 1

Back to TopTop