Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,470)

Search Parameters:
Keywords = self-Renewal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2616 KB  
Article
Improving the Ecological Status of Surface Waters Through Filtration on Hemp (Cannabis sativa L.) Waste as an Option for Sustainable Surface Water Management
by Barbara Wojtasik
Sustainability 2026, 18(3), 1203; https://doi.org/10.3390/su18031203 - 24 Jan 2026
Viewed by 77
Abstract
The progressive degradation of surface waters should become one of the most important problems requiring an urgent solution. One of the methods developed is filtering water through loose, degraded sediments, blooms of cyanobacteria or algae, or a bed of hemp (Cannabis sativa [...] Read more.
The progressive degradation of surface waters should become one of the most important problems requiring an urgent solution. One of the methods developed is filtering water through loose, degraded sediments, blooms of cyanobacteria or algae, or a bed of hemp (Cannabis sativa L.) waste or hemp fibers. The conducted tests on the percolation of water samples and/or water with sediment from surface waters at sites with different ecological statuses indicate the possibility of using hemp waste for the reclamation of water reservoirs and rivers. The effect of filtration is a rapid improvement in water quality and, consequently, an improvement in the ecological status. The best result was achieved for a small freshwater reservoir with a large number of algae and loose degraded sediment. The initial turbidity value was at the limit of the device’s measurement capability, reaching 9991 NTU. After filtration through the hemp waste bed, the turbidity dropped to 42.52 NTU, a 99.57% decrease. The remaining parameters, C, TDS, and pH, were not subject to significant variability as a result of filtering. Excessive amounts of organic matter, which create a problem for surface waters, are removed. Due to the carrier (hemp waste), which is organic waste, any possible release of small amounts into the aquatic environment will not pose a threat. After applying filtration, a decision can be made on further actions regarding the water reservoir or river: Self-renewal of the reservoir or further percolation using, for example, mill gauze or cleaning the reservoir with other, non-invasive methods. After the filtering procedure, the hemp waste, enriched with organic matter and water remaining in the waste, can be used for composting or directly for soil mulching (preliminary tests have yielded positive results). A hemp waste filter effectively removes Chronomus aprilinus larvae (Chrinomidae) from water. This result indicates the possibility of removing mosquito larvae in malaria-affected areas. The use of hemp filters would reduce the amount of toxic chemicals used to reduce mosquito larvae. Improving the ecological status of surface waters by filtering contaminants with hemp waste filters can reduce the need for chemical treatment. The use of natural, biological filters enables sustainable surface water management. This is crucial in today’s rapidly increasing chemical pollution of surface waters. Full article
Show Figures

Figure 1

20 pages, 730 KB  
Article
Improving the Energy Performance of Residential Buildings Through Solar Renewable Energy Systems and Smart Building Technologies: The Cyprus Example
by Oğulcan Vuruşan and Hassina Nafa
Sustainability 2026, 18(3), 1195; https://doi.org/10.3390/su18031195 - 24 Jan 2026
Viewed by 92
Abstract
Residential buildings in Mediterranean regions remain major contributors to energy consumption and greenhouse gas emissions. Existing studies often assess renewable energy technologies or innovative building solutions in isolation, with limited attention to their combined performance across different residential typologies. This study evaluates the [...] Read more.
Residential buildings in Mediterranean regions remain major contributors to energy consumption and greenhouse gas emissions. Existing studies often assess renewable energy technologies or innovative building solutions in isolation, with limited attention to their combined performance across different residential typologies. This study evaluates the integrated impact of solar renewable energy systems and smart building technologies on the energy performance of residential buildings in Cyprus. A typology-based methodology is applied to three representative residential building types—detached, semi-detached, and apartment buildings—using dynamic energy simulation and scenario analysis. Results show that solar photovoltaic systems achieve higher standalone reductions than solar thermal systems, while smart building technologies significantly enhance operational efficiency and photovoltaic self-consumption. Integrated solar–smart scenarios achieve up to 58% reductions in primary energy demand and 55% reductions in CO2 emissions, and 25–30 percentage-point increases in PV self-consumption, enabling detached and semi-detached houses to approach national nearly zero-energy building (nZEB) performance thresholds. The study provides climate-specific, quantitative evidence supporting integrated solar–smart strategies for Mediterranean residential buildings and offers actionable insights for policy-making, design, and sustainable residential development. Full article
Show Figures

Figure 1

22 pages, 4631 KB  
Article
Smart Cities in the Roadmap Towards Decarbonization: An Example of a Solar Energy Community at Low CO2 Emissions
by Marco Gambini, Greta Magnolia, Ginevra Romagnoli and Michela Vellini
Energies 2026, 19(3), 594; https://doi.org/10.3390/en19030594 (registering DOI) - 23 Jan 2026
Viewed by 84
Abstract
This paper presents a comprehensive analysis of different energy system configurations for Energy Communities (ECs) supplied by multiple renewable-based technologies, with a specific focus on solar solutions in the Mediterranean region. The authors have studied and then proposed the optimal aggregation of different [...] Read more.
This paper presents a comprehensive analysis of different energy system configurations for Energy Communities (ECs) supplied by multiple renewable-based technologies, with a specific focus on solar solutions in the Mediterranean region. The authors have studied and then proposed the optimal aggregation of different end-user loads within possible energy system configurations (identifying the most adequate combination of prosumers, i.e., households, municipality offices, commercial activity, and others) in order to narrow the gap between peak/off-peak demand and renewable energy availability by also integrating energy storage technologies, and in order to pursue a sustainable energy transition in urban contexts proposing smart cities at low CO2 emissions. The study demonstrates that increasing the complexity of the generation mix involves a tangible influence on self-sufficiency and self-consumption, as well as on the mitigation of CO2 emissions. In fact, a more complex system configuration, including heat pumps and energy storage, allows for up to five months of 100% self-sufficiency and almost 100% self-consumption for the entire year. In terms of greenhouse gas emissions, relevant CO2 reduction potential is possible, with up to 50% of CO2 emission reduction, when heat pumps, solar cooling, and energy storage are installed. Full article
Show Figures

Figure 1

32 pages, 34411 KB  
Article
A Single-Cell Transcriptomic Atlas of Epithelial Cell Heterogeneity During the Crown-to-Root Transition in the Mouse Molar
by Fei Bi, Tian Chen, Jiusi Guo, Wei Qiao, Zhi Liu and Xianglong Han
Int. J. Mol. Sci. 2026, 27(3), 1162; https://doi.org/10.3390/ijms27031162 - 23 Jan 2026
Viewed by 99
Abstract
The mechanisms driving the crown-to-root transition in tooth development remain incompletely understood, particularly the functional heterogeneity of dental epithelium. To address this gap and deconstruct this complexity, we aimed to analyze dental epithelial heterogeneity during this critical transition and to identify subpopulation-specific programs [...] Read more.
The mechanisms driving the crown-to-root transition in tooth development remain incompletely understood, particularly the functional heterogeneity of dental epithelium. To address this gap and deconstruct this complexity, we aimed to analyze dental epithelial heterogeneity during this critical transition and to identify subpopulation-specific programs relevant to root development. We therefore established a single-cell transcriptomic atlas of the mouse molar at postnatal days 3.5 and 7.5, integrating 30,951 cells to profile the pan-tissue landscape and performing an in-depth analysis of 4323 dental epithelial cells. Our results reveal that the dental epithelium is composed of seven distinct subpopulations with a clear lineage hierarchy, originating from multipotent progenitors and bifurcating into self-renewing and differentiating trajectories. The identified particular functions of each subcluster include the following: structural maintaining progenitor that inhibits mineralization (Cluster 4), proliferation driver (Cluster 0), key signaling center (Cluster 1), terminally differentiated executing enamel formation (Cluster 3 and Cluster 6), and extracellular matrix-organizing hub (Cluster 5), communicating extensively via the Bmp, Tgf-β, and Wnt pathways. Our work defines dental epithelium as a dynamic and heterogeneous orchestrator of root morphogenesis, providing a foundational framework for understanding developmental biology and pioneering future regenerative strategies based on precise epithelial cell functions. Full article
(This article belongs to the Special Issue Genome Structure, Function and Dynamic Regulation of Cell Fate)
Show Figures

Figure 1

20 pages, 6868 KB  
Article
Human Liver Organoids as an Experimental Tool to Investigate Lipocalin-2 in Hepatic Inflammation
by Katharina S. Hardt, Robert F. Pohlberger, Diandra T. Keller, Eva M. Buhl, Florian W. R. Vondran, Anjali A. Roeth, Ralf Weiskirchen and Sarah K. Schröder-Lange
Cells 2026, 15(3), 216; https://doi.org/10.3390/cells15030216 - 23 Jan 2026
Viewed by 180
Abstract
The 25 kDa glycoprotein lipocalin-2 (LCN2) is widely expressed and has diverse functions, ranging from physiological to pathophysiological processes. In the liver, LCN2 is primarily associated with inflammatory processes and is considered a potential biomarker in metabolic disorders. However, a significant challenge is [...] Read more.
The 25 kDa glycoprotein lipocalin-2 (LCN2) is widely expressed and has diverse functions, ranging from physiological to pathophysiological processes. In the liver, LCN2 is primarily associated with inflammatory processes and is considered a potential biomarker in metabolic disorders. However, a significant challenge is the absence of a suitable human in vitro model for studying LCN2 and its associated signaling pathways. Therefore, we have successfully generated patient-derived liver organoids of both male and female origin, providing a novel in vitro model for LCN2 research. Our data show that the self-renewing organoids mimic essential architectural features of hepatocytes, as demonstrated by electron microscopy and F-actin staining. Consistent with the expression profile observed in liver tissue, the isolated 3D organoids exhibit minimal endogenous LCN2 levels. Next, the LCN2 expression was studied at the protein and mRNA levels under inflammatory conditions by treating the organoids with various cytokines and lipopolysaccharides (LPS). Our results show that LCN2 expression is significantly upregulated by IL-1β and TNF-α in an NF-κB-dependent manner, but remains unchanged with IL-6 or LPS. In conclusion, we have established human patient-derived liver organoids as a valuable model for investigating LCN2 signaling mechanisms. This study lays the foundation for future research on the role of LCN2 in liver pathologies, aiding in disease progression understanding and facilitating patient-specific treatment predictions. Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
Show Figures

Figure 1

39 pages, 2155 KB  
Article
Developing Energy Citizenship—Empowerment Through Engagement and (Co-)Ownership, Individually and in Energy Communities
by Jens Lowitzsch, Michiel Heldeweg, Julia Epp and Monika Bucha
Soc. Sci. 2026, 15(1), 56; https://doi.org/10.3390/socsci15010056 - 22 Jan 2026
Viewed by 39
Abstract
Opportunities for citizens to become prosumers have grown rapidly with renewable energy (RE) technologies reaching grid parity. The European Union’s ability to harness this potential depends on empowering energy citizens, fostering active engagement, and overcoming resistance to RE deployment. European energy law introduced [...] Read more.
Opportunities for citizens to become prosumers have grown rapidly with renewable energy (RE) technologies reaching grid parity. The European Union’s ability to harness this potential depends on empowering energy citizens, fostering active engagement, and overcoming resistance to RE deployment. European energy law introduced “renewable self-consumers” and “active customers” with rights to consume, sell, store, and share RE, alongside rights for citizens collectively organised in energy communities. This article explores conditions for inclusive citizen engagement and empowerment within the RE system. Building on an ownership- and governance-oriented approach, we further develop the concept of energy citizenship, focusing on three elements: conditions for successful engagement, individual versus collective (financial) participation, and the role of public (co-)ownership in fostering inclusion. The analysis is supported by 82 semi-structured interviews, corroborating our theoretical lens. Findings show that participation, especially of vulnerable consumers, relies on an intact “engagement chain,” while energy communities remain an underused instrument for inclusion. Institutional environments enabling municipalities and public entities to act as pace-making (co-)owners are identified as key. Complementing the market and the State, civil society holds important potential to enhance engagement. Inspired by the 2017 European Pillar of Social Rights, we propose a corresponding “European Pillar of Energy Rights.” Full article
(This article belongs to the Special Issue From Vision to Action: Citizen Commitment to the European Green Deal)
Show Figures

Figure 1

27 pages, 3674 KB  
Article
Optimizing the Trade-Off Among Comfort, Electricity Use, and Economic Benefits in Smart Buildings Within Renewable Electricity Communities
by Federico Mattana, Roberto Ricciu, Gianmarco Sitzia and Emilio Ghiani
Energies 2026, 19(2), 547; https://doi.org/10.3390/en19020547 - 21 Jan 2026
Viewed by 65
Abstract
The integration of smart electricity management models in buildings is a key strategy for improving living comfort and optimizing energy efficiency. The incentive mechanisms introduced by the Italian regulatory framework for widespread self-consumption and energy communities encourage the deployment of smart management systems [...] Read more.
The integration of smart electricity management models in buildings is a key strategy for improving living comfort and optimizing energy efficiency. The incentive mechanisms introduced by the Italian regulatory framework for widespread self-consumption and energy communities encourage the deployment of smart management systems within Collective Self-Consumption Groups (CSGs) and Renewable Energy Communities (RECs). These mechanisms drive the search for solutions that combine occupant well-being with economic benefits, thereby fostering citizen participation in aggregation models that play a key role in the transition towards a progressively decarbonized electricity system. In this context, an optimization model for the management of residential heat pumps is proposed, aimed at identifying the best compromise between thermal comfort, electricity consumption, and economic benefits. The approach developed in the research encourages citizens to take an active role without the need for burdensome commitments and/or significant changes in their daily habits, in line with the importance that users themselves attribute to these aspects. To demonstrate the potential of the proposed approach, a case study was developed on a residential building located in Sardinia (Italy). The implementation of an optimization model aimed at simultaneously maximizing economic benefits and indoor thermal comfort is simulated. The model’s economic and energy performance is assessed and compared with the results obtained using different advanced heat pump control and management strategies. Full article
Show Figures

Figure 1

50 pages, 5994 KB  
Perspective
Smart Grids and Renewable Energy Communities in Pakistan and the Middle East: Present Situation, Perspectives, Future Developments, and Comparison with EU
by Ateeq Ur Rehman, Dario Atzori, Sandra Corasaniti and Paolo Coppa
Energies 2026, 19(2), 535; https://doi.org/10.3390/en19020535 - 21 Jan 2026
Viewed by 110
Abstract
The shift towards the integration of and transition to renewable energy has led to an increase in renewable energy communities (RECs) and smart grids (SGs). The significance of these RECs is mainly energy self-sufficiency, energy independence, and energy autonomy. Despite this, in low- [...] Read more.
The shift towards the integration of and transition to renewable energy has led to an increase in renewable energy communities (RECs) and smart grids (SGs). The significance of these RECs is mainly energy self-sufficiency, energy independence, and energy autonomy. Despite this, in low- and middle-income countries and regions like Pakistan and the Middle East, SGs and RECs are still in their initial stage. However, they have potential for green energy solutions rooted in their unique geographic and climatic conditions. SGs offer energy monitoring, communication infrastructure, and automation features to help these communities build flexible and efficient energy systems. This work provides an overview of Pakistani and Middle Eastern energy policies, goals, and initiatives while aligning with European comparisons. This work also highlights technical, regulatory, and economic challenges in those regions. The main objectives of the research are to ensure that residential service sizes are optimized to maximize the economic and environmental benefits of green energy. Furthermore, in line with SDG 7, affordable and clean energy, the focus in this study is on the development and transformation of energy systems for sustainability and creating synergies with other SDGs. The paper presents insights on the European Directive, including the amended Renewable Energy Directive (RED II and III), to recommend policy enhancements and regulatory changes that could strengthen the growth of RECs in Asian countries, Pakistan, and the Middle East, paving the way for a more inclusive and sustainable energy future. Additionally, it addresses the main causes that hinder the expansion of RECs and SGs, and offers strategic recommendations to support their development in order to reduce dependency on national electric grids. To perform this, a perspective study of Pakistan’s indicative generation capacity by 2031, along with comparisons of energy capacity in the EU, the Middle East, and Asia, is presented. Pakistan’s solar, wind, and hydro potential is also explored in detail. This study is a baseline and informative resource for policy makers, researchers, industry stakeholders, and energy communities’ promoters, who are committed to the task of promoting sustainable renewable energy solutions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

48 pages, 2220 KB  
Review
Targeting Cancer Stem Cells with Phytochemicals: Molecular Mechanisms and Therapeutic Potential
by Ashok Kumar Sah, Joy Das, Abdulkhakov Ikhtiyor Umarovich, Shagun Agarwal, Pranav Kumar Prabhakar, Ankur Vashishtha, Rabab H. Elshaikh, Ranjay Kumar Choudhary and Ayman Hussein Alfeel
Biomedicines 2026, 14(1), 215; https://doi.org/10.3390/biomedicines14010215 - 19 Jan 2026
Viewed by 191
Abstract
Cancer stem cells (CSCs) represent a small but highly resilient tumor subpopulation responsible for sustained growth, metastasis, therapeutic resistance, and recurrence. Their survival is supported by aberrant activation of developmental and inflammatory pathways, including Wnt/β-catenin, Notch, Hedgehog, PI3K/Akt/mTOR, STAT3, and NF-κB, as well [...] Read more.
Cancer stem cells (CSCs) represent a small but highly resilient tumor subpopulation responsible for sustained growth, metastasis, therapeutic resistance, and recurrence. Their survival is supported by aberrant activation of developmental and inflammatory pathways, including Wnt/β-catenin, Notch, Hedgehog, PI3K/Akt/mTOR, STAT3, and NF-κB, as well as epithelial–mesenchymal transition (EMT) programs and niche-driven cues. Increasing evidence shows that phytochemicals, naturally occurring bioactive compounds from medicinal plants, can disrupt these networks through multi-targeted mechanisms. This review synthesizes current findings on prominent phytochemicals such as curcumin, sulforaphane, resveratrol, EGCG, genistein, quercetin, parthenolide, berberine, and withaferin A. Collectively, these compounds suppress CSC self-renewal, reduce sphere-forming capacity, diminish ALDH+ and CD44+/CD24 fractions, reverse EMT features, and interfere with key transcriptional regulators that maintain stemness. Many phytochemicals also sensitize CSCs to chemotherapeutic agents by downregulating drug-efflux transporters (e.g., ABCB1, ABCG2) and lowering survival thresholds, resulting in enhanced apoptosis and reduced tumor-initiating potential. This review further highlights the translational challenges associated with poor solubility, rapid metabolism, and limited bioavailability of free phytochemicals. Emerging nanotechnology-based delivery systems, including polymeric nanoparticles, lipid carriers, hybrid nanocapsules, and ligand-targeted formulations, show promise in improving stability, tumor accumulation, and CSC-specific targeting. These nanoformulations consistently enhance intracellular uptake and amplify anti-CSC effects in preclinical models. Overall, the consolidated evidence supports phytochemicals as potent modulators of CSC biology and underscores the need for optimized delivery strategies and evidence-based combination regimens to achieve meaningful clinical benefit. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

16 pages, 4339 KB  
Article
Reinforcement Learning Technique for Self-Healing FBG Sensor Systems in Optical Wireless Communication Networks
by Rénauld A. Dellimore, Jyun-Wei Li, Hung-Wei Huang, Amare Mulatie Dehnaw, Cheng-Kai Yao, Pei-Chung Liu and Peng-Chun Peng
Appl. Sci. 2026, 16(2), 1012; https://doi.org/10.3390/app16021012 - 19 Jan 2026
Viewed by 159
Abstract
This paper proposes a large-scale, self-healing multipoint fiber Bragg grating (FBG) sensor network that employs reinforcement learning (RL) techniques to enhance the resilience and efficiency of optical wireless communication networks. The system features a mesh-structured, self-healing ring-mesh architecture employing 2 × 2 optical [...] Read more.
This paper proposes a large-scale, self-healing multipoint fiber Bragg grating (FBG) sensor network that employs reinforcement learning (RL) techniques to enhance the resilience and efficiency of optical wireless communication networks. The system features a mesh-structured, self-healing ring-mesh architecture employing 2 × 2 optical switches, enabling robust multipoint sensing and fault tolerance in the event of one or more link failures. To further extend network coverage and support distributed deployment scenarios, free-space optical (FSO) links are integrated as wireless optical backhaul between central offices and remote monitoring sites, including structural health, renewable energy, and transportation systems. These FSO links offer high-speed, line-of-sight connections that complement physical fiber infrastructure, particularly in locations where cable deployment is impractical. Additionally, RL-based artificial intelligence (AI) techniques are employed to enable intelligent path selection, optimize routing, and enhance network reliability. Experimental results confirm that the RL-based approach effectively identifies optimal sensing paths among multiple routing options, both wired and wireless, resulting in reduced energy consumption, extended sensor network lifespan, and improved transmission delay. The proposed hybrid FSO–fiber self-healing sensor system demonstrates high survivability, scalability, and low routing path loss, making it a strong candidate for future services and mission-critical applications. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

26 pages, 3226 KB  
Review
The Regulatory Role of m6A Modification in the Function and Signaling Pathways of Animal Stem Cells
by Xiaoguang Yang, Yongjie Xu, Suaipeng Zhu, Mengru Wang, Hongguo Cao and Lizhi Lu
Cells 2026, 15(2), 181; https://doi.org/10.3390/cells15020181 - 19 Jan 2026
Viewed by 339
Abstract
As a type of cell with self-renewal ability and multi-directional differentiation potential, stem cells are closely related to their functions, such as reprogramming transcription factors, histone modifications, and energy metabolism. m6A (N6-methyladenosine modification) is one of the most abundant [...] Read more.
As a type of cell with self-renewal ability and multi-directional differentiation potential, stem cells are closely related to their functions, such as reprogramming transcription factors, histone modifications, and energy metabolism. m6A (N6-methyladenosine modification) is one of the most abundant modifications in RNA, and dynamic reversible m6A modification plays an important role in regulating stem cell function. This review moves beyond listing isolated functions and instead adopts an integrated perspective, viewing m6A as a temporal regulator of cellular state transitions. We discuss how m6A dynamically regulates stem cell pluripotency, coordinates epigenetic and metabolic reprogramming, and serves as a central hub integrating key signaling pathways (Wnt, PI3K-AKT, JAK-STAT, and Hippo). Finally, using somatic reprogramming as an example, we elucidate the stage-specific role of m6A in complex fate transitions. This comprehensive exposition not only clarifies the context-dependent logic of m6A regulation but also provides a precise framework for targeting the m6A axis in regenerative medicine and cancer therapy. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

17 pages, 1703 KB  
Article
Performance Optimization of Series-Connected Supercapacitor Microbial Fuel Cells Fed with Molasses-Seawater Anolytes
by Jung-Chieh Su, Kai-Chung Huang, Chia-Kai Lin, Ai Tsao, Jhih-Ming Lin and Jung-Jeng Su
Electronics 2026, 15(2), 424; https://doi.org/10.3390/electronics15020424 - 18 Jan 2026
Viewed by 175
Abstract
Microbial fuel cells (MFCs) utilizing livestock wastewater represent a critical path toward sustainable energy and net-zero emissions. To maximize this potential, this study investigates a novel circuit configuration, integrating twin MFCs with dual supercapacitors in a closed-loop system, to enhance charge storage and [...] Read more.
Microbial fuel cells (MFCs) utilizing livestock wastewater represent a critical path toward sustainable energy and net-zero emissions. To maximize this potential, this study investigates a novel circuit configuration, integrating twin MFCs with dual supercapacitors in a closed-loop system, to enhance charge storage and electricity generation. By utilizing molasses-seawater anolytes, the study establishes a performance benchmark for optimizing energy recovery in future livestock wastewater treatment applications. The self-adjusting potential difference between interconnected MFCs is verified, and supercapacitors significantly improve energy harvesting by reducing load impedance and balancing capacitor plate charges. Voltage gain across supercapacitors exceeds that of single MFC charging, demonstrating the benefits of series integration. Experimental results reveal that catholyte properties—electrical conductivity, salinity, pH, and dissolved oxygen—strongly influence MFC performance. Optimal conditions for a neutralized anolyte (pH 7.12) include dissolved oxygen levels of 5.37–5.68 mg/L and conductivity of 24.3 mS/cm. Under these conditions, supercapacitors charged with sterile diluted seawater catholyte store up to 40% more energy than individual MFCs, attributed to increased output current. While the charge balance mechanism of supercapacitors contributes to storage efficiency, its impact is less pronounced than that of conductivity and oxygen solubility. The interplay between electrochemical activation and charge balancing enhances overall electricity harvesting. These findings provide valuable insights into optimizing MFC-supercapacitor systems for renewable energy applications, particularly in livestock wastewater treatment. Full article
Show Figures

Figure 1

23 pages, 1622 KB  
Article
Sectoral Dynamics of Sustainable Energy Transition in EU27 Countries (1990–2023): A Multi-Method Approach
by Hasan Tutar, Dalia Štreimikienė and Grigorios L. Kyriakopoulos
Energies 2026, 19(2), 457; https://doi.org/10.3390/en19020457 - 16 Jan 2026
Viewed by 214
Abstract
This study critically examines the sectoral dynamics of renewable energy (RE) adoption across the EU-27 from 1990 to 2023, addressing the persistent gap between electricity generation and end-use sectors. Utilizing Eurostat energy balance data, the research employs a robust multi-methodological framework. We apply [...] Read more.
This study critically examines the sectoral dynamics of renewable energy (RE) adoption across the EU-27 from 1990 to 2023, addressing the persistent gap between electricity generation and end-use sectors. Utilizing Eurostat energy balance data, the research employs a robust multi-methodological framework. We apply the Logarithmic Mean Divisia Index (LMDI) decomposition to isolate driving factors, and the Self-Organizing Maps (SOM) of Kohonen to cluster countries with similar transition structures. Furthermore, the Method of Moments Quantile Regression (MMQR) is used to estimate heterogeneous drivers across the distribution of RE shares. The empirical findings reveal a sharp dichotomy: while the share of renewables in the electricity generation mix (RES-E-Renewable Energy Share in Electricity) reached approximately 53.8% in leading member states, the aggregated share in the transport sector (RES-T) remains significantly lower at 9.1%. This distinction highlights that while power generation is decarbonizing rapidly, end-use electrification lags behind. The MMQR analysis indicates that economic growth drives renewable adoption more effectively in countries with already high renewable shares (upper quantiles) due to established market mechanisms and grid flexibility. Conversely, in lower-quantile countries, regulatory stability and direct infrastructure investment prove more critical than market-based incentives, highlighting the need for differentiated policy instruments. While EU policy milestones (RED I–III-) align with progress in power generation, they have failed to accelerate transitions in lagging sectors. This study concludes that achieving climate neutrality requires moving beyond aggregate targets to implement distinct, sector-specific interventions that address the unique structural barriers in transport and thermal applications. Full article
Show Figures

Figure 1

26 pages, 2039 KB  
Article
Modeling and Optimization of AI-Based Centralized Energy Management for a Community PV-Battery System Using PSO
by Sree Lekshmi Reghunathan Pillai Sree Devi, Chinmaya Krishnan, Preetha Parakkat Kesava Panikkar and Jayesh Santhi Bhavan
Energies 2026, 19(2), 439; https://doi.org/10.3390/en19020439 - 16 Jan 2026
Viewed by 176
Abstract
The rapid rise in energy demand, urban electrification, and the increasing prevalence of Electric Vehicles (EV) have intensified the need for reliable and decentralized energy management solutions. This study proposes an AI-driven centralized control architecture for a community-based photovoltaic–battery energy storage system (PV–BESS) [...] Read more.
The rapid rise in energy demand, urban electrification, and the increasing prevalence of Electric Vehicles (EV) have intensified the need for reliable and decentralized energy management solutions. This study proposes an AI-driven centralized control architecture for a community-based photovoltaic–battery energy storage system (PV–BESS) to enhance energy efficiency and self-sufficiency. The framework integrates a central controller which utilizes the Particle Swarm Optimization (PSO) technique which receives the Long Short-Term Memory (LSTM) forecasting output to determine optimal photovoltaic generation, battery charging, and discharging schedules. The proposed system minimizes the grid dependence, reduces the operational costs and a stable power output is ensured under dynamic load conditions by coordinating the renewable resources in the community microgrid. This system highlights that the AI-based Particle Swarm Optimization will reduce the peak load import and it maximizes the energy utilization of the system compared to the conventional optimization techniques. Full article
Show Figures

Graphical abstract

36 pages, 7496 KB  
Review
Constructed Wetlands Beyond the Fenton Limit: A Systematic Review on the Circular Photo-Biochemical Catalysts Design for Sustainable Wastewater Treatment
by M. M. Nour, Maha A. Tony and Hossam A. Nabwey
Catalysts 2026, 16(1), 92; https://doi.org/10.3390/catal16010092 - 16 Jan 2026
Viewed by 275
Abstract
Constructed wetlands (CWs) are signified as green, self-sustaining systems for wastewater treatment. To date, their conventional designs struggle with slow kinetics and poor removal of refractory pollutants. This review redefines CWs as photo-reactive engineered systems, integrating near-neutral Fenton and photo-Fenton processes and in-situ [...] Read more.
Constructed wetlands (CWs) are signified as green, self-sustaining systems for wastewater treatment. To date, their conventional designs struggle with slow kinetics and poor removal of refractory pollutants. This review redefines CWs as photo-reactive engineered systems, integrating near-neutral Fenton and photo-Fenton processes and in-situ oxidant generation to overcome diffusion limits, acid dosing, and sludge formation. By coupling catalytic fillers, solar utilization, and plant–microbe–radical (ROS) synergies, the approach enables intensified pollutant degradation while preserving the low-energy nature of CWs. Bibliometric trends indicate a sharp rise in studies linking CWs with advanced oxidation and renewable energy integration, confirming the emergence of a circular treatment paradigm. A decision framework is proposed that aligns material selection, reactor hydrodynamics, and solar light management with sustainability indicators such as energy efficiency, Fe-leach budget, and ROS-to-photon yield. This synthesis bridges environmental biotechnology with solar-driven catalysis, paving the way for next-generation eco-engineered wetlands capable of operating efficiently beyond the classical Fenton constraints. This work introduces the concept of “Constructed Wetlands Beyond the Fenton Limit”, where CWs are reimagined as photo-reactive circular systems that unify catalytic, biological, and solar processes under near-neutral conditions. It provides the first integrated decision matrix and performance metrics connecting catalyst design, ROS efficiency, and circular sustainability that offers a scalable blueprint for real-world hybrid wetland applications. Full article
Show Figures

Figure 1

Back to TopTop