Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (189)

Search Parameters:
Keywords = sensory transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2728 KiB  
Article
High-Pass Noise Suppression in the Mosquito Auditory System
by Dmitry N. Lapshin and Dmitry D. Vorontsov
Insects 2025, 16(8), 840; https://doi.org/10.3390/insects16080840 - 14 Aug 2025
Viewed by 180
Abstract
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters [...] Read more.
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters (HPFs) may mitigate this issue by suppressing low-frequency interference before it is transformed into neuronal signals. We investigated HPF mechanisms in Culex pipiens mosquitoes by analyzing the phase–frequency characteristics of the primary sensory neurons in the Johnston’s organ. Electrophysiological recordings from male and female mosquitoes revealed phase shifts consistent with high-pass filtering. Initial modeling suggested a single HPF; however, experimentally obtained phase shifts exceeding –90° required revising the model to include two serially connected HPFs. The results showed that male mosquitoes exhibit stronger low-frequency suppression (~32 dB at 10 Hz) compared to females (~21 dB), with some female neurons showing negligible filtering. The estimated delay in signal transmission was ~7 ms for both sexes. These findings suggest that HPFs enhance noise immunity, particularly in males, whose auditory sensitivity is critical for mating. The diversity in female neuronal tuning may reflect broader auditory functions in addition to mating, such as host detection. This study provides indirect evidence for HPFs in mosquito hearing and highlights sex-specific adaptations in auditory processing. The proposed dual-HPF model improves our understanding of how mosquitoes maintain high auditory sensitivity in noisy environments. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

15 pages, 4338 KiB  
Article
Morphological and Immunohistochemical Study of Ventral Photophores of Ichthyococcus ovatus (Cocco, 1838) (Fam: Stomiidae)
by Mauro Cavallaro, Lidia Pansera, Kamel Mhalhel, Rosaria Laurà, Maria Levanti, Giuseppe Montalbano, Francesco Abbate, Marialuisa Aragona and Maria Cristina Guerrera
J. Mar. Sci. Eng. 2025, 13(8), 1534; https://doi.org/10.3390/jmse13081534 - 10 Aug 2025
Viewed by 208
Abstract
Photophores are light-producing organs found in many fish species living in the mesopelagic, bathypelagic, and abyssal layers of the ocean. They function to attract prey, confuse predators, and communicate with other individuals of the same species. Understanding the structure and function of photophores [...] Read more.
Photophores are light-producing organs found in many fish species living in the mesopelagic, bathypelagic, and abyssal layers of the ocean. They function to attract prey, confuse predators, and communicate with other individuals of the same species. Understanding the structure and function of photophores is crucial to exploring bioluminescence and the ecological adaptations of marine life in deep-sea environments. The present study is the first to investigate the photophore anatomy of the mesopelagic fish Ichthyococcus ovatus (Cocco, 1838), using specimens naturally stranded along the coast of the Strait of Messina. The morphology of the ventral photophores of I. ovatus includes four functional parts: a tank containing photogenic cells, a lens filter, a reflector surrounding the entire organ, and a pigmented layer. An immunohistochemical assay was conducted using anti-nNOS and anti-S100p antibodies. The presence of nNOS/NOS type I immunolabeling the pigmented layer surrounding the photophores and the nerve fibers reaching the lens suggests a potential role of neuronal nitric oxide signaling in modulating light shielding by the pigment sheath, controlling light exposure, and adjusting light focusing though the lens-associated nerves. S100p immunostaining was observed in the nerve fibers reaching the photophores, highlighting its potential involvement in regulating neuronal calcium levels and, consequently, influencing signal transmission to control bioluminescence output. A sensory feedback pathway from the photophore to the CNS is suggested. Within the lens and in the irregularly shaped cells located in the photophore’s lens, S100p immunolabeling could indicate active signaling and differentiation processes. These findings expand our understanding of light-emitting systems in mesopelagic fishes and offer a valuable foundation for future studies on the functional and evolutionary significance of photophores. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 4153 KiB  
Article
Whole-Genome Resequencing Analysis of Athletic Traits in Grassland-Thoroughbred
by Wenqi Ding, Wendian Gong, Tugeqin Bou, Lin Shi, Yanan Lin, Xiaoyuan Shi, Zheng Li, Huize Wu, Manglai Dugarjaviin and Dongyi Bai
Animals 2025, 15(15), 2323; https://doi.org/10.3390/ani15152323 - 7 Aug 2025
Viewed by 221
Abstract
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses [...] Read more.
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses and Xilingol horses for this study. This breed is tentatively named “Grassland-Thoroughbred”, and the samples were divided into two groups based on racing ability: 30 racehorses and 30 non-racehorses. Based on whole-genome sequencing data, the study achieved an average sequencing depth of 25.63×. The analysis revealed strong selection pressure on chromosomes (Chr) 1 and 3. Selection signals were detected using methods such as the nucleotide diversity ratio (π ratio), integrated haplotype score (iHS), fixation index (Fst), and cross-population extended haplotype homozygosity (XP-EHH). Regions ranked in the top 5% by at least three methods were designated as candidate regions. This approach detected 215 candidate genes. Additionally, the Fst method was employed to detect Indels, and the top 1% regions detected were considered candidate regions, covering 661 candidate genes. Functional enrichment analysis of the candidate genes suggests that pathways related to immune regulation, neural signal transmission, muscle contraction, and energy metabolism may significantly influence differences in performance. Among these identified genes, PPARGC1A, FOXO1, SGCD, FOXP2, PRKG1, SLC25A15, CKMT2, and TRAP1 play crucial roles in muscle function, metabolism, sensory perception, and neurobiology, indicating their key significance in shaping racehorse phenotypes. This study not only enhances understanding of the molecular mechanisms underlying racehorse speed but also provides essential theoretical and practical references for the molecular breeding of Grassland-Thoroughbreds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 5596 KiB  
Article
Transforming a Heritage Building into a Living Laboratory: A Case Study of Monitoring
by Carlos Naya, Sara Dorregaray-Oyaregui, Fernando Alonso, Juan Luis Roquette, Jose María Yoldi and César Martín-Gómez
Energies 2025, 18(14), 3622; https://doi.org/10.3390/en18143622 - 9 Jul 2025
Cited by 1 | Viewed by 305
Abstract
This paper investigates integrating a sensory data model for managing an existing 50-year-old building. A primary challenge in retrofitting older structures is the optimal deployment of high-quality sensors, systematic data acquisition, and subsequent data management. To address this, the study implemented a network [...] Read more.
This paper investigates integrating a sensory data model for managing an existing 50-year-old building. A primary challenge in retrofitting older structures is the optimal deployment of high-quality sensors, systematic data acquisition, and subsequent data management. To address this, the study implemented a network of over 50 sensors connected via 270 m of wired infrastructure, deliberately avoiding wireless transmission to ensure data reliability. This configuration generates 5568 data points daily, which are archived on a dedicated server. The data is planned for integration into the Campus Geographical Information System (GIS), enabling private and public access. A methodology was employed, involving the strategic placement of sensors based on building use patterns, continuous data monitoring, and iterative sensor performance evaluation. The findings from the study indicate that integrating sensory data through this structured approach significantly enhances building management capabilities. Specifically, the results demonstrate improved energy efficiency and environmental performance, which is particularly relevant for public and educational facilities. The research highlights that a data-driven, monitoring-based management system can optimize operational functions and inform future retrofitting strategies for aging buildings. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

28 pages, 3298 KiB  
Review
Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods
by Yuanwei Sun, Shengmeng Zhang, Tianzheng Bao, Zilin Jiang, Weiwei Huang, Xiaoqi Xu, Yibin Qiu, Peng Lei, Rui Wang, Hong Xu, Sha Li and Qi Zhang
Foods 2025, 14(13), 2397; https://doi.org/10.3390/foods14132397 - 7 Jul 2025
Viewed by 805
Abstract
Sweet taste plays a pivotal role in human dietary behavior and metabolic regulation. With the increasing incidence of metabolic disorders linked to excessive sugar intake, the development and accurate evaluation of new sweeteners have become critical topics in food science and public health. [...] Read more.
Sweet taste plays a pivotal role in human dietary behavior and metabolic regulation. With the increasing incidence of metabolic disorders linked to excessive sugar intake, the development and accurate evaluation of new sweeteners have become critical topics in food science and public health. However, the structural diversity of sweeteners and their complex interactions with sweet taste receptors present major challenges for standardized sweetness detection. This review offers a comprehensive and up-to-date overview of sweet taste transmission mechanisms and current detection methods. It outlines the classification and sensory characteristics of both conventional and emerging sweeteners, and explains the multi-level signaling pathway from receptor binding to neural encoding. Key detection techniques, including sensory evaluation, electronic tongues, and biosensors, are systematically compared in terms of their working principles, application scope, and limitations. Special emphasis is placed on advanced biosensing technologies utilizing receptor–ligand interactions and nanomaterials for highly sensitive and specific detection. Furthermore, an intelligent detection framework integrating molecular recognition, multi-source data fusion, and artificial intelligence is proposed. This interdisciplinary approach provides new insights and technical solutions to support precise sweetness evaluation and the future development of healthier food systems. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Graphical abstract

21 pages, 13994 KiB  
Article
Fine Structure and Optical Features of the Compound Eyes of Adult Female Ceratosolen gravelyi (Hymenoptera: Agaonidae)
by Hua Xie, Yan Shi, Shouxian Zhang, Yonghui Zhu, Subo Shao, Yuan Zhang, Pei Yang and Zongbo Li
Insects 2025, 16(7), 682; https://doi.org/10.3390/insects16070682 - 30 Jun 2025
Viewed by 761
Abstract
Pollinating fig wasps (Agaonidae) engage in an obligate mutualism with Ficus species, which is mediated by host-specific chemical cues. However, the role of visual perception in host recognition remains poorly understood, particularly because of a lack of structural studies of their compound eyes. [...] Read more.
Pollinating fig wasps (Agaonidae) engage in an obligate mutualism with Ficus species, which is mediated by host-specific chemical cues. However, the role of visual perception in host recognition remains poorly understood, particularly because of a lack of structural studies of their compound eyes. We investigated the ocular morphology of female Ceratosolen gravelyi (exclusive pollinator of F. semicordata) using scanning/transmission electron microscopy. The oval apposition eyes contain 228–263 ommatidia, which are asymmetrically distributed between the left and right eyes. Each ommatidium comprises a biconvex corneal lens overlying a tetrapartite eucone crystalline cone; proximal cone cells reveal an interlaced labyrinth. Pigment cells encapsulate each ommatidium, and numerous pigment granules and mitochondria are present in both pigment and retinular cells. Nine retinular cells comprise a unit, with eight photoreceptors (R1–R8) forming the rhabdom from the cone base to the basal matrix; a ninth cell replaces R8 in the apical third of the rhabdom. Optical metrics, including F-number (1.1°), acceptance angle (10.0°), and ommatidial sensitivity (0.26 µm2/sr), indicate diurnal activity in bright environments. These adaptations suggest that their eyes are critical for processing visual cues during host interactions, which advances our understanding of multimodal sensory integration in fig–wasp mutualism. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

25 pages, 1725 KiB  
Review
Pain Management with Natural Products: Neurophysiological Insights
by Mamoru Takeda and Yukito Sashide
Int. J. Mol. Sci. 2025, 26(13), 6305; https://doi.org/10.3390/ijms26136305 - 30 Jun 2025
Viewed by 384
Abstract
Recently, complementary and alternative medicine have been actively employed for patients experiencing symptoms unresponsive to Western medical treatments like drug therapy. Natural compounds, including polyphenols, carotenoids, and omega fatty acids, have demonstrated various beneficial biological actions for human health in several studies. Given [...] Read more.
Recently, complementary and alternative medicine have been actively employed for patients experiencing symptoms unresponsive to Western medical treatments like drug therapy. Natural compounds, including polyphenols, carotenoids, and omega fatty acids, have demonstrated various beneficial biological actions for human health in several studies. Given their broad pharmacological activities and reduced toxicity, these compounds possess significant potential as resources for the development of natural analgesic drugs. Given recent studies showing that natural compounds can modulate neuronal excitability (including nociceptive sensory transmission through mechanoreceptors and voltage-gated ion channels) and inhibit the cyclooxygenase-2 cascade, these compounds hold promise as complementary and alternative medicine candidates, particularly as therapeutic agents for nociceptive and pathological pain. This review focuses on elucidating the mechanisms by which natural compounds modulate neuronal electrical signals—including generator potentials, action potentials, and postsynaptic potentials—in nociceptive pathway neurons, potentially leading to local and intravenous anesthetic effects, as well as inflammatory pain relief. Specifically, we discuss the contribution of natural compounds to the relief of nociceptive and/or pathological pain and their potential clinical application, drawing on our recent published in vivo studies. Full article
(This article belongs to the Special Issue Role of Natural Products in Health and Diseases)
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Parent–Child Eye Gaze Congruency to Emotional Expressions Mediated by Child Aesthetic Sensitivity
by Antonios I. Christou, Kostas Fanti, Ioannis Mavrommatis and Georgia Soursou
Children 2025, 12(7), 839; https://doi.org/10.3390/children12070839 - 25 Jun 2025
Cited by 1 | Viewed by 423
Abstract
Background/Objectives: Sensory Processing Sensitivity (SPS), particularly its aesthetic subcomponent (Aesthetic Sensitivity; AES), has been linked to individual differences in emotional processing. This study examined whether parental visual attention to emotional facial expressions predicts corresponding attentional patterns in their children, and whether this intergenerational [...] Read more.
Background/Objectives: Sensory Processing Sensitivity (SPS), particularly its aesthetic subcomponent (Aesthetic Sensitivity; AES), has been linked to individual differences in emotional processing. This study examined whether parental visual attention to emotional facial expressions predicts corresponding attentional patterns in their children, and whether this intergenerational concordance is mediated by child AES and moderated by child empathy. Methods: A sample of 124 Greek Cypriot parent–child dyads (children aged 7–12 years) participated in an eye-tracking experiment. Both parents and children viewed static emotional facial expressions (angry, sad, fearful, happy). Parents also completed questionnaires assessing their child’s SPS, empathy (cognitive and affective), and emotional functioning. Regression analyses and moderated mediation models were employed to explore associations between parental and child gaze patterns. Results: Children’s fixation on angry eyes was significantly predicted by parental fixation duration on the same region, as well as by child AES and empathy levels. Moderated mediation analyses revealed that the association between parent and child gaze to angry eyes was significantly mediated by child AES. However, neither cognitive nor affective empathy significantly moderated this mediation effect. Conclusions: Findings suggest that child AES plays a key mediating role in the intergenerational transmission of attentional biases to emotional stimuli. While empathy was independently associated with children’s gaze behavior, it did not moderate the AES-mediated pathway. These results highlight the importance of trait-level child sensitivity in shaping shared emotional attention patterns within families. Full article
(This article belongs to the Section Global Pediatric Health)
Show Figures

Figure 1

20 pages, 1301 KiB  
Review
The Involvement of the Endocannabinoid, Glutamatergic, and GABAergic Systems in PTSD
by Anna Dorota Grzesińska
Int. J. Mol. Sci. 2025, 26(13), 5929; https://doi.org/10.3390/ijms26135929 - 20 Jun 2025
Viewed by 843
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition that develops in response to traumatic events. The endocannabinoid, glutamatergic, and GABAergic systems play crucial roles in the neurobiological mechanisms of PTSD. Both the endocannabinoid, glutamatergic, and GABAergic systems are involved in synaptic [...] Read more.
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition that develops in response to traumatic events. The endocannabinoid, glutamatergic, and GABAergic systems play crucial roles in the neurobiological mechanisms of PTSD. Both the endocannabinoid, glutamatergic, and GABAergic systems are involved in synaptic remodeling and neuronal differentiation, ensuring efficient information transmission in the brain. Their interplay influences motivation, behavior, sensory perception, pain regulation, and visual processing. Additionally, these systems regulate processes such as cellular proliferation, adhesion, apoptosis, and immune responses. This article explores the involvement of the endocannabinoid, glutamatergic, and GABAergic systems in PTSD pathogenesis. A literature review was conducted on studies examining the relationship between the endocannabinoid, glutamatergic, and GABAergic systems in PTSD. Relevant publications were sourced from the Web of Science and Scopus databases, covering research up to 29 February 2025. Neurobiological mechanisms underlying PTSD may share common pathways with other mental and somatic disorders, particularly those involving inflammatory processes. The identification of biomarkers is crucial for assessing PTSD risk and implementing targeted interventions to improve patient outcomes. A deeper understanding of these mechanisms could enhance therapeutic strategies, ultimately improving the quality of life for individuals affected by PTSD. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 3509 KiB  
Article
Binding and Activating of Analgesic Crotalphine with Human TRPA1
by Mingmin Kang, Yanming Zhang, Xiufang Ding, Jianfu Xu and Xiaoyun Pang
Membranes 2025, 15(6), 187; https://doi.org/10.3390/membranes15060187 - 19 Jun 2025
Viewed by 711
Abstract
TRPA1 (Transient Receptor Potential Ankyrin 1), a cation channel predominantly expressed in sensory neurons, plays a critical role in detecting noxious stimuli and mediating pain signal transmission. As a key player in nociceptive signaling pathways, TRPA1 has emerged as a promising therapeutic target [...] Read more.
TRPA1 (Transient Receptor Potential Ankyrin 1), a cation channel predominantly expressed in sensory neurons, plays a critical role in detecting noxious stimuli and mediating pain signal transmission. As a key player in nociceptive signaling pathways, TRPA1 has emerged as a promising therapeutic target for the development of novel analgesics. Crotalphine (CRP), a 14-amino acid peptide, has been demonstrated to specifically activate TRPA1 and elicit potent analgesic effects. Previous cryo-EM (cryo-electron microscopy) studies have elucidated the structural mechanisms of TRPA1 activation by small-molecule agonists, such as iodoacetamide (IA), through covalent modification of N-terminal cysteine residues. However, the molecular interactions between TRPA1 and peptide ligands, including crotalphine, remain unclear. Here, we present the cryo-EM structure of ligand-free human TRPA1 consistent with the literature, as well as TRPA1 complexed with crotalphine, with resolutions of 3.1 Å and 3.8 Å, respectively. Through a combination of single-particle cryo-EM studies, patch-clamp electrophysiology, and microscale thermophoresis (MST), we have identified the cysteine residue at position 621 (Cys621) within the TRPA1 ion channel as the primary binding site for crotalphine. Upon binding to the reactive pocket containing C621, crotalphine induces rotational and translational movements of the transmembrane domain. This allosteric modulation coordinately dilates both the upper and lower gates, facilitating ion permeation. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

12 pages, 357 KiB  
Review
Potential Target Receptors for the Pharmacotherapy of Burning Mouth Syndrome
by Takahiko Nagamine
Pharmaceuticals 2025, 18(6), 894; https://doi.org/10.3390/ph18060894 - 14 Jun 2025
Viewed by 809
Abstract
Objective:Burning mouth syndrome (BMS) is a chronic, intractable orofacial pain condition characterized by a burning sensation in the oral mucosa without discernible lesions. The syndrome predominantly affects menopausal and postmenopausal women and is considered a form of nociplastic pain, where the processing [...] Read more.
Objective:Burning mouth syndrome (BMS) is a chronic, intractable orofacial pain condition characterized by a burning sensation in the oral mucosa without discernible lesions. The syndrome predominantly affects menopausal and postmenopausal women and is considered a form of nociplastic pain, where the processing of pain stimuli is altered. Given the significant sex disparity, it is crucial to consider underlying neurobiological differences that may inform treatment. This review explores potential pharmacological targets by examining the pathological mechanisms of BMS. Method of Research: A narrative review approach was utilized to systematically explore and synthesize literature regarding the pathophysiology of BMS and to identify receptors implicated in the enhancement of sensory transmission and the altered processing of pain stimuli. Results: The mechanism of enhanced sensory transmission points to receptors such as TRPV1, P2X3, and CB2 as potential targets. However, considering the nociplastic nature of BMS and its prevalence in women, mechanisms involving altered central pain processing are paramount. Research indicates significant sex differences in glutamate transmission and plasticity within reward-related brain regions. This suggests that the N-methyl-D-aspartate (NMDA) receptor, a cornerstone of glutamate signaling and synaptic plasticity, is a primary therapeutic target. Furthermore, the altered processing of pain and reward, which is a key feature of chronic pain, implicates the brain’s dopaminergic system. A decrease in dopamine D2 receptor function within this system is believed to contribute to the pathology of BMS. Estrogen receptors are also considered relevant due to the menopausal onset. Conclusions: Based on the evidence, the most promising targets for pharmacotherapy in BMS are likely the NMDA receptor and the dopamine D2 receptor. The high prevalence of BMS in women, coupled with known sex differences in the glutamate and dopamine pathways of the reward system, provides a strong rationale for this focus. Effective treatment strategies should therefore aim to modulate these specific systems, directly or indirectly controlling NMDE receptor hyperactivity and addressing the decreased D2 receptor function. Further research into therapies that specifically target this sex-linked neurobiology is essential for developing effective pharmacotherapy for BMS. Full article
Show Figures

Graphical abstract

14 pages, 586 KiB  
Review
Congenital Rubella Syndrome in the Post-Elimination Era: Why Vigilance Remains Essential
by Livian Cássia De Melo, Marina Macruz Rugna, Talita Almeida Durães, Stefany Silva Pereira, Gustavo Yano Callado, Pedro Pires, Evelyn Traina, Edward Araujo Júnior and Roberta Granese
J. Clin. Med. 2025, 14(11), 3986; https://doi.org/10.3390/jcm14113986 - 5 Jun 2025
Viewed by 1528
Abstract
Congenital Rubella Syndrome (CRS) results from maternal infection with the rubella virus during pregnancy, particularly in the first trimester, when the risk of vertical transmission and severe fetal damage is highest. CRS is characterized by a broad spectrum of congenital anomalies, including sensorineural [...] Read more.
Congenital Rubella Syndrome (CRS) results from maternal infection with the rubella virus during pregnancy, particularly in the first trimester, when the risk of vertical transmission and severe fetal damage is highest. CRS is characterized by a broad spectrum of congenital anomalies, including sensorineural hearing loss, congenital heart defects, cataracts, neurodevelopmental delay, and behavioral disorders. Despite the absence of specific antiviral therapies, active immunization remains the only effective strategy to prevent rubella infection and its congenital consequences. Global immunization efforts, particularly in the Americas, have led to the elimination of rubella and CRS in several countries. However, challenges persist in the post-elimination era, including declining vaccine coverage, vaccine hesitancy, and setbacks caused by the COVID-19 pandemic. Diagnosis relies on maternal serology, fetal imaging, postnatal antibody testing, and molecular techniques. Management requires long-term, multidisciplinary follow-up due to the complex and lifelong sequelae affecting sensory, motor, and cognitive development. This review highlights the clinical, epidemiological, and pathophysiological aspects of CRS, while emphasizing the urgent need to maintain high vaccination coverage and strengthen surveillance systems. Sustained public health commitment is essential to prevent the reemergence of rubella and protect future generations from this preventable syndrome. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

8 pages, 180 KiB  
Article
The Association Between Sensory Impairment and Adherence to COVID-19 Prevention Measures in the Adult California Health Interview Survey Population
by Catherine T. Cascavita, Ahmad Santina, Ken Kitayama, Fei Yu, Victoria L. Tseng and Anne L. Coleman
Vision 2025, 9(2), 40; https://doi.org/10.3390/vision9020040 - 2 May 2025
Viewed by 626
Abstract
This study explores the association between vision/hearing impairment and COVID-19 prevention strategies in the 2020 and 2021 California Health Interview Survey (CHIS). This cross-sectional study used data from the 2020 and 2021 CHIS. The exposure of interest was self-reported history of sensory impairment. [...] Read more.
This study explores the association between vision/hearing impairment and COVID-19 prevention strategies in the 2020 and 2021 California Health Interview Survey (CHIS). This cross-sectional study used data from the 2020 and 2021 CHIS. The exposure of interest was self-reported history of sensory impairment. The outcome of interest was adherence to COVID-19 mitigation strategies defined as obtaining a COVID-19 vaccine, face mask adherence, hand washing, social distancing, and not gathering with non-household members. Logistic regression models examined the association between sensory impairment and adherence to COVID-19 mitigation strategies, controlling for age, sex, race and ethnicity, general health status, and household income. All analyses were weighted according to the CHIS sampling design. With 24,453 California adults representing 29,649,837 people, the weighted prevalence of sensory impairment was 6.1% (1,808,640/29,649,837). The regression revealed that adults with sensory impairment were 80% more likely not to maintain social distancing (odds ratio: 1.80, 95%CI: 1.03–3.13, p = 0.04) compared to those without impairment. No significant differences were found for adherence to other COVID-19 strategies. Individuals with sensory impairment may have increased difficulty with physical distancing due to their underlying impairment. Further studies are needed to explore risk reduction strategies for COVID-19 and the transmission of other infections for those with sensory impairment. Full article
32 pages, 2124 KiB  
Review
Preclinical Animal Models to Investigate the Role of Nav1.7 Ion Channels in Pain
by Alvaro Yogi, Umberto Banderali, Maria J. Moreno and Marzia Martina
Life 2025, 15(4), 640; https://doi.org/10.3390/life15040640 - 12 Apr 2025
Cited by 2 | Viewed by 2280
Abstract
Chronic pain is a maladaptive neurological disease that remains a major global healthcare problem. Voltage-gated sodium channels (Navs) are major drivers of the excitability of sensory neurons, and the Nav subtype 1.7 (Nav1.7) has been shown to be [...] Read more.
Chronic pain is a maladaptive neurological disease that remains a major global healthcare problem. Voltage-gated sodium channels (Navs) are major drivers of the excitability of sensory neurons, and the Nav subtype 1.7 (Nav1.7) has been shown to be critical for the transmission of pain-related signaling. This is highlighted by demonstrations that gain-of-function mutations in the Nav1.7 gene SCN9A result in various pain pathologies, whereas loss-of-function mutations cause complete insensitivity to pain. A substantial body of evidence demonstrates that chronic neuropathy and inflammation result in an upregulation of Nav1.7, suggesting that this channel contributes to pain transmission and sensation. As such, Nav1.7 is an attractive human-validated target for the treatment of pain. Nonetheless, a lack of subtype selectivity, insufficient efficacy, and adverse reactions are some of the issues that have hindered Nav1.7-targeted drug development. This review summarizes the pain behavior profiles mediated by Nav1.7 reported in multiple preclinical models, outlining the current knowledge of the biophysical, physiological, and distribution properties required for a Nav1.7 inhibitor to produce analgesia. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

17 pages, 3443 KiB  
Article
Neem Oil (Azadirachta indica L.) Response Surface Methodology (RSM)-Optimized Nanoemulsions for Sensory Quality Preservation of Oreochromis niloticus Fillets
by Jamal Kazam, Khalid Javed Iqbal, Afshan Shafi, Usman Majeed and Maximilian Lackner
Biology 2025, 14(4), 400; https://doi.org/10.3390/biology14040400 - 10 Apr 2025
Viewed by 851
Abstract
Neem oil nanoemulsions (NO NEs) have gained attention as natural antibacterial agents due to toxicity concerns surrounding synthetic preservatives. This study aimed to prepare a response surface methodology (RSM)-optimized NO NE < 200 nm to achieve a stable dip solution to maintain the [...] Read more.
Neem oil nanoemulsions (NO NEs) have gained attention as natural antibacterial agents due to toxicity concerns surrounding synthetic preservatives. This study aimed to prepare a response surface methodology (RSM)-optimized NO NE < 200 nm to achieve a stable dip solution to maintain the sensory quality of Oreochromis niloticus fillets. The NO NE achieved a stable formulation with a particle size of 160.2 ± 0.04 nm on average. The polydispersity index (PDI) was 0.1 ± 0.05, and the zeta potential was found to be 18.2 ± 0.09 mV. Gas chromatography confirmed the presence of nimbiol, nimbandiol, 6-deacetyl nimbinene, and azadirachtin in NO after ultrasonic homogenization for 10 min (alternating between 30 s rest and 30 s work time). The NE had a spherical shape with a smooth surface, as was evident from transmission electron microscopy (TEM). Furthermore, NO:PM (neem oil–potassium metabisulphite) had an MIC (minimum inhibitory concentration) value of 150 ppm, compared to 210 ppm for the NO NE alone, against Staphylococcus aureus. Time–kill dynamics revealed the more effective control of S. aureus until 72 h with NO:PM. Moreover, DNA and protein leakage also increased from 0.145 ± 0.001 to 0.769 ± 0.002 OD (optical density) and from 0.142 ± 0.002 to 0.740 ± 0.001 OD, respectively, with the co-formulation of NO:PM. Conclusively, NO:PM inhibited S. aureus at a lower dose compared to the NO NE alone. Time–kill dynamics revealed complete inhibition of S. aureus in vitro for a period of 72 h. On the other hand, a proximate analysis of O. niloticus fillets showed no alteration in pH, no protein loss, and juiciness/moisture retention during 30 days of storage (4 °C). Sensory panelists reported that O. niloticus fillets treated with NE NO had improved color, flavor, juiciness, aroma, and overall quality. These results show that NE NO is a suitable green preservative for fish and possibly other meat-based products. Full article
(This article belongs to the Special Issue Microbial Contamination and Food Safety (Volume II))
Show Figures

Figure 1

Back to TopTop