Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,897)

Search Parameters:
Keywords = self-rating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5759 KiB  
Article
Poloxamer-Based Biomaterial as a Pharmaceutical Strategy to Improve the Ivermectin Performance
by Belén Alejandra Mezzano, Maria Soledad Bueno, Valeria Cintia Fuertes, Marcela Raquel Longhi and Claudia Garnero
Pharmaceutics 2025, 17(9), 1101; https://doi.org/10.3390/pharmaceutics17091101 (registering DOI) - 23 Aug 2025
Abstract
Background: Poloxamers are promising biomaterials for drug delivery applications due to their ability to enhance biopharmaceutical properties. Methods: This study focused on designing solid dispersions of ivermectin using poloxamer 407 by the fusion method and evaluating how variables of synthesis affect the polymer’s [...] Read more.
Background: Poloxamers are promising biomaterials for drug delivery applications due to their ability to enhance biopharmaceutical properties. Methods: This study focused on designing solid dispersions of ivermectin using poloxamer 407 by the fusion method and evaluating how variables of synthesis affect the polymer’s behavior and the resulting biopharmaceutical properties of ivermectin. Poloxamer 407 was selected based on a solubility test of preformulation studies. Initially, eight formulations were developed using different synthesis conditions, including polymer proportion, cooling gradient, and final process temperature. These were assessed by several characterization studies. Finally, saturation solubility dissolution profiles and in vitro drug release were also evaluated. Results: A combination of techniques confirmed the compatibility between poloxamer 407 and ivermectin in the solid dispersions. The rate of temperature in the cooling process of synthesis showed a significant impact on the polymer self-assembly, affecting their ability to entrap ivermectin. The optimized solid dispersion comprised ivermectin and poloxamer 407 in a 1:1 w/w ratio prepared by rapid cooling. This decrease in the crystallinity index and the nanometric size of particles of the solid dispersions could explain their ability to improve 1600-fold the aqueous solubility, as well as enhance the drug dissolution and in vitro drug release compared to pure ivermectin. Conclusions: Therefore, it follows that these poloxamer-based solid dispersions are promising alternatives to improve the bioavailability of ivermectin. Full article
(This article belongs to the Special Issue Biomaterials: Pharmaceutical Applications)
Show Figures

Figure 1

15 pages, 9186 KiB  
Article
Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior
by Guofeng Zhao and Shifan Zhu
Lubricants 2025, 13(9), 377; https://doi.org/10.3390/lubricants13090377 (registering DOI) - 23 Aug 2025
Abstract
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear [...] Read more.
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear resistance of bearing materials. However, traditional PTFE materials struggle to meet the performance requirements for long-term stable operation in modern marine environments. To improve the wear resistance of PTFE, this study used alumina (Al2O3) particles with three different particle sizes (50 nm, 3 μm, and 80 μm) as fillers and prepared Al2O3/PTFE composites via the cold pressing and sintering process. Tribological performance tests were conducted using a ball-on-disk reciprocating friction and wear tester, with Cr12 steel balls as counterparts, under an artificial seawater lubrication environment, applying a normal load of 10 N for 40 min. The microstructure and wear scar morphology were characterized by scanning electron microscopy (SEM), and mechanical properties were measured using a Shore hardness tester. A systematic study was carried out on the microstructure, mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The results show that the particle size of Al2O3 particles significantly affects the mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The 50 nm Al2O3/PTFE formed a uniformly spread friction film and transfer film during the friction process, which has better friction and wear reduction performance and load bearing capacity. The 80 μm Al2O3 group exhibited poor friction properties despite higher hardness. The nanoscale Al2O3 filler was superior in improving the wear resistance, stabilizing the coefficient of friction, and prolonging the service life of the material, and demonstrated good seawater lubrication bearing suitability. This study provides theoretical support and an experimental basis for the design optimization and engineering application of PTFE-based composites in harsh marine environments. Full article
Show Figures

Figure 1

15 pages, 19921 KiB  
Article
Ultrastructural Insight into Rift Valley Fever Virus Pathogenesis in Different Human Cell Types
by Daniele Lapa, Maria Anele Romeo, Leonardo Duca, Carlotta Castelli, Eliana Specchiarello, Fabrizio Maggi and Laura Falasca
Int. J. Mol. Sci. 2025, 26(17), 8183; https://doi.org/10.3390/ijms26178183 (registering DOI) - 23 Aug 2025
Abstract
Rift Valley Fever Virus (RVFV) is an arbovirus that predominantly affects sheep, goats, and cattle, causing epizootics in livestock and epidemics in humans. Infection in pregnant livestock leads to high abortion rates and neonatal mortality. In humans, RVFV usually causes a self-limiting febrile [...] Read more.
Rift Valley Fever Virus (RVFV) is an arbovirus that predominantly affects sheep, goats, and cattle, causing epizootics in livestock and epidemics in humans. Infection in pregnant livestock leads to high abortion rates and neonatal mortality. In humans, RVFV usually causes a self-limiting febrile illness, but severe forms can develop, such as hepatitis, hemorrhage, encephalitis, and death. In addition, the association between RVFV infection during pregnancy and miscarriages or stillbirths has been documented. RVFV is transmitted by a range of mosquito species, and, due to the diffusion of these insects, the virus has spread in several world regions, making possible the risk of a public health emergency. Nevertheless, research remains limited and cellular pathology is still poorly characterized. This work aimed to fill some knowledge gaps on the comprehension of RVFV pathogenesis. For this purpose, transmission electron microscopy (TEM) was used to analyze cellular modifications associated with RVFV morphogenesis in four human cell lines (HuH-7, LAN-5, A549, and HTR-8/SVneo) derived from liver, brain, lung, and placenta. Our results showed that all four cell lines are permissive to RVFV infection and highlighted differences in the cytopathogenesis associated with the cell type. These findings could have important implications in understanding disease mechanisms and developing antiviral strategies. Full article
(This article belongs to the Special Issue Host-Virus Interaction)
Show Figures

Figure 1

18 pages, 3987 KiB  
Article
Interactive Application with Virtual Reality and Artificial Intelligence for Improving Pronunciation in English Learning
by Gustavo Caiza, Carlos Villafuerte and Adriana Guanuche
Appl. Sci. 2025, 15(17), 9270; https://doi.org/10.3390/app15179270 (registering DOI) - 23 Aug 2025
Abstract
Technological advances have enabled the development of innovative educational tools, particularly those aimed at supporting English as a Second Language (ESL) learning, with a specific focus on oral skills. However, pronunciation remains a significant challenge due to the limited availability of personalized learning [...] Read more.
Technological advances have enabled the development of innovative educational tools, particularly those aimed at supporting English as a Second Language (ESL) learning, with a specific focus on oral skills. However, pronunciation remains a significant challenge due to the limited availability of personalized learning opportunities that offer immediate feedback and contextualized practice. In this context, the present research proposes the design, implementation, and validation of an immersive application that leverages virtual reality (VR) and artificial intelligence (AI) to enhance English pronunciation. The proposed system integrates a 3D interactive environment developed in Unity, voice classification models trained using Teachable Machine, and real-time communication with Firebase, allowing users to practice and assess their pronunciation in a simulated library-like virtual setting. Through its integrated AI module, the application can analyze the pronunciation of each word in real time, detecting correct and incorrect utterances, and then providing immediate feedback to help users identify and correct their mistakes. The virtual environment was designed to be a welcoming and user-friendly, promoting active engagement with the learning process. The application’s distributed architecture enables automated feedback generation via data flow between the cloud-based AI, the database, and the visualization interface. Results demonstrate that using 400 samples per class and a confidence threshold of 99.99% for training the AI model effectively eliminated false positives, significantly increasing system accuracy and providing users with more reliable feedback. This directly contributes to enhanced learner autonomy and improved ESL acquisition outcomes. Furthermore, user surveys conducted to understand their perceptions of the application’s usefulness as a support tool for English learning yielded an average acceptance rate of 93%. This reflects the acceptance of these immersive technologies in educational contexts, as the combination of these technologies offers a realistic and user-friendly simulation environment, in addition to detailed word analysis, facilitating self-assessment and independent learning among students. Full article
Show Figures

Figure 1

19 pages, 1202 KiB  
Article
Assessment of Renewable Energy Potential in Water Supply Systems: A Case Study of Incheon Metropolitan City, Republic of Korea
by Kyoungwon Min, Hyunjung Kim, Gyumin Lee and Doosun Kang
Water 2025, 17(17), 2511; https://doi.org/10.3390/w17172511 - 22 Aug 2025
Abstract
Water supply systems (WSSs) are energy-intensive infrastructure that present significant opportunities for decarbonization through the integration of renewable energy (RE). This study evaluated the RE generation potential within the WSSs of Incheon Metropolitan City (IMC), Republic of Korea, using a site-specific, data-driven approach. [...] Read more.
Water supply systems (WSSs) are energy-intensive infrastructure that present significant opportunities for decarbonization through the integration of renewable energy (RE). This study evaluated the RE generation potential within the WSSs of Incheon Metropolitan City (IMC), Republic of Korea, using a site-specific, data-driven approach. Three RE technologies were considered: solar photovoltaic (PV) systems installed in water-treatment plants (WTPs), micro-hydropower (MHP) utilizing the residual head at the inlet chamber of a WTP, and in-pipe MHP recovery using the discharge from water supply tanks in water distribution networks. Actual facility data, hydraulic simulations, and spatial analyses were used to estimate an annual RE generation potential of 32,811 MWh in the WSSs of IMC, including 18,830 MWh from solar PV in WTPs, 4938 MWh from MHP in WTPs, and 9043 MWh from in-pipe MHP. This corresponds to an energy self-sufficiency rate of approximately 22.3%, relative to the IMC WSS total annual electricity consumption of 147,293 MWh in 2022. The results demonstrated that decentralized RE deployment within existing WSSs can significantly reduce grid dependency and carbon emissions. This study provides a rare empirical benchmark for RE integration in large-scale WSSs and offers practical insights for municipalities seeking energy-resilient and climate-aligned infrastructure transitions. Full article
(This article belongs to the Special Issue Security and Management of Water and Renewable Energy)
11 pages, 1849 KiB  
Article
Miniaturized Multicolor Femtosecond Laser Based on Quartz-Encapsulated Nonlinear Frequency Conversion
by Bosong Yu, Siying Wang, Aimin Wang, Yizhou Liu and Lishuang Feng
Photonics 2025, 12(9), 836; https://doi.org/10.3390/photonics12090836 - 22 Aug 2025
Abstract
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and [...] Read more.
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and 820 nm femtosecond laser pulses. This home-built laser system was realized by employing an erbium-doped 1560 nm fiber laser as the fundamental laser source. A quartz-encapsulated nonlinear frequency conversion stage, consisting of a second-harmonic generation (SHG) stage and self-phase modulation (SPM)-based nonlinear spectral broadening stage, was utilized to deliver 30 mW, 53.7 fs, 740 nm laser pulses and the 15 mW, 60.8 fs, 820 nm laser pulses. Further imaging capabilities of both wavelengths were validated using a custom-built inverted two-photon microscope. Clear imaging results were obtained from mouse kidney sections and pollen samples by collecting the corresponding fluorescence signals. The achieved results demonstrate the great potential of this laser source for advanced two-photon microscopy in metabolic detection. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

29 pages, 1494 KiB  
Article
An Aircraft Skin Defect Detection Method with UAV Based on GB-CPP and INN-YOLO
by Jinhong Xiong, Peigen Li, Yi Sun, Jinwu Xiang and Haiting Xia
Drones 2025, 9(9), 594; https://doi.org/10.3390/drones9090594 - 22 Aug 2025
Abstract
To address the problems of low coverage rate and low detection accuracy in UAV-based aircraft skin defect detection under complex real-world conditions, this paper proposes a method combining a Greedy-based Breadth-First Search Coverage Path Planning (GB-CPP) approach with an improved YOLOv11 architecture (INN-YOLO). [...] Read more.
To address the problems of low coverage rate and low detection accuracy in UAV-based aircraft skin defect detection under complex real-world conditions, this paper proposes a method combining a Greedy-based Breadth-First Search Coverage Path Planning (GB-CPP) approach with an improved YOLOv11 architecture (INN-YOLO). GB-CPP generates collision-free, near-optimal flight paths on the 3D aircraft surface using a discrete grid map. INN-YOLO enhances detection capability by reconstructing the neck with the BiFPN (Bidirectional Feature Pyramid Network) for better feature fusion, integrating the SimAM (Simple Attention Mechanism) with convolution for efficient small-target extraction, as well as employing RepVGG within the C3k2 layer to improve feature learning and speed. The model is deployed on a Jetson Nano for real-time edge inference. Results show that GB-CPP achieves 100% surface coverage with a redundancy rate not exceeding 6.74%. INN-YOLO was experimentally validated on three public datasets (10,937 images) and a self-collected dataset (1559 images), achieving mAP@0.5 scores of 42.30%, 84.10%, 56.40%, and 80.30%, representing improvements of 10.70%, 2.50%, 3.20%, and 6.70% over the baseline models, respectively. The proposed GB-CPP and INN-YOLO framework enables efficient, high-precision, and real-time UAV-based aircraft skin defect detection. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
19 pages, 842 KiB  
Article
Sleep Quality and Patient Activation in Chronic Disease: A Cross-Sectional Mediation Analysis
by Christian J. Wiedermann, Verena Barbieri, Stefano Lombardo, Timon Gärtner, Klaus Eisendle, Giuliano Piccoliori, Adolf Engl and Dietmar Ausserhofer
Clocks & Sleep 2025, 7(3), 44; https://doi.org/10.3390/clockssleep7030044 - 22 Aug 2025
Abstract
Patient activation enhances self-management of chronic illnesses, and sleep quality is vital for health. The link between activation and sleep quality and the mediating role of chronic diseases remain underexplored. This study examined the association between patient activation and sleep quality, variations across [...] Read more.
Patient activation enhances self-management of chronic illnesses, and sleep quality is vital for health. The link between activation and sleep quality and the mediating role of chronic diseases remain underexplored. This study examined the association between patient activation and sleep quality, variations across chronic disease groups, and whether chronic diseases mediate this relationship. A population-based cross-sectional survey in South Tyrol (Italy) included 2090 adults (55.0% response rate). Patient activation was measured using the Patient Activation Measure (PAM-10), and sleep quality was measured using the Brief Pittsburgh Sleep Quality Index (B-PSQI). The presence and number of chronic diseases were self-reported. Bivariate analyses, multiple linear regression, and mediation analyses (PROCESS) were performed. Among the participants, 918 (44%) reported at least one chronic disease. These individuals had poorer sleep (B-PSQI mean: 5.05 ± 3.26 vs. 3.66 ± 2.65; p < 0.001) and lower patient activation (PAM-10: 54.4 ± 12.7 vs. 57.2 ± 12.5; p < 0.001) than those without. A negative correlation between PAM-10 and B-PSQI was observed (r = −0.12, p < 0.001), with stronger associations in patients with hypertension and mental illness. In adjusted regressions, chronic disease, female sex, and older age predicted poorer sleep, whereas higher PAM-10 scores predicted better sleep. Mediation analyses showed that chronic disease partially mediated the relationship between patient activation and sleep quality, accounting for 4.7% to 6.3% of the total effect. Conclusions: Higher patient activation correlates with better sleep quality, although this relationship is partly mediated by the chronic disease burden. Sleep disturbances persist across chronic conditions, despite good self-management. These findings highlight the importance of adopting strategies to manage chronic diseases and sleep disturbances, acknowledging that while patient activation is statistically associated with sleep quality, the strength of this relationship is limited. Full article
(This article belongs to the Section Disorders)
Show Figures

Figure 1

12 pages, 1219 KiB  
Article
Disparities in Suicide Mortality Between Indigenous and Non-Indigenous Populations in Southern Brazil (2010–2019)
by Thiago Fuentes Mestre, Fernando Castilho Pelloso, Deise Helena Pelloso Borghesan, Ana Carolina Jacinto Alarcao, Pedro Beraldo Borba, Vlaudimir Dias Marques, Paulo Acácio Egger, Kátia Biagio Fontes, Fernanda Cristina Coelho Musse, José Anderson Labbado, Elizabeth Amâncio de Souza da Silva Valsecchi, Jorge Luiz Lozinski Musse, Amanda Carina Coelho de Morais, Raissa Bocchi Pedroso, Sandra Marisa Pelloso and Maria Dalva de Barros Carvalho
Int. J. Environ. Res. Public Health 2025, 22(9), 1313; https://doi.org/10.3390/ijerph22091313 - 22 Aug 2025
Abstract
The objective of this study was to evaluate the temporal trend of suicide deaths and the disparities in the occurrence of suicide death between Indigenous and non-Indigenous populations. This ecological study analyzed deaths from intentionally self-inflicted injuries in the southern region of Brazil [...] Read more.
The objective of this study was to evaluate the temporal trend of suicide deaths and the disparities in the occurrence of suicide death between Indigenous and non-Indigenous populations. This ecological study analyzed deaths from intentionally self-inflicted injuries in the southern region of Brazil (states of Paraná, Santa Catarina, and Rio Grande do Sul) from 2010 to 2019. The variables analyzed included annual frequency of events, age, sex, marital status, and education level. Descriptive analysis, association measures, and verification of temporal trends were performed. The average age-standardized suicide mortality rate for both populations was approximately 9.0 per 100,000 inhabitants, with a predominance among males (80%), single individuals (65%), and youth (37%). When only the state of Paraná was considered, the mortality rate during the period was 12.41 among the Indigenous population versus 6.94 per 100,000 inhabitants in the non-Indigenous population. In this state, the probability of suicide death was found to be almost twice as high among Indigenous men and women, with 13 times greater odds of death among Indigenous children and youth. A statistically significant temporal increase in the number of cases was observed only in the non-Indigenous population. An annual seasonal pattern of events among Indigenous individuals was suggested. The findings indicate a high suicide rate among the Indigenous population, particularly in Paraná, especially among young, single individuals, with a growing trend over the years. Full article
Show Figures

Figure 1

19 pages, 2900 KiB  
Article
A Transformer-Based Approach for Joint Interference Cancellation and Signal Detection in FTN-RIS MIMO Systems
by Seong-Gyun Choi, Seung-Hwan Seo, Ji-Hee Yu, Yoon-Ju Choi, Ki-Chang Tong, Min-Hyeok Choi, Yeong-Gyun Jung, Myung-Sun Baek and Hyoung-Kyu Song
Mathematics 2025, 13(17), 2699; https://doi.org/10.3390/math13172699 - 22 Aug 2025
Abstract
Next-generation communication systems demand extreme spectral efficiency to handle ever-increasing data traffic. The combination of faster-than-Nyquist (FTN) signaling and reconfigurable intelligent surfaces (RISs) presents a promising solution to meet this demand. However, the aggressive time compression inherent to FTN signaling introduces severe and [...] Read more.
Next-generation communication systems demand extreme spectral efficiency to handle ever-increasing data traffic. The combination of faster-than-Nyquist (FTN) signaling and reconfigurable intelligent surfaces (RISs) presents a promising solution to meet this demand. However, the aggressive time compression inherent to FTN signaling introduces severe and highly non-linear inter-symbol interference (ISI). This complex distortion is challenging for conventional linear equalizers and even for recurrent neural network (RNN)-based detectors, which can struggle to model long-range dependencies within the signal sequence. To overcome this limitation, this paper proposes a novel signal detection framework based on the transformer model. By leveraging its core multi-head self-attention mechanism, the transformer globally analyzes the entire received signal sequence at once. This enables it to effectively model and reverse complex ISI patterns by identifying the most significant interfering symbols, regardless of their position, leading to superior signal recovery. The simulation results validate the outstanding performance of the proposed approach. To achieve a target bit error rate (BER) of 104, the transformer-based detector shows a significant signal-to-noise ratio (SNR) gain of approximately 1.5 dB over a Bi-LSTM detector over 4 dB compared to the conventional FTN-RIS system, while maintaining a high spectral efficiency of nearly 2 bps/s/Hz. Full article
Show Figures

Figure 1

12 pages, 236 KiB  
Article
Simulated Learning, Real Emotions: The Impact of Simulation-Based Education on Nursing Students’ Stress Levels During Objective Structured Clinical Examination: A Longitudinal Observational Cohort Study
by Kazimiera Hebel, Aleksandra Steliga, Katarzyna Lewandowska, Mikolaj Majkowicz, Aleksandra Goral-Kubasik, Monika Buzanowska, Mateusz Lammek, Andrew Sykes, Mateusz Puslecki and Przemyslaw Kowianski
Nurs. Rep. 2025, 15(8), 307; https://doi.org/10.3390/nursrep15080307 - 21 Aug 2025
Abstract
Background: Simulation-based education (SBE) is a key component of nursing training. It enables students to apply theoretical knowledge in practice, expand their clinical understanding, develop critical thinking, improve communication skills, and build self-confidence. Increasing the number of simulation hours in nursing curricula [...] Read more.
Background: Simulation-based education (SBE) is a key component of nursing training. It enables students to apply theoretical knowledge in practice, expand their clinical understanding, develop critical thinking, improve communication skills, and build self-confidence. Increasing the number of simulation hours in nursing curricula may enhance students’ ability to manage stress in clinical settings. Methods: This was a cross-sectional comparative study involving 113 nursing students during a practical exam. Participants graduated in three consecutive years: 2020, 2021, and 2022. SBE was introduced into the curriculum in 2020, resulting in varying levels of simulation experience. Stress and anxiety markers were measured during the exam and compared across groups. Results: Greater simulation experience was associated with lower heart rate (p = 0.007), lower diastolic blood pressure (p < 0.001), and lower cortisol levels (p < 0.001). Students with two years of simulation training reported the lowest perceived stress (p = 0.031). However, anxiety levels remained high across all groups and did not differ significantly. Conclusions: The study showed that OSCEs are associated with elevated stress in nursing students. Students with greater exposure to simulation-based education had significantly lower stress and anxiety indicators. SBE appears to reduce stress and improve students’ preparedness for clinical assessments. Full article
13 pages, 3255 KiB  
Article
Application of the Composite Electrical Insulation Layer with a Self-Healing Function Similar to Pine Trees in K-Type Coaxial Thermocouples
by Zhenyin Hai, Yue Chen, Zhixuan Su, Hongwei Ji, Yihang Zhang, Shigui Gong, Shanmin Gao, Chenyang Xue, Libo Gao and Zhichun Liu
Sensors 2025, 25(16), 5210; https://doi.org/10.3390/s25165210 - 21 Aug 2025
Abstract
Aerospace engines and hypersonic vehicles, among other high-temperature components, often operate in environments characterized by temperatures exceeding 1000 °C and high-speed airflow impacts, resulting in severe thermal erosion conditions. Coaxial thermocouples (CTs), with their unique self-eroding characteristic, are particularly well suited for use [...] Read more.
Aerospace engines and hypersonic vehicles, among other high-temperature components, often operate in environments characterized by temperatures exceeding 1000 °C and high-speed airflow impacts, resulting in severe thermal erosion conditions. Coaxial thermocouples (CTs), with their unique self-eroding characteristic, are particularly well suited for use in such extreme environments. However, fabricating high-temperature electrical insulation layers for coaxial thermocouples remains challenging. Inspired by the self-healing mechanism of pine trees, we designed a composite electrical insulation layer with a similar self-healing function. This composite layer exhibits excellent high-temperature insulation properties (insulation resistance of 14.5 kΩ at 1200 °C). Applied as the insulation layer in K-type coaxial thermocouples via dip-coating, the thermocouples were tested for temperature and heat flux. Temperature tests showed an accuracy of 1.72% in the range of 200–1200 °C, a drift rate better than 0.474%/h at 1200 °C, and hysteresis better than 0.246%. The temperature response time was 1.08 ms. Heat flux tests demonstrated a measurable range of 0–41.32 MW/m2 with an accuracy better than 6.511% and a heat flux response time of 7.6 ms. In simulated extreme environments, the K-type coaxial thermocouple withstood 70 s of 900 °C flame impact and 50 cycles of high-power laser thermal shock. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

22 pages, 2805 KiB  
Review
Recent Developments in Self-Lubricating Thin-Film Coatings Deposited by a Sputtering Technique: A Critical Review of Their Synthesis, Properties, and Applications
by Sunil Kumar Tiwari, Turali Narayana, Rashi Tyagi, Gaurav Pant and Piyush Chandra Verma
Lubricants 2025, 13(8), 372; https://doi.org/10.3390/lubricants13080372 - 21 Aug 2025
Abstract
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches [...] Read more.
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches to synthesize thin-film coatings, along with post-deposition treatments. The need for self-lubricating materials in extreme situations such as high-temperature applications, cryogenic temperatures, and vacuum systems has attracted the attention of researchers. They have fabricated several types of thin films using CVD and PVD techniques to meet this demand. Among the various techniques used for fabricating self-lubricating coatings, sputtering stands out as a special one. It contributes to developing smooth, homogeneous, and crack-free dense microstructures, which further enhance the coatings’ properties. This review explains the need for self-lubricating materials and the different techniques used to synthesize them. It discusses and summarizes the concept of synthesizing various types of self-lubricating films. It shows the different types of self-lubricating material systems, like transition metal-based nitrides and carbides, diamond-like carbon-based materials, and so on. This work also reflects the governing factors like the deposition temperature, doping elements, thickness of the film, deposition pressure, gas flow rate, etc., that influence the deposition results and, consequently, the properties of the film, as well as their advanced applications in different areas. This work reflects the self-lubricating properties of different kinds of films exposed to various environments in terms of their coefficient of friction and wear rate, emphasizing how the friction coefficient affects the wear rate. Full article
Show Figures

Figure 1

16 pages, 5670 KiB  
Article
Experimental Investigation on Spontaneous Combustion Characteristics of Sulfide Ores with Different Sulfur Content
by Qisong Huang, Bo Xu, Junjun Feng, Yugen Lu, Xiangyu Wang and Qinglang Liu
Minerals 2025, 15(8), 880; https://doi.org/10.3390/min15080880 - 21 Aug 2025
Viewed by 6
Abstract
The spontaneous combustion of sulfide ores (SOSC) is an extremely dangerous mining disaster that directly threatens safety production in mines and causes far-reaching negative impacts on the surrounding ecosystem. In this study, oxidation weight gain experiments, self-heating temperature and ignition temperature tests, and [...] Read more.
The spontaneous combustion of sulfide ores (SOSC) is an extremely dangerous mining disaster that directly threatens safety production in mines and causes far-reaching negative impacts on the surrounding ecosystem. In this study, oxidation weight gain experiments, self-heating temperature and ignition temperature tests, and thermogravimetric analysis (TGA) were conducted to detect the spontaneous combustion characteristics of sulfide ores with different sulfur contents (40.29%, 34.56%, 24.81%, and 14.2%). The results show that the sulfur content significantly affects the spontaneous combustion characteristics of sulfide ores. As the sulfur content decreased, the oxidized weight gain rate decreased overall, and the self-heating temperature (135, 152.5, 162.5, and 176.9 °C) and ignition temperature (425.3, 438.6, 455.4, and >500 °C) increased. The three combustion stages of the SOSC were divided based on the TG and DTG curves: low-temperature oxidation stage, combustion decomposition stage, and slow burnout stage. Furthermore, KAS and FWO methods were used to obtain the apparent activation energy in the combustion decomposition stage. The apparent activation energy decreased significantly with the increase in the sulfur content. The results of all experiments and analyses showed that sulfide ores with high sulfur content have a stronger tendency to undergo spontaneous combustion. The research results have important theoretical and practical implications for the prevention of SOSC. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 3238 KiB  
Article
Development and Characterization of a Novel Erucyl Ultra-Long-Chain Gemini Surfactant
by Guiqiang Fei and Banghua Liu
Polymers 2025, 17(16), 2257; https://doi.org/10.3390/polym17162257 - 21 Aug 2025
Viewed by 26
Abstract
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and [...] Read more.
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and 1,3-bis(dimethylamino)propanediol, with an overall yield of 78.6%. FT-IR and 1H NMR characterization confirmed the presence of C22 ultra-long chains, cis double bonds, amide bonds, and quaternary ammonium headgroups in the product structure. Performance tests showed that EUCGS exhibited an extremely low critical micelle concentration (CMC = 0.018 mmol/L) and excellent ability to reduce surface tension (γCMC = 30.0 mN/m). Rheological property studies indicated that EUCGS solutions gradually exhibited significant non-Newtonian fluid characteristics with increasing concentration, and wormlike micelles with a network structure could self-assemble at a concentration of 1.0 mmol/L. Dynamic rheological tests revealed that the solutions showed typical Maxwell fluid behavior and significant shear-thinning properties, which originated from the orientation and disruption of the wormlike micelle network structure under shear stress. In the presence of 225 mmol/L NaCl, the apparent viscosity of a 20 mmol/L EUCGS solution increased from 86 mPa·s to 256 mPa·s. A temperature resistance evaluation showed that EUCGS solutions had a good temperature resistance at high shear rates and 100 °C. The performance evaluation of fracturing fluids indicates that the proppant settling rate (0.25 cm/min) of the EUCGS-FFS system at 90 °C is significantly superior to that of the conventional system. It features the low dosage and high efficiency of the breaker, with the final core damage rate being only 0.9%. The results demonstrate that the EUCGS achieves a synergistic optimization of high-efficiency interfacial activity, controllable rheological properties, and excellent thermal–salt stability through precise molecular structure design, providing a new material choice for the development of intelligent responsive clean fracturing fluids. Full article
Show Figures

Graphical abstract

Back to TopTop