Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (222)

Search Parameters:
Keywords = semantic evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2569 KiB  
Article
Deep Learning and COVID-19: Two Pathways to Scientific Evolution
by Huquan Kang, Hanyan Dong, Yuang Ding, Zhouyang Jin, Luoyi Fu, Jiaxin Ding, Xinbing Wang, Lei Zhou and Chenghu Zhou
Appl. Sci. 2025, 15(16), 8912; https://doi.org/10.3390/app15168912 - 13 Aug 2025
Viewed by 190
Abstract
COVID-19 and deep learning have each marked pivotal milestones in the evolution of modern science. Since the onset of the pandemic, researchers from diverse disciplines have converged to address urgent, real-world challenges, while deep learning has catalyzed methodological innovation across fields. These two [...] Read more.
COVID-19 and deep learning have each marked pivotal milestones in the evolution of modern science. Since the onset of the pandemic, researchers from diverse disciplines have converged to address urgent, real-world challenges, while deep learning has catalyzed methodological innovation across fields. These two phenomena exemplify distinct scientific paradigms: spread-out science, which propagates novel ideas and methods, and merge-in science, which synthesizes existing knowledge to solve complex problems. We introduce the concept of sci-entropy, defined as the difference between the semantic entropy of a paper’s citations and references. Positive sci-entropy reflects the diffusion of new ideas (spread-out), whereas negative values indicate knowledge consolidation (merge-in). Our analysis, spanning deep learning, COVID-19, and 19 additional disciplines, reveals that scientific progress is governed by the dynamic interplay between these two forces. Excessively high sci-entropy may fragment research, while overly low values can stifle innovation. Our findings suggest that the balance between innovation and synthesis is fundamental to the trajectory of scientific development, offering a new framework for understanding interdisciplinary research and knowledge integration. Full article
Show Figures

Figure 1

28 pages, 9378 KiB  
Article
HC-SPA: Hyperbolic Cosine-Based Symplectic Phase Alignment for Fusion Optimization
by Wenlong Zhang, Aiqing Fang, Ying Li and Yan Wei
Sensors 2025, 25(16), 5003; https://doi.org/10.3390/s25165003 - 13 Aug 2025
Viewed by 208
Abstract
In multimodal collaborative learning, the gradient dynamics of heterogeneous modalities face significant challenges due to the curvature heterogeneity of parameter manifolds and mismatches in phase evolution. Traditional Euclidean optimization methods struggle to capture the complex interdependencies between heterogeneous modalities on non-Euclidean or geometrically [...] Read more.
In multimodal collaborative learning, the gradient dynamics of heterogeneous modalities face significant challenges due to the curvature heterogeneity of parameter manifolds and mismatches in phase evolution. Traditional Euclidean optimization methods struggle to capture the complex interdependencies between heterogeneous modalities on non-Euclidean or geometrically inconsistent parameter manifolds. Furthermore, static alignment strategies often fail to suppress bifurcations and oscillatory behaviors in high-dimensional gradient flows, leading to unstable optimization trajectories across modalities. To address these issues, inspired by hyperbolic geometry and symplectic structures, this paper proposes the Hyperbolic Cosine-Based Symplectic Phase Alignment (HC-SPA) fusion optimization framework. The proposed approach leverages the geometric properties of hyperbolic space to coordinate gradient flows between modalities, aligns gradient update directions through a phase synchronization mechanism, and dynamically adjusts the optimization step size to adapt to manifold curvature. Experimental results on public fusion and semantic segmentation datasets demonstrate that HC-SPA significantly improves multimodal fusion performance and optimization stability, providing a new optimization perspective for complex multimodal tasks. Full article
Show Figures

Figure 1

21 pages, 812 KiB  
Review
A Frontier Review of Semantic SLAM Technologies Applied to the Open World
by Le Miao, Wen Liu and Zhongliang Deng
Sensors 2025, 25(16), 4994; https://doi.org/10.3390/s25164994 - 12 Aug 2025
Viewed by 163
Abstract
With the growing demand for autonomous robotic operations in complex and unstructured environments, traditional semantic SLAM systems—which rely on closed-set semantic vocabularies—are increasingly limited in their ability to robustly perceive and understand diverse and dynamic scenes. This paper focuses on the paradigm shift [...] Read more.
With the growing demand for autonomous robotic operations in complex and unstructured environments, traditional semantic SLAM systems—which rely on closed-set semantic vocabularies—are increasingly limited in their ability to robustly perceive and understand diverse and dynamic scenes. This paper focuses on the paradigm shift toward open-world semantic scene understanding in SLAM and provides a comprehensive review of the technological evolution from closed-world assumptions to open-world frameworks. We survey the current state of research in open-world semantic SLAM, highlighting key challenges and frontiers. In particular, we conduct an in-depth analysis of three critical areas: zero-shot open-vocabulary understanding, dynamic semantic expansion, and multimodal semantic fusion. These capabilities are examined for their crucial roles in unknown class identification, incremental semantic updates, and multisensor perceptual integration. Our main contribution is presenting the first systematic algorithmic benchmarking and performance comparison of representative open-world semantic SLAM systems, revealing the potential of these core techniques to enhance semantic understanding in complex environments. Finally, we propose several promising directions for future research, including lightweight model deployment, real-time performance optimization, and collaborative multimodal perception, and offering a systematic reference and methodological guidance for continued advancements in this emerging field. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

28 pages, 4637 KiB  
Article
Identification and Prediction Methods for Frontier Interdisciplinary Fields Integrating Large Language Models
by Yu Wu, Qiao Lin, Jinming Wu, Ru Yao and Xuefu Zhang
Systems 2025, 13(8), 677; https://doi.org/10.3390/systems13080677 - 8 Aug 2025
Viewed by 410
Abstract
Identifying frontier interdisciplinary domains is essential for tracking scientific evolution and informing strategic research planning. This study proposes a comprehensive framework that integrates (1) semantic disciplinary classification using a large language model (GPT-3.5-Turbo), (2) quantitative metrics for interdisciplinarity (degree and integration strength) and [...] Read more.
Identifying frontier interdisciplinary domains is essential for tracking scientific evolution and informing strategic research planning. This study proposes a comprehensive framework that integrates (1) semantic disciplinary classification using a large language model (GPT-3.5-Turbo), (2) quantitative metrics for interdisciplinarity (degree and integration strength) and frontierness (novelty, growth, and impact), and (3) trend prediction using time series models, including Transformer, LSTM, GRU, Random Forest, and Linear Regression. The framework systematically captures both structural and temporal dimensions of emerging research fields. Compared to conventional citation-based or topic modeling approaches, it enhances semantic precision, supports multi-label classification, and enables forward-looking forecasts. Empirical validation shows that the Transformer model achieved the highest predictive performance, outperforming other deep learning and baseline models. As an illustrative example, the framework was applied to synthetic biology, which demonstrated high interdisciplinarity, strong novelty, and growing academic influence. These results underscore the field’s strategic position as a frontier interdisciplinary domain. Beyond this case, the proposed framework is generalizable to other domains and provides a scalable, data-driven solution for dynamic monitoring of emerging interdisciplinary areas. It holds promise for applications in science and technology intelligence, research evaluation, and policy support. Full article
(This article belongs to the Topic Data Science and Intelligent Management)
Show Figures

Figure 1

32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Viewed by 547
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

15 pages, 4422 KiB  
Article
Advanced Deep Learning Methods to Generate and Discriminate Fake Images of Egyptian Monuments
by Daniyah Alaswad and Mohamed A. Zohdy
Appl. Sci. 2025, 15(15), 8670; https://doi.org/10.3390/app15158670 - 5 Aug 2025
Viewed by 298
Abstract
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines [...] Read more.
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines the performance of Generative Adversarial Networks (GAN), especially Style-Based Generator Architecture (StyleGAN), as a deep learning approach for producing realistic images of Egyptian monuments. We used Sigmoid loss for Language–Image Pre-training (SigLIP) as a unique image–text alignment system to guide monument generation through semantic elements. We also studied truncation methods to regulate the generated image noise and identify the most effective parameter settings based on architectural representation versus diverse output creation. An improved discriminator design that combined noise addition with squeeze-and-excitation blocks and a modified MinibatchStdLayer produced 27.5% better Fréchet Inception Distance performance than the original discriminator models. Moreover, differential evolution for latent-space optimization reduced alignment mistakes during specific monument construction tasks by about 15%. We checked a wide range of truncation values from 0.1 to 1.0 and found that somewhere between 0.4 and 0.7 was the best range because it allowed for good accuracy while retaining many different architectural elements. Our findings indicate that specific model optimization strategies produce superior outcomes by creating better-quality and historically correct representations of diverse Egyptian monuments. Thus, the developed technology may be instrumental in generating educational and archaeological visualization assets while adding virtual tourism capabilities. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

21 pages, 9017 KiB  
Review
Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach
by Yizheng Zhang, Jian Zhang, Qian Huang, Yangyi Sun, Jia Shao, Yu Gou, Kaiming Huang and Shaodong Zhang
Appl. Sci. 2025, 15(15), 8663; https://doi.org/10.3390/app15158663 - 5 Aug 2025
Viewed by 293
Abstract
Mars has been a primary focus of planetary science, with significant advancements over the past two decades across disciplines including geological evolution, surface environment, and atmospheric and space science. However, the rapid growth of the related literature has rendered traditional manual review methods [...] Read more.
Mars has been a primary focus of planetary science, with significant advancements over the past two decades across disciplines including geological evolution, surface environment, and atmospheric and space science. However, the rapid growth of the related literature has rendered traditional manual review methods increasingly inadequate. This inadequacy is particularly evident in interdisciplinary research, which is often characterized by dispersed topics and complex semantics. To address this challenge, this study proposes an automated analysis framework based on natural language processing (NLP) to systematically review the Martian research in Earth and space science over the past two decades. The research database contains 151,196 Mars-related sentences extracted from 10,655 publications spanning 2001 to 2024. Using machine learning techniques, the framework clusters Mars-related sentences into semantically coherent groups and applies topic modeling to extract core research themes. It then analyzes their temporal evolution across the Martian solid, surface, atmosphere, and space environments. Finally, through sentiment analysis and semantic matching, it highlights unresolved scientific questions and potential directions for future research. This approach offers a novel perspective on the knowledge structure underlying Mars exploration and demonstrates the potential of NLP for large-scale literature analysis in planetary science. The findings potentially provide a structured foundation for building an interdisciplinary, peer-reviewed Mars knowledge base, which may inform future scientific research and mission planning. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

30 pages, 2928 KiB  
Article
Unsupervised Multimodal Community Detection Algorithm in Complex Network Based on Fractal Iteration
by Hui Deng, Yanchao Huang, Jian Wang, Yanmei Hu and Biao Cai
Fractal Fract. 2025, 9(8), 507; https://doi.org/10.3390/fractalfract9080507 - 2 Aug 2025
Viewed by 312
Abstract
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. [...] Read more.
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. This paper proposes a novel unsupervised multimodal community detection algorithm (UMM) based on fractal iteration. The core idea is to design a dual-channel encoder that comprehensively considers node semantic features and network topological structures. Initially, node representation vectors are derived from structural information (using feature vectors when available, or singular value decomposition to obtain feature vectors for nodes without attributes). Subsequently, a parameter-free graph convolutional encoder (PFGC) is developed based on fractal iteration principles to extract high-order semantic representations from structural encodings without requiring any training process. Furthermore, a semantic–structural dual-channel encoder (DC-SSE) is designed, which integrates semantic encodings—reduced in dimensionality via UMAP—with structural features extracted by PFGC to obtain the final node embeddings. These embeddings are then clustered using the K-means algorithm to achieve community partitioning. Experimental results demonstrate that the UMM outperforms existing methods on multiple real-world network datasets. Full article
Show Figures

Figure 1

17 pages, 1603 KiB  
Perspective
A Perspective on Quality Evaluation for AI-Generated Videos
by Zhichao Zhang, Wei Sun and Guangtao Zhai
Sensors 2025, 25(15), 4668; https://doi.org/10.3390/s25154668 - 28 Jul 2025
Viewed by 543
Abstract
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames [...] Read more.
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames but also by temporal coherence across frames and precise semantic alignment with the intended message. The foundational role of sensor technologies is critical, as they determine the physical plausibility of AIGC outputs. In this perspective, we argue that multimodal large language models (MLLMs) are poised to become the cornerstone of next-generation video quality assessment (VQA). By jointly encoding cues from multiple modalities such as vision, language, sound, and even depth, the MLLM can leverage its powerful language understanding capabilities to assess the quality of scene composition, motion dynamics, and narrative consistency, overcoming the fragmentation of hand-engineered metrics and the poor generalization ability of CNN-based methods. Furthermore, we provide a comprehensive analysis of current methodologies for assessing AIGC video quality, including the evolution of generation models, dataset design, quality dimensions, and evaluation frameworks. We argue that advances in sensor fusion enable MLLMs to combine low-level physical constraints with high-level semantic interpretations, further enhancing the accuracy of visual quality assessment. Full article
(This article belongs to the Special Issue Perspectives in Intelligent Sensors and Sensing Systems)
Show Figures

Figure 1

24 pages, 2538 KiB  
Article
A Spatio-Temporal Evolutionary Embedding Approach for Geographic Knowledge Graph Question Answering
by Chunju Zhang, Chaoqun Chu, Kang Zhou, Shu Wang, Yunqiang Zhu, Jianwei Huang, Zhaofu Wu and Fei Gao
ISPRS Int. J. Geo-Inf. 2025, 14(8), 295; https://doi.org/10.3390/ijgi14080295 - 28 Jul 2025
Viewed by 349
Abstract
In recent years, geographic knowledge graphs (GeoKGs) have shown great promise in representing spatio-temporal and event-driven knowledge. However, existing knowledge graph embedding approaches mainly focus on structural patterns and often overlook the dynamic evolution of entities in both time and space, which limits [...] Read more.
In recent years, geographic knowledge graphs (GeoKGs) have shown great promise in representing spatio-temporal and event-driven knowledge. However, existing knowledge graph embedding approaches mainly focus on structural patterns and often overlook the dynamic evolution of entities in both time and space, which limits their effectiveness in downstream reasoning tasks. To address this, we propose a spatio-temporal evolutionary knowledge embedding approach (ST-EKA) that enhances entity representations by modeling their evolution through type-aware encoding, temporal and spatial decay mechanisms, and context aggregation. ST-EKA integrates four core components, including an entity encoder constrained by relational type consistency, a temporal encoder capable of handling both time points and intervals through unified sampling and feedforward encoding, a multi-scale spatial encoder that combines geometric coordinates with semantic attributes, and an evolutionary knowledge encoder that employs attention-based spatio-temporal weighting to capture contextual dynamics. We evaluate ST-EKA on three representative GeoKG datasets—GDELT, ICEWS, and HAD. The results demonstrate that ST-EKA achieves an average improvement of 6.5774% in AUC and 5.0992% in APR on representation learning tasks. In question answering tasks, it yields a maximum average increase of 1.7907% in AUC and 0.5843% in APR. Notably, it exhibits superior performance in chain queries and complex spatio-temporal reasoning, validating its strong robustness, good interpretability, and practical application value. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

40 pages, 16352 KiB  
Review
Surface Protection Technologies for Earthen Sites in the 21st Century: Hotspots, Evolution, and Future Trends in Digitalization, Intelligence, and Sustainability
by Yingzhi Xiao, Yi Chen, Yuhao Huang and Yu Yan
Coatings 2025, 15(7), 855; https://doi.org/10.3390/coatings15070855 - 20 Jul 2025
Viewed by 797
Abstract
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale [...] Read more.
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale degradation and macro-scale deformation. With the deep integration of digital twin technology, spatial information technologies, intelligent systems, and sustainable concepts, earthen site surface conservation technologies are transitioning from single-point applications to multidimensional integration. However, challenges remain in terms of the insufficient systematization of technology integration and the absence of a comprehensive interdisciplinary theoretical framework. Based on the dual-core databases of Web of Science and Scopus, this study systematically reviews the technological evolution of surface conservation for earthen sites between 2000 and 2025. CiteSpace 6.2 R4 and VOSviewer 1.6 were used for bibliometric visualization analysis, which was innovatively combined with manual close reading of the key literature and GPT-assisted semantic mining (error rate < 5%) to efficiently identify core research themes and infer deeper trends. The results reveal the following: (1) technological evolution follows a three-stage trajectory—from early point-based monitoring technologies, such as remote sensing (RS) and the Global Positioning System (GPS), to spatial modeling technologies, such as light detection and ranging (LiDAR) and geographic information systems (GIS), and, finally, to today’s integrated intelligent monitoring systems based on multi-source fusion; (2) the key surface technology system comprises GIS-based spatial data management, high-precision modeling via LiDAR, 3D reconstruction using oblique photogrammetry, and building information modeling (BIM) for structural protection, while cutting-edge areas focus on digital twin (DT) and the Internet of Things (IoT) for intelligent monitoring, augmented reality (AR) for immersive visualization, and blockchain technologies for digital authentication; (3) future research is expected to integrate big data and cloud computing to enable multidimensional prediction of surface deterioration, while virtual reality (VR) will overcome spatial–temporal limitations and push conservation paradigms toward automation, intelligence, and sustainability. This study, grounded in the technological evolution of surface protection for earthen sites, constructs a triadic framework of “intelligent monitoring–technological integration–collaborative application,” revealing the integration needs between DT and VR for surface technologies. It provides methodological support for addressing current technical bottlenecks and lays the foundation for dynamic surface protection, solution optimization, and interdisciplinary collaboration. Full article
Show Figures

Graphical abstract

21 pages, 12791 KiB  
Article
Investigating the Evolution of Resilient Microservice Architectures: A Compatibility-Driven Version Orchestration Approach
by Mykola Yaroshynskyi, Ivan Puchko, Arsentii Prymushko, Hryhoriy Kravtsov and Volodymyr Artemchuk
Digital 2025, 5(3), 27; https://doi.org/10.3390/digital5030027 - 20 Jul 2025
Viewed by 448
Abstract
An Application Programming Interface (API) is a formally defined interface that enables controlled interaction between software components, and is a key pillar of modern microservice-based architectures. However, asynchronous API changes often lead to breaking compatibility and introduce systemic instability across dependent services. Prior [...] Read more.
An Application Programming Interface (API) is a formally defined interface that enables controlled interaction between software components, and is a key pillar of modern microservice-based architectures. However, asynchronous API changes often lead to breaking compatibility and introduce systemic instability across dependent services. Prior research has explored various strategies to manage such evolution, including contract-based testing, semantic versioning, and continuous deployment safeguards. Nevertheless, a comprehensive orchestration mechanism that formalizes dependency propagation and automates compatibility enforcement remains lacking. In this study, we propose a Compatibility-Driven Version Orchestrator, integrating semantic versioning, contract testing, and CI triggers into a unified framework. We empirically validate the approach on a Kubernetes-based environment, demonstrating the improved resilience of microservice systems to breaking changes. This contribution advances the theoretical modeling of cascading failures in microservices, while providing developers and DevOps teams with a practical toolset to improve service stability in dynamic, distributed environments. Full article
Show Figures

Figure 1

27 pages, 3503 KiB  
Article
Structure-Aware and Format-Enhanced Transformer for Accident Report Modeling
by Wenhua Zeng, Wenhu Tang, Diping Yuan, Hui Zhang, Pinsheng Duan and Shikun Hu
Appl. Sci. 2025, 15(14), 7928; https://doi.org/10.3390/app15147928 - 16 Jul 2025
Viewed by 345
Abstract
Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique challenges for existing language models. To address these domain-specific characteristics, [...] Read more.
Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique challenges for existing language models. To address these domain-specific characteristics, this study proposes SAFE-Transformer, a Structure-Aware and Format-Enhanced Transformer designed for long-document modeling in the emergency safety context. SAFE-Transformer adopts a dual-stream encoding architecture to separately model symbolic section features and heading text, integrates hierarchical depth and format types into positional encodings, and introduces a dynamic gating unit to adaptively fuse headings with paragraph semantics. We evaluate the model on a multi-label accident intelligence classification task using a real-world corpus of 1632 official reports from high-risk industries. Results demonstrate that SAFE-Transformer effectively captures hierarchical semantic structure and outperforms strong long-text baselines. Further analysis reveals an inverted U-shaped performance trend across varying report lengths and highlights the role of attention sparsity and label distribution in long-text modeling. This work offers a practical solution for structurally complex safety documents and provides methodological insights for downstream applications in safety supervision and risk analysis. Full article
(This article belongs to the Special Issue Advances in Smart Construction and Intelligent Buildings)
Show Figures

Figure 1

27 pages, 5958 KiB  
Review
Trends and Trajectories: A Bibliometric Analysis of Financial Risk (2015–2024)
by Jiajia Liu, Yibin Liu, Lijun Ren, Xuerong Li and Shouyang Wang
Int. J. Financial Stud. 2025, 13(3), 132; https://doi.org/10.3390/ijfs13030132 - 15 Jul 2025
Viewed by 553
Abstract
This study conducts a comprehensive bibliometric analysis and predictive modeling of financial risk research from 2015 to 2024, integrating conceptual, knowledge, and collaboration perspectives. Utilizing the PRISMA framework for literature screening, the study identifies publications, research areas, and research institutions. A co-citation network [...] Read more.
This study conducts a comprehensive bibliometric analysis and predictive modeling of financial risk research from 2015 to 2024, integrating conceptual, knowledge, and collaboration perspectives. Utilizing the PRISMA framework for literature screening, the study identifies publications, research areas, and research institutions. A co-citation network approach reveals the intellectual structure and milestone works, while emergent keyword detection highlights cutting-edge topics such as economic policy uncertainty, climate risk, and green innovation. Furthermore, the study proposes a novel semantic forecasting model, SEF-ACLSTM (Semantic Evolution Forecasting with Aligned Clustered LSTM), to predict the evolution of research themes through 2030. The results identify three major thematic clusters: methodological innovation, traditional risk management, and green finance. The predictive analysis indicates a growing emphasis on methodological and sustainability-oriented topics, suggesting a paradigmatic shift in financial risk research. The findings offer theoretical insights and strategic guidance for future academic inquiry and policy formulation. Full article
Show Figures

Figure 1

16 pages, 2721 KiB  
Article
An Adapter and Segmentation Network-Based Approach for Automated Atmospheric Front Detection
by Xinya Ding, Xuan Peng, Yanguang Xue, Liang Zhang, Tianying Wang and Yunpeng Zhang
Appl. Sci. 2025, 15(14), 7855; https://doi.org/10.3390/app15147855 - 14 Jul 2025
Viewed by 187
Abstract
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide [...] Read more.
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide frontal category information without identifying individual frontal systems. Our solution integrates two key innovations: 1. An intelligent adapter module that performs adaptive feature fusion, automatically weighting and combining multi-source meteorological inputs (including temperature, wind fields, and humidity data) to maximize their synergistic effects while minimizing feature conflicts; the utilized network achieves an average improvement of over 4% across various metrics. 2. An enhanced instance segmentation network based on Mask R-CNN architecture that simultaneously achieves (1) precise frontal type classification (cold/warm/stationary/occluded), (2) accurate spatial localization, and (3) identification of distinct frontal systems. Comprehensive evaluation using ERA5 reanalysis data (2009–2018) demonstrates significant improvements, including an 85.1% F1-score, outperforming traditional methods (TFP: 63.1%) and deep learning approaches (Unet: 83.3%), and a 31% reduction in false alarms compared to semantic segmentation methods. The framework’s modular design allows for potential application to other meteorological feature detection tasks. Future work will focus on incorporating temporal dynamics for frontal evolution prediction. Full article
Show Figures

Figure 1

Back to TopTop