Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = seismic data reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 22085 KiB  
Article
Sedimentary Characteristics and Petroleum Geological Significance of the Middle–Upper Triassic Successions in the Wushi Area, Western Kuqa Depression, Tarim Basin
by Yahui Fan, Mingyi Hu, Qingjie Deng and Quansheng Cai
Appl. Sci. 2025, 15(14), 7895; https://doi.org/10.3390/app15147895 - 15 Jul 2025
Viewed by 215
Abstract
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. [...] Read more.
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. This study focuses on the Wushi Sag, systematically analyzing the sedimentary facies types, the evolution of sedimentary systems, and the distribution patterns of the Triassic Kelamayi and Huangshanjie formations. This analysis integrates field outcrops, drilling cores, wireline logs, and 2D seismic data, employing methodologies grounded in foreland basin theory and clastic sedimentary petrology. The paleo-geomorphology preceding sedimentation was reconstructed through balanced section restoration to investigate the controlling influence of foreland tectonic movements on the distribution of sedimentary systems. By interpreting key seismic profiles and analyzing vertical facies successions, the study classifies and evaluates the petroleum accumulation elements and favorable source–reservoir-seal assemblages, culminating in the prediction of prospective exploration areas. The research shows that: (1) The Triassic in the Wushi Sag mainly develops fan-delta, braided-river-delta, and lacustrine–shallow lacustrine sedimentary systems, with strong planar distribution regularity. The exposed strata in the northern part are predominantly fan-delta and lacustrine systems, while the southern part is dominated by braided-river-delta and lacustrine systems. (2) The spatial distribution of sedimentary systems was demonstrably influenced by tectonic activity. Paleogeomorphological reconstructions indicate that fan-delta and braided-river-delta sedimentary bodies preferentially developed within zones encompassing fault-superposition belts, fault-transfer zones, and paleovalleys. Furthermore, Triassic foreland tectonic movements during its deposition significantly altered basin configuration, thereby driving lacustrine expansion. (3) The Wushi Sag exhibits favorable hydrocarbon accumulation configurations, featuring two principal source–reservoir assemblages: self-sourced structural-lithologic gas reservoirs with vertical migration pathways, and lower-source-upper-reservoir structural-lithologic gas reservoirs with lateral migration. This demonstrates substantial petroleum exploration potential. The results provide insights for identifying favorable exploration targets within the Triassic sequences of the Wushi Sag and western Kuqa Depression. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

23 pages, 6106 KiB  
Article
Seismic Multi-Parameter Full-Waveform Inversion Based on Rock Physical Constraints
by Cen Cao, Deshan Feng, Jia Tang and Xun Wang
Appl. Sci. 2025, 15(14), 7849; https://doi.org/10.3390/app15147849 - 14 Jul 2025
Viewed by 193
Abstract
Seismic multi-parameter full-waveform inversion (FWI) integrating velocity and density parameters can fully use the kinematic and dynamic information of observed data to reconstruct underground models. However, seismic multi-parameter FWI is a highly ill-posed problem due to the strong dependence on the initial model. [...] Read more.
Seismic multi-parameter full-waveform inversion (FWI) integrating velocity and density parameters can fully use the kinematic and dynamic information of observed data to reconstruct underground models. However, seismic multi-parameter FWI is a highly ill-posed problem due to the strong dependence on the initial model. An inaccurate initial model often leads to cycle skipping and convergence to local minima, resulting in poor inversion results. The introduction of prior information can regularize the inversion problem, not only improving the crosstalk phenomenon between parameters, but also effectively constraining the inversion parameters, enhancing the inversion efficiency. Multi-parameter FWI based on rock physical constraints can introduce prior information of underground media into the objective function of FWI. Taking a simple layered model as an example, the results show that the inversion strategy based on rock physical constraints can enhance the stability of inversion and obtain high-precision inversion results. Application to the international standard 1994BP model further confirms that the proposed inversion strategy has good applicability to complex geological models. Full article
Show Figures

Figure 1

26 pages, 6854 KiB  
Article
An Improved Wavelet Soft-Threshold Function Integrated with SVMD Dual-Parameter Joint Denoising for Ancient Building Deformation Monitoring
by Jiaxing Zhao, Houzeng Han, Yang Deng, Youqiang Dong, Jian Wang and Wenjin Chen
Remote Sens. 2025, 17(12), 2057; https://doi.org/10.3390/rs17122057 - 14 Jun 2025
Viewed by 439
Abstract
In deformation monitoring, complex environments, such as seismic excitation, often lead to noise during signal acquisition and transmission processing. This study integrates sequential variational mode decomposition (SVMD), a dual-parameter (DP) model, and an improved wavelet threshold function (IWT), presenting a denoising method termed [...] Read more.
In deformation monitoring, complex environments, such as seismic excitation, often lead to noise during signal acquisition and transmission processing. This study integrates sequential variational mode decomposition (SVMD), a dual-parameter (DP) model, and an improved wavelet threshold function (IWT), presenting a denoising method termed SVMD-DP-IWT. Initially, SVMD decomposes the signal to obtain intrinsic mode functions (IMFs). Subsequently, the DP parameters are determined using fuzzy entropy. Finally, the noisy IMFs denoised by IWT and the signal IMFs are used for signal reconstruction. Both simulated and engineering measurements validate the performance of the proposed method in mitigating noise. In simulation experiments, compared to wavelet soft-threshold function (WST) with the sqtwolog threshold, the root-mean-square error (RMSE) of SVMD-Dual-CC-WST (sqtwolog threshold), SVMD-DP-IWT (sqtwolog threshold), and SVMD-DP-IWT (minimaxi threshold) improved by 51.44%, 52.13%, and 52.49%, respectively. Global navigation satellite system (GNSS) vibration monitoring was conducted outdoors, and the accelerometer vibration monitoring experiment was performed on a pseudo-classical building in a multi-functional shaking table laboratory. GNSS displacement data and acceleration data were collected, and analyses of the acceleration signal characteristics were performed. SVMD-DP-IWT (sqtwolog) and SVMD-DP-IWT (minimaxi) effectively retain key vibration signal features during the denoising process. The proposed method significantly preserves vibration features during noise reduction of an ancient building in deformation monitoring, which is crucial for damage assessment. Full article
Show Figures

Figure 1

20 pages, 9046 KiB  
Article
Characterization and Numerical Modeling of Shallow Marine Turbidite Depositional Systems: A Case Study from the Second Member of the Yinggehai Formation, X Gas Field, Yinggehai Basin
by Jiaying Wei, Lei Li, Yong Xu, Guoqing Xue, Zhongpo Zhang and Guohua Zhang
J. Mar. Sci. Eng. 2025, 13(6), 1107; https://doi.org/10.3390/jmse13061107 - 31 May 2025
Viewed by 351
Abstract
Objective: The research on turbid current deposition in shallow Marine shelf environments is relatively weak. Method: Based on three-dimensional seismic, drilling and logging data, etc., the spatio-temporal characterization of the shallow sea turbidity current sedimentary system was carried out by using seismic geomorphology [...] Read more.
Objective: The research on turbid current deposition in shallow Marine shelf environments is relatively weak. Method: Based on three-dimensional seismic, drilling and logging data, etc., the spatio-temporal characterization of the shallow sea turbidity current sedimentary system was carried out by using seismic geomorphology and sedimentary numerical simulation techniques. Results and Conclusions: (1) A set of standards for identifying sedimentary units in the X Gas Field was established, identifying four sedimentary units: channel, mound body, channel-side accumulation body, and shelf mud; (2) The vertical evolution and planar distribution of the sedimentary units in the painting were precisely engraved. Along with the weakly–strongly–weak succession of turbidity current energy, the lithological combination of argillaceous siltstone–siltstone–mudstone developed vertically. On the plane, the clusters showed an evolution of isolation–connection–superposition. The scale of the river channel continued to expand, and the phenomena of oscillation and lateral accumulation occurred. (3) Three factors were analyzed: sea level, material sources, and sedimentary substrates (paleo landforms), and a shallow Marine turbidity current sedimentary system was established in the Honghe area in the northwest direction under the background of Marine receding, which is controlled by sedimentary slope folds and blocked by the high part of the diapause during the downward accumulation process of material sources along the shelf. (4) The numerical simulation results reconstructed the process of lateral migration of waterways, evolution of branch waterways into clusters, expansion of the scale of isolated clusters, and connection and superposition to form cluster complexes on a three-dimensional scale. The simulation results are in high agreement with the actual geological data. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

22 pages, 6758 KiB  
Article
Retrieval of Passive Seismic Virtual Source Data Under Non-Ideal Illumination Conditions Based on Enhanced U-Net
by Wensha Huang, Pan Zhang, Binghui Zhao, Donghao Zhang and Liguo Han
Remote Sens. 2025, 17(11), 1813; https://doi.org/10.3390/rs17111813 - 22 May 2025
Viewed by 453
Abstract
Seismic interferometry using ambient noise provides an effective approach for subsurface imaging through reconstructing passive virtual source (PVS) responses. Traditional crosscorrelation (CC) seismic interferometry relies on a uniform dense distribution of passive sources in the subsurface, which is often challenging in practice. The [...] Read more.
Seismic interferometry using ambient noise provides an effective approach for subsurface imaging through reconstructing passive virtual source (PVS) responses. Traditional crosscorrelation (CC) seismic interferometry relies on a uniform dense distribution of passive sources in the subsurface, which is often challenging in practice. The multidimensional deconvolution method (MDD) alleviates reliance on passive-source distribution, but requires wavefield decomposition of the original data. This is difficult to accurately achieve for uncorrelated noise sources, leading to the existence of non-physical artifacts in the reconstructed PVS data. To address this issue, this study proposes a method to improve the accuracy of PVS data reconstruction using an enhanced U-Net. This data-driven approach circumvents the challenge of noise wavefield decomposition encountered in the traditional MDD. By integrating a feature fusion module into U-Net, multi-scale sampling information is leveraged to improve the network’s ability to capture detailed PVS data features. The combination of active-source data constraints and the modified MDD further optimizes PVS data retrieval during training. Numerical tests show that the proposed method effectively recovers waveform information in PVS retrieval records with non-ideally distributed sources, suppressing coherent noise and false events. The reconstructed recordings have a clear advantage in the reverse time migration (RTM) imaging results, with strong generalization performance across various velocity models. Full article
Show Figures

Figure 1

23 pages, 13284 KiB  
Article
Reconstruction of a 3D Bedrock Model in an Urban Area Using Well Stratigraphy and Geophysical Data: A Case Study of the City of Palermo
by Alessandro Canzoneri, Raffaele Martorana, Mauro Agate, Maurizio Gasparo Morticelli, Patrizia Capizzi, Alessandra Carollo and Attilio Sulli
Geosciences 2025, 15(5), 174; https://doi.org/10.3390/geosciences15050174 - 14 May 2025
Viewed by 976
Abstract
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value [...] Read more.
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value of geophysical methods for enhancing subsurface understanding. In this sector, Numidian Flysch deposits constitute the geological bedrock of the plain. The morphology of the top surface of this unit was reconstructed by integrating borehole stratigraphic data with both passive and active seismic surveys. Ambient noise recordings were analyzed using the Horizontal-to-Vertical Spectral Ratio (HVSR) method to obtain spectral curves. These were then inverted into seismostratigraphic models using shear wave velocity profiles derived by Multichannel Analysis of Surface Waves (MASW) and lithostratigraphic information from borehole logs. Finally, the depth of the top of the Numidian Flysch, determined from both the borehole data and the inverted seismic models, was interpolated to generate a comprehensive 3D model of the bedrock top surface. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 4814 KiB  
Article
Geomorphological Characteristics and Evolutionary Process of a Typical Isolated Carbonate Platform Slope in the Xisha Sea: A Case Study of the Northwestern Dongdao Platform
by Xudong Guo, Dongyu Lu, Xuelin Li, Xiaochen Fang, Fei Tian, Changfa Xia, Lei Huang, Mei Chen, Luyi Wang and Zhongyu Sun
Water 2025, 17(9), 1259; https://doi.org/10.3390/w17091259 - 23 Apr 2025
Viewed by 420
Abstract
The northwestern slope of the Dongdao Platform in the Xisha Sea exhibits a complex geomorphological structure. Utilizing high-resolution multibeam bathymetric data and 2D seismic profiles, this study systematically reconstructs the slope morphology and its evolutionary processes. The study area displays a distinct threefold [...] Read more.
The northwestern slope of the Dongdao Platform in the Xisha Sea exhibits a complex geomorphological structure. Utilizing high-resolution multibeam bathymetric data and 2D seismic profiles, this study systematically reconstructs the slope morphology and its evolutionary processes. The study area displays a distinct threefold zonation: the upper slope (160–700 m water depth) has a steep gradient of 15°–25°, characterized by deeply incised V-shaped channels and slump deposits, primarily shaped by gravity-driven erosion; the middle slope (700–1200 m water depth) features a gentler gradient of 10°–15°, where channels stabilize, adopting U-shaped cross-sections with the development of lateral accretion deposits; the lower slope (1200–1500 m water depth) exhibits a milder gradient of 5°–10°, dominated by a mixture of fine-grained carbonate sediments and hemipelagic mud–marine sediments originating partly from the open ocean and partly from the nearby continental margin. The slope extends from 160 m to 1500 m water depth, hosting the C1–C4 channel system. Seismic facies analysis reveals mass-transport deposits, channel-fill facies, and facies modified by bottom currents—currents near the seafloor that redistribute sediments laterally—highlighting the interplay between fluid activity and gravity-driven processes. The slope evolution follows a four-stage model: (1) the pockmark formation stage, where overpressured gas migrates vertically through chimneys, inducing localized sediment instability and forming discrete pockmarks; (2) the initial channel development stage, during which gravity flows exploit the pockmark chains as preferential erosional pathways, establishing nascent incised channels; (3) the channel expansion and maturation stage, marked by intensified erosion from high-density debris flows, resulting in a stepped longitudinal profile, while bottom-current reworking enhances lateral sediment differentiation; (4) the stable transport stage, wherein the channels fully integrate with the Sansha Canyon, forming a well-connected “platform-to-canyon” sediment transport system. Full article
(This article belongs to the Special Issue Regional Geomorphological Characteristics and Sedimentary Processes)
Show Figures

Figure 1

18 pages, 11121 KiB  
Article
Separation of Body and Surface Wave Background Noise and Passive Seismic Interferometry Based on Synchrosqueezed Continuous Wavelet Transform
by Xiaolong Li, Fengjiao Zhang, Zhuo Xu and Xiangbo Gong
Appl. Sci. 2025, 15(7), 3917; https://doi.org/10.3390/app15073917 - 2 Apr 2025
Viewed by 651
Abstract
Passive seismic interferometry is a technique that reconstructs virtual seismic records using ambient noise, such as random noise or microseisms. The ambient noise in passive seismic data contains rich information, with surface waves being useful for the inversion of shallow subsurface structures, while [...] Read more.
Passive seismic interferometry is a technique that reconstructs virtual seismic records using ambient noise, such as random noise or microseisms. The ambient noise in passive seismic data contains rich information, with surface waves being useful for the inversion of shallow subsurface structures, while body waves are employed for deep-layer inversion. However, due to the low signal-to-noise ratio in actual passive seismic data, different types of seismic waves mix together, making them difficult to distinguish. This issue not only affects the dispersion measurements of surface waves but also interferes with the imaging accuracy of reflected waves. Therefore, it is crucial to extract the target waves from passive source data. In practical passive seismic data, body wave noise and surface wave noise often overlap in frequency bands, making it challenging to separate them effectively using conventional methods. The synchrosqueezed continuous wavelet transform, as a high-resolution time–frequency analysis method, can effectively capture the variations in frequency of passive seismic data. This study performs time–frequency analysis of passive seismic data using synchrosqueezed continuous wavelet transform. It combines wavelet thresholding and Gaussian filtering to separate body wave noise from surface wave noise. Furthermore, wavelet cross-correlation is applied to separately obtain high-quality virtual seismic records for both surface waves and body waves. Full article
Show Figures

Figure 1

25 pages, 6707 KiB  
Article
NPP-VIIRS Nighttime Lights Illustrate the Post-Earthquake Damage and Subsequent Economic Recovery in Hatay Province, Turkey
by Feng Li, Shunbao Liao, Xingjian Fu and Tianxuan Liu
ISPRS Int. J. Geo-Inf. 2025, 14(4), 149; https://doi.org/10.3390/ijgi14040149 - 30 Mar 2025
Cited by 1 | Viewed by 1255
Abstract
The catastrophic twin earthquakes that struck southern Turkey and northern Syria on 6 February 2023 caused massive casualties and extensive damage to infrastructure, with Hatay Province of Turkey bearing the brunt of the impact. To swiftly and thoroughly assess the damage caused by [...] Read more.
The catastrophic twin earthquakes that struck southern Turkey and northern Syria on 6 February 2023 caused massive casualties and extensive damage to infrastructure, with Hatay Province of Turkey bearing the brunt of the impact. To swiftly and thoroughly assess the damage caused by the earthquakes and the subsequent reconstruction efforts, this study initially investigated the application of light change ratios between the pre-earthquake monthly nighttime lights (NTLs) and the post-earthquake daily NTL data to identify earthquake damage in Hatay Province. Next, the monthly NTL data were employed to calculate the time series average lighting index (ALI). Subsequently, random noise and seasonal fluctuation were eliminated through data smoothing and seasonal decomposition techniques. Pre- and post-earthquake regression models were then utilised to establish a comprehensive framework for assessing economic recovery following the earthquake. The findings indicated that (1) the seismic damage identification method based on NTL data achieved an overall accuracy exceeding 71.55% in detecting building damage after a disaster. This method provided a swift and effective solution for rapidly assessing disaster-related destruction. (2) The reduced NTLs exhibited a strong correlation with the area of severely and moderately damaged buildings while showing a weaker correlation with areas of slightly damaged buildings. (3) The developed pre- and post-earthquake regression models demonstrated a high degree of fit, making them valuable tools for assessing regional economic recovery after the earthquake. At the county scale, such districts as Erzin and Kumlu exhibited promising signs of recovery, while such severely impacted areas as Antakya faced misconceptions of progress, primarily due to the brightening of NTLs caused by reconstruction efforts. Additionally, such districts as Dortyol and Samandag grappled with substantial short-term recovery challenges. Although the province experienced gradual economic recovery, achieving complete restoration has remained complex and time-intensive. The study offers valuable insights into earthquake damage assessment and economic recovery monitoring while serving as a scientific reference for disaster mitigation and post-disaster reconstruction efforts. Full article
Show Figures

Figure 1

20 pages, 6389 KiB  
Article
Evaluation of Data Acquisition Areas in Geotechnical Seismic Tests: Insights from Field Applications
by Gunwoong Kim
Sensors 2025, 25(6), 1757; https://doi.org/10.3390/s25061757 - 12 Mar 2025
Viewed by 776
Abstract
Geotechnical field testing evaluates soil, rock, and groundwater conditions in their natural states, offering critical information about subsurface properties such as the density, strength, permeability, and groundwater flow. These tests are essential in ensuring the safety, reliability, and performance of civil engineering projects [...] Read more.
Geotechnical field testing evaluates soil, rock, and groundwater conditions in their natural states, offering critical information about subsurface properties such as the density, strength, permeability, and groundwater flow. These tests are essential in ensuring the safety, reliability, and performance of civil engineering projects and are increasingly used for 3D geographical visualization and subsurface modeling. While point-based tests like the cone penetration test (CPT) and standard penetration test (SPT) are widely used, area-based methods such as the spectral analysis of surface waves (SASW) and electrical resistivity testing significantly enhance the accuracy of such models by providing broader coverage. Furthermore, these non-destructive techniques are particularly effective in identifying subsurface defects. This study focuses on analyzing the data acquisition areas of various field seismic tests, including SASW, downhole, crosshole, and suspension logging (PS logging). While other tests clearly define data acquisition areas based on their array paths, the SASW test posed challenges due to the complexity of data reconstruction. To address this, 69 datasets from four different sites were analyzed to predict the data acquisition areas for SASW as a function of depth. Moreover, a case study demonstrates the practical application of the SASW method in detecting cavities near a dam spillway. The findings of this research improve the understanding and interpretation of geotechnical seismic test data, enabling more precise geotechnical investigations and advancing the detection of subsurface defects using non-destructive methods. Full article
Show Figures

Figure 1

29 pages, 10778 KiB  
Article
Potentials and Limitations of Fluviomarine Pollen Records to Reconstruct Spatiotemporal Changes in Coastal Ecosystems During the Holocene: A Case of Study from Ría de Vigo (NW Iberia)
by Alberto Castro-Parada, Nerea Cazás, Víctor Cartelle, Javier Ferreiro da Costa, Natalia Martínez-Carreño, Soledad García-Gil and Castor Muñoz Sobrino
Land 2025, 14(3), 540; https://doi.org/10.3390/land14030540 - 5 Mar 2025
Viewed by 655
Abstract
The study of marine and terrestrial palynomorphs in fluviomarine environments has been successfully used in combination with different geophysical approaches to understand high-resolution relative sea-level oscillations and to reconstruct the environmental changes affecting estuaries and adjacent inland ecosystems. However, erosion during the postglacial [...] Read more.
The study of marine and terrestrial palynomorphs in fluviomarine environments has been successfully used in combination with different geophysical approaches to understand high-resolution relative sea-level oscillations and to reconstruct the environmental changes affecting estuaries and adjacent inland ecosystems. However, erosion during the postglacial marine transgression frequently causes sedimentary discontinuities or may lead to the redeposition of ancient upland sediments, including secondary, recycled and rebedded pollen. Therefore, a robust seismic and chronological control of the sedimentary facies is essential. In addition, studies of modern pollen sedimentation and its relationship to contemporaneous vegetation are valuable for obtaining a more realistic interpretation of the sedimentary evidence. To explore the significance of the experimental evidence obtained and to support the interpretation of sedimentary records from the same basin, we analysed a large set of modern pollen data from the Ría de Vigo (NW Iberia). The pollen samples derived from different sedimentary environments were compared with the local and regional vegetation cover. Pollen evidence from the various limnetic systems studied allows the identification of major vegetation types in the basin. However, in all the cases, the reconstructed relative pollen contributions of each vegetation unit are often distorted by the overrepresentation of certain anemophilous pollen types, the underrepresentation of some entomophilous species, and the specific taphonomy of each site of sedimentation. The ability of the seabed pollen evidence to represent the modern deciduous and alluvial forests, as well as the saltmarsh vegetation onshore, increases in the shallowest points of the ria (shallower than −10 m). Conversely, pastures and crops are better represented at intermediate depths (shallower than −30 m), while scrubland vegetation is better represented in samples at more than 20 m below modern sea level. It is concluded that shallow seabed pollen can provide information on the main elements of the modern vegetation cover of the emerged basin, including the main elements of the vegetation cover. However, the selection of the most suitable subtidal sites for coring, combined with pollen data from several environmental contexts, is critical for achieving an accurate reconstruction of the changing conditions of the emerged basin over time. Full article
(This article belongs to the Special Issue Pollen-Based Reconstruction of Holocene Land-Cover)
Show Figures

Figure 1

18 pages, 4577 KiB  
Article
Sparse Regularization Least-Squares Reverse Time Migration Based on the Krylov Subspace Method
by Guangshuai Peng, Xiangbo Gong, Shuang Wang, Zhiyu Cao and Zhuo Xu
Remote Sens. 2025, 17(5), 847; https://doi.org/10.3390/rs17050847 - 27 Feb 2025
Cited by 1 | Viewed by 1018
Abstract
Least-squares reverse time migration (LSRTM) is an advanced seismic imaging technique that reconstructs subsurface models by minimizing the residuals between simulated and observed data. Mathematically, the LSRTM inversion of the sub-surface reflectivity is a large-scale, highly ill-posed sparse inverse problem, where conventional inversion [...] Read more.
Least-squares reverse time migration (LSRTM) is an advanced seismic imaging technique that reconstructs subsurface models by minimizing the residuals between simulated and observed data. Mathematically, the LSRTM inversion of the sub-surface reflectivity is a large-scale, highly ill-posed sparse inverse problem, where conventional inversion methods typically lead to poor imaging quality. In this study, we propose a regularized LSRTM method based on the flexible Krylov subspace inversion framework. Through the strategy of the Krylov subspace projection, a basis set for the projection solution is generated, and then the inversion of a large ill-posed problem is expressed as the small matrix optimization problem. With flexible preconditioning, the proposed method could solve the sparse regularization LSRTM, like with the Tikhonov regularization style. Sparse penalization solution is implemented by decomposing it into a set of Tikhonov penalization problems with iterative reweighted norm, and then the flexible Golub–Kahan process is employed to solve the regularization problem in a low-dimensional subspace, thereby finally obtaining a sparse projection solution. Numerical tests on the Valley model and the Salt model validate that the LSRTM based on Krylov subspace method can effectively address the sparse inversion problem of subsurface reflectivity and produce higher-quality imaging results. Full article
Show Figures

Figure 1

24 pages, 15222 KiB  
Article
Three-Dimensional In Situ Stress Distribution in a Fault Fracture Reservoir, Linnan Sag, Bohai Bay Basin
by Jiageng Liu, Yanzhong Wang, Jing Li, Xiaoyu Meng, Jiayi Teng, Zhicheng Wang, Mingzhi Li and Rui Zhu
J. Mar. Sci. Eng. 2025, 13(3), 436; https://doi.org/10.3390/jmse13030436 - 25 Feb 2025
Viewed by 538
Abstract
The fault fracture body, consisting of faults, fracture zones, cracks, and the matrix, plays a crucial role in controlling oil and gas accumulation. Understanding its spatial distribution and analyzing the in situ stress field are essential for optimizing well design and fracturing operations. [...] Read more.
The fault fracture body, consisting of faults, fracture zones, cracks, and the matrix, plays a crucial role in controlling oil and gas accumulation. Understanding its spatial distribution and analyzing the in situ stress field are essential for optimizing well design and fracturing operations. This study integrates geological, logging, and seismic data, and employs advanced techniques such as ant tracking to establish a skeletal model of the fault fracture body. Reverse modeling and optimization reconstruction are used to construct a three-dimensional geomechanical model of the fracture system. Machine learning techniques, specifically a back propagation (BP) neural network, are utilized to invert the boundary conditions of the study area. Finite element numerical simulation software is then applied to model the three-dimensional in situ stress field under coupled flow–solid interaction. The reservoirs in the study area are characterized by a dense structure, low porosity, and low permeability. The results indicate that the maximum horizontal principal stress in the fault fracture reservoir ranges from 68.0 to 72.8 MPa, while the minimum horizontal principal stress ranges from 58.2 to 63.1 MPa. The stress at fractures is lower than that in the surrounding matrix, and stress concentrations occur at both ends of the faults. The in situ stress field exhibits distinct subarea characteristics, with significant stress reductions across fault fractures and directional deflections at faults. These findings provide valuable insights for improving reservoir development efficiency and optimizing well operations in similar geological settings. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

20 pages, 19513 KiB  
Article
Seismic Sedimentology for the Characterization of Quaternary Evaporite Facies in Biogas-Bearing Taidong Area, Sanhu Depression, Qaidam Basin, NW China
by Guoyong Liu, Zhaohui Xu, Jiangtao Li, Yong Song, Hongliu Zeng, Xiaomin Zhu, Jixian Tian, Chunming Lin and Lei Jiang
Appl. Sci. 2025, 15(5), 2288; https://doi.org/10.3390/app15052288 - 20 Feb 2025
Viewed by 588
Abstract
S-wave seismic data are unaffected by natural gas trapped in strata, making them a valuable tool to study evaporite facies comparing to P-wave data. S-wave seismic data were utilized to construct an isochronous framework and analyze evaporite facies by seismic sedimentology methods in [...] Read more.
S-wave seismic data are unaffected by natural gas trapped in strata, making them a valuable tool to study evaporite facies comparing to P-wave data. S-wave seismic data were utilized to construct an isochronous framework and analyze evaporite facies by seismic sedimentology methods in the Quaternary biogenic gas-bearing Taidong area, Sanhu Depression, Qaidam Basin, NW China, with calibration from wireline logs, geochemical evidences, and modern analogs. Techniques of phase rotation, frequency decomposition, R (Red), G (Green), B (Blue) fusion, and stratal slices were integrated to reconstruct seismic geomorphological features. Linear and sub-circular morphologies, resembling those observed in modern saline pans such as Lake Chad, were identified. Observations from Upper Pleistocene outcrops of anhydrite and halite at Yanshan (east of the Taidong area), along with lithological and paleo-environmental records from boreholes SG-5, SG-1, and SG-1b (northwest of the Taidong area), support the seismic findings. The slices generated from the S-wave seismic data indicate a progressive increase in the occurrence of evaporite features from the K2 standard zone upwards. The vertical occurrence of evaporite facies in the Taidong area increases, which coincides with the contemporary regional and global arid paleo-environmental changes. The interpretation of Quaternary stratal slices reveals a transition from a freshwater lake to brackish, saline, and finally, a dry saline pan, overlaid by silt. This analysis provides valuable insights into locating evaporites as cap rocks for biogenic gas accumulation and also into mining the evaporite mineral resources in shallow layers of the Taidong area. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 44963 KiB  
Article
Passive Multichannel Analysis of Surface Waves: A Two-Dimensional Seismic Dataset Acquired with Geophones and Distributed Acoustic Sensing at a Mineral Exploration Site in the Pilbara Region of Western Australia
by Emad Al-Hemyari, Roman Isaenkov, Pavel Shashkin, Roman Pevzner and Konstantin Tertyshnikov
Geosciences 2025, 15(2), 51; https://doi.org/10.3390/geosciences15020051 - 2 Feb 2025
Cited by 1 | Viewed by 1121
Abstract
Passive seismic surveys have attracted interest for use in many geological and geotechnical applications in the past few decades, mainly in reconstructing models of near-surface properties. They are also of interest in the mineral exploration of shallow deposits where targets lay on or [...] Read more.
Passive seismic surveys have attracted interest for use in many geological and geotechnical applications in the past few decades, mainly in reconstructing models of near-surface properties. They are also of interest in the mineral exploration of shallow deposits where targets lay on or within the bedrock and are covered by loose sediments above. The goal of this article was to test the effectiveness of cheap methods to understand the cover thickness and its lateral variations, which is essential to map the top of the bedrock. We investigated the use of passive seismic surveys to retrieve Rayleigh surface waves and invert them by analyzing their dispersion to reconstruct near-surface shear-wave velocity profiles. Using readily available passive seismic sources is advantageous compared to using costly active sources. Passive seismic data acquired by geophones and DAS showed the potential and challenges of using different sensing technologies. We demonstrated an approach combining passive seismic interferometry and multichannel analysis of surface waves (MASW). Computed dispersion images from both geophone and DAS data provided an improved understanding of their usability for subsurface model building and factors affecting their quality. Some of these factors are related to the surrounding environment, present noise sources, acquisition setup, and the methods used in reconstructing the dispersion images and inverting them. Successful demonstration of MASW was achieved with a relatively short period of continuous recording using a 2D array of geophones at a mineral exploration site in the Pilbara region of Western Australia. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

Back to TopTop