Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = seed microbiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 672 KB  
Article
Unlocking the Antioxidant Potential of Pigeon Peas (Cajanus cajan L.) via Wild Fermentation and Extraction Optimization
by Tamara Machinjili, Chikondi Maluwa, Chawanluk Raungsri, Hataichanok Chuljerm, Pavalee Chompoorat Tridtitanakiat, Elsa Maria Salvador and Kanokwan Kulprachakarn
Foods 2026, 15(2), 310; https://doi.org/10.3390/foods15020310 - 15 Jan 2026
Viewed by 512
Abstract
Oxidative stress contributes significantly to chronic disease burden, necessitating identification of accessible dietary antioxidant sources. Pigeon peas (Cajanus cajan L.) contain substantial bioactive compounds, yet most exist in bound forms with limited bioavailability. This study evaluated wild fermentation combined with systematic extraction [...] Read more.
Oxidative stress contributes significantly to chronic disease burden, necessitating identification of accessible dietary antioxidant sources. Pigeon peas (Cajanus cajan L.) contain substantial bioactive compounds, yet most exist in bound forms with limited bioavailability. This study evaluated wild fermentation combined with systematic extraction optimization to enhance antioxidant recovery from pigeon peas. Seeds underwent wild fermentation in brine solution, followed by extraction under varying conditions (seven solvent systems, three temperatures, and three-time durations). Multiple complementary assays assessed antioxidant capacity (total phenolic content, DPPH radical scavenging, ferric reducing power, and ABTS activity). Fermentation substantially improved antioxidant properties across all parameters, with particularly pronounced effects on radical scavenging activities. Extraction optimization identified 70% methanol at 40 °C for 24 h as optimal, demonstrating marked improvements over conventional protocols. Strong intercorrelations among assays confirmed coordinated enhancement of multiple antioxidant mechanisms rather than isolated changes. The findings demonstrate that both biotechnological processing and analytical methodology critically influence antioxidant characterization in pigeon peas. This integrated approach offers practical guidance for developing antioxidant-rich functional foods, particularly relevant for resource-limited settings where pigeon peas serve as dietary staples. The study establishes foundation for translating fermentation technology into nutritional interventions, though further research addressing bioavailability, microbiological characterization, and bioactive compound identification remains essential. Full article
Show Figures

Figure 1

14 pages, 1930 KB  
Article
Postharvest Application of Black Mustard (Brassica nigra) Seed Derivatives in Sweet Cherry Packaging for Rot Control
by Patricia Calvo, M.ª José Rodríguez, Manuel J. Serradilla and Mª Josefa Bernalte
Foods 2026, 15(1), 161; https://doi.org/10.3390/foods15010161 - 3 Jan 2026
Viewed by 229
Abstract
Packaging is essential for protecting, distributing, and trading fresh fruit. Antimicrobial packaging, which incorporates natural or synthetic bioactive compounds, can inhibit microbial growth, extend shelf life, and reduce reliance on synthetic fungicides. This study aimed to evaluate the effect of allyl isothiocyanate (AITC), [...] Read more.
Packaging is essential for protecting, distributing, and trading fresh fruit. Antimicrobial packaging, which incorporates natural or synthetic bioactive compounds, can inhibit microbial growth, extend shelf life, and reduce reliance on synthetic fungicides. This study aimed to evaluate the effect of allyl isothiocyanate (AITC), released from black mustard seeds, on the quality and fungal development of ‘Burlat’ sweet cherries during postharvest storage under modified atmosphere. The in vitro and in vivo antimicrobial activity of AITC, released from different amounts of mustard seeds in an ‘Inbox’ system, was compared with fludioxonil, a synthetic fungicide authorised for postharvest use on stone fruits in the European Union. The impact of these treatments on weight loss, headspace gas composition, fruit decay, physicochemical and microbiological quality was also analysed. Results showed that AITC inhibited the in vitro growth of Cladosporium cladosporioides, Monilinia laxa and Penicilium expansum, and significantly reduced Alternaria alternata, Botrytis cinerea, and Geotrichum candidum after 96 h at 25 °C and 99% RH. Treatment with 100 mg of mustard seeds achieved rot control comparable to fludioxonil, while maintaining higher firmness and delaying skin darkening after 28 days. Overall, natural AITC from mustard seeds appears to be a promising alternative for preserving sweet cherry quality. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 1062 KB  
Article
Chia Seed Gel Powder as a Clean-Label Enhancer of Texture, Physicochemical Quality, Antioxidant Activity, and Prebiotic Function in Probiotic Low-Fat Yogurt
by Mahmoud E. A. Hamouda, Ratul Kalita, Abdelfatah K. Ali, Pratibha Chaudhary, Pramith U. Don, Omar A. A. Abdelsater, Anjali Verma and Yaser Elderwy
Processes 2026, 14(1), 145; https://doi.org/10.3390/pr14010145 - 31 Dec 2025
Viewed by 640
Abstract
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using [...] Read more.
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using 0–2.5% CSGP, including Control (0% CSGP), YOG1 (0.5% CSGP), YOG2 (1.0% CSGP), YOG3 (1.5% CSGP), YOG4 (2.0% CSGP), and YOG5 (2.5% CSGP). Results showed that increasing CSGP levels noticeably enhanced the total solids, protein content, viscosity, hardness, and water-holding capacity of the PLFY (p < 0.05), while consistently reducing syneresis. Antioxidant activity also rose with higher CSGP concentrations, with YOG5 exhibiting the greatest DPPH scavenging activity (35.12%). Confocal laser scanning microscopy revealed a denser and more uniform protein network in PLFY fortified with CSGP, consistent with rheological measurements showing increased storage (G′) and loss (G″) moduli. Probiotic viability significantly increased (p < 0.05) in CSGP-added samples, indicating a potential prebiotic effect of CSGP. Sensory results demonstrated that although higher CSGP levels slightly darkened the yogurt color, body, texture, flavor, and total sensory scores improved markedly, with YOG5 gaining the highest total score (81.77). The results demonstrate that CSGP acts as a highly effective, multifunctional ingredient that enhances texture, stability, probiotic viability, and antioxidant capacity, making it a strong clean-label candidate for developing high-quality, functional probiotic low-fat yogurt. Full article
Show Figures

Graphical abstract

17 pages, 1216 KB  
Article
Preliminary Evaluation of Sustainable Treatment of Landfill Leachate Using Phosphate Washing Sludge for Green Spaces Irrigation and Nitrogen Recovery
by Tilila Baganna, Assmaa Choukri, Mohamed Sbahi and Khalid Fares
Nitrogen 2025, 6(4), 113; https://doi.org/10.3390/nitrogen6040113 - 11 Dec 2025
Viewed by 246
Abstract
Water scarcity is an increasingly critical global issue, particularly in arid regions like Morocco. Innovative approaches, such as the use of alternative water sources like landfill leachate, offer promising solutions. In this study, phosphate washing sludge was used to treat landfill leachate with [...] Read more.
Water scarcity is an increasingly critical global issue, particularly in arid regions like Morocco. Innovative approaches, such as the use of alternative water sources like landfill leachate, offer promising solutions. In this study, phosphate washing sludge was used to treat landfill leachate with the aim of producing irrigation-quality water and recovering nitrogen from the resulting sediment. A total of 40 L of raw leachate was treated with three concentrations of phosphate washing sludge (25%, 37%, and 50%). This volume was processed at the laboratory scale as a proof of concept for potential larger-scale applications. After 24 to 36 h of mixing and agitation, the mixture underwent sedimentation, yielding clear supernatants and nitrogen-rich sludge pellets. These pellets showed a significant increase in organic matter content, from 6.4% to 13.5%, representing an enhancement of 110.9%, thus demonstrating partial leachate depollution and organic matter enrichment. Microbiological analyses revealed a 98.9% reduction in fecal streptococci. The supernatants met irrigation water standards in terms of pH and electrical conductivity, and phytotoxicity tests on maize seeds confirmed their suitability for irrigation. Additionally, the recovered nitrogen-rich sediment presents a valuable input for composting and soil amendment. Full article
Show Figures

Figure 1

14 pages, 603 KB  
Article
Response of Soybean (Glycine max (L.) Merr.) to Vermicompost Fertilization and Foliar Application of Methylobacterium symbioticum
by Wacław Jarecki
Agronomy 2025, 15(12), 2681; https://doi.org/10.3390/agronomy15122681 - 21 Nov 2025
Viewed by 517
Abstract
In the cultivation of leguminous plants, various fertilizers and microbiological preparations are used to increase nutrient availability or stimulate plant development. A pot experiment was conducted to examine the response of soybean to vermicompost fertilization and foliar application of Methylobacterium symbioticum. The [...] Read more.
In the cultivation of leguminous plants, various fertilizers and microbiological preparations are used to increase nutrient availability or stimulate plant development. A pot experiment was conducted to examine the response of soybean to vermicompost fertilization and foliar application of Methylobacterium symbioticum. The experiment was conducted in a completely randomized design with four replicates. Vermicompost fertilization was found to increase the SPAD (Soil Plant Analysis Development) value and improve selected physiological parameters of the plants (Fv/Fm, Fv/F0, PI, RC/ABS) compared to the control. The most optimal results were obtained for vermicompost from sewage sludge, regardless of Methylobacterium symbioticum application. Fertilization with this variant significantly increased seed weight per plant and seed protein content compared to the control. Therefore, vermicompost fertilization, particularly with sewage sludge, can be beneficial in soybean cultivation, as it reduces the need for chemical fertilizers. However, foliar application of Methylobacterium symbioticum generally did not modify the tested parameters. Full article
(This article belongs to the Special Issue Conventional and Alternative Fertilization of Crops)
Show Figures

Figure 1

17 pages, 1614 KB  
Article
Valorization of Pumpkin Seed Flour in Biscuit Production: Nutritional Enhancement and Sensory Acceptability
by Claudia-Veronica Ungureanu, Iana Morozova, Georgiana Horincar and Dumitra Răducanu
Sustainability 2025, 17(22), 10103; https://doi.org/10.3390/su172210103 - 12 Nov 2025
Viewed by 879
Abstract
In the context of increasing interest in healthy and sustainable nutrition, the food industry is challenged to develop innovative products that combine high nutritional quality with consumer acceptance. This study evaluated the potential of pumpkin seed flour (PSF) as a natural ingredient in [...] Read more.
In the context of increasing interest in healthy and sustainable nutrition, the food industry is challenged to develop innovative products that combine high nutritional quality with consumer acceptance. This study evaluated the potential of pumpkin seed flour (PSF) as a natural ingredient in biscuit formulations. PSF was analyzed for its proximate composition, and biscuits were formulated by replacing rice flour with various concentrations of 10%, 20%, and 30%. The products were analyzed for moisture, protein, fat, fiber, and ash content, subjected to microbiological testing, and evaluated sensorially using a 9-point hedonic scale. Results showed that PSF incorporation in biscuits significantly increased protein content from 6.20% in the control to 9.80% and fiber content from 2.10% to 5.90% in the formulation containing 30% PSF. Lipid content also increased proportionally with PSF addition. All samples complied with microbiological safety standards, and sensory evaluation indicated that biscuits with 10 and 20% PSF achieved the highest acceptability, particularly in terms of taste and texture. Overall, the use of PSF improves the nutritional density of biscuits, enhances their nutritional value, and supports sustainable food production by valorizing underutilized plant resources, in alignment with the United Nations Sustainable Development Goals. Full article
Show Figures

Figure 1

16 pages, 952 KB  
Article
Enhancing Almond Seed Germination and Growth Through Microbial Priming: A Biostimulation Strategy for Sustainable Agriculture
by Zineb Bouabidi, Najat Manaut and Mountasser Douma
Agronomy 2025, 15(10), 2434; https://doi.org/10.3390/agronomy15102434 - 21 Oct 2025
Viewed by 768
Abstract
Microbial priming is an emerging strategy in sustainable agriculture that involves the use of beneficial microorganisms to enhance agricultural productivity and sustainability. This innovative approach leverages the natural interactions between plants and microorganisms to promote plant growth and improve soil health. This study [...] Read more.
Microbial priming is an emerging strategy in sustainable agriculture that involves the use of beneficial microorganisms to enhance agricultural productivity and sustainability. This innovative approach leverages the natural interactions between plants and microorganisms to promote plant growth and improve soil health. This study explores the application of microbial priming on almond seeds, focusing on the biostimulant effect of soil-based microbial extracts from a mediterranean shrub Pistacia lentiscus L. as an ecological strategy to improve the germination and seedling of almond (Prunus dulcis (Mill.)). The extraction process of soil differentiates three extracts: the first separates AMF spores (Myco) from all other bacterial and fungal consortia (MW), and the third combines the two previous extracts (MW + Myco). The experiment evaluated germination rates, seedling growth parameters, and conducted physico-chemical soil analyses. Arbuscular Mycorrhizal Fungi (AMF) colonization was also measured. Microbial priming significantly improved germination rates and enhanced seedling growth compared to untreated controls. The three microbial extracts showed significant effects on germination rate after 20 days, exceeding 90%. After 27 days, all treatments reach their maximum (100%). Seedling indicators allow MW + Myco extract to be considered as the most powerful extract on almond seedling growth. The combination of microbial and endomycorrhizal fungal extracts could be considered as a facilitator of seedling growth of almond. The AMF colonization was notably higher in treated plants. Overall, microbial priming effectively enhances almond seed germination and seedling growth, demonstrating its potential as a sustainable biostimulation strategy in agriculture. This practice boosts crop productivity and promotes soil health by enriching microbial communities and improving nutrient cycling. These results open up perspectives towards a natural-based strategy able to facilitate the germination and early seedling of almonds in both nurseries and in the field—and to enhance the productivity and health of almond cultivation in special Mediterranean area. Full article
Show Figures

Figure 1

22 pages, 1282 KB  
Article
Impact of Hemp Flour on the Nutritional, Sensory and Functional Characteristics of Wheat and Whole Wheat Muffins
by Andreea-Lavinia Mocanu, Alina Alexandra Dobre, Corina-Alexandra Stroe, Cătălina-Beatrice Poteraș, Elena-Loredana Ungureanu, Gabriel Mustatea, Gabriela Daniela Criveanu-Stamatie, Șerban Eugen Cucu, Sabina Andreea Bobea, Cristian Florea, Mihai-Bogdan Nicolcioiu and Raluca Stan
Foods 2025, 14(20), 3578; https://doi.org/10.3390/foods14203578 - 21 Oct 2025
Viewed by 575
Abstract
The growing consumer demand for plant-based, protein- and fiber-enriched foods has encouraged the incorporation of novel functional ingredients into bakery products. Hemp flour (HF), obtained from cold-pressed hemp seeds, represents a sustainable ingredient rich in proteins, dietary fibers, lipids, and bioactive compounds, making [...] Read more.
The growing consumer demand for plant-based, protein- and fiber-enriched foods has encouraged the incorporation of novel functional ingredients into bakery products. Hemp flour (HF), obtained from cold-pressed hemp seeds, represents a sustainable ingredient rich in proteins, dietary fibers, lipids, and bioactive compounds, making it suitable for nutritional fortification. This study investigated the impact of HF addition (5–40%) on the quality of muffins prepared with wheat flour (WF) and whole wheat flour (WWF). An initial hedonic sensory evaluation identified 5–20% HF as the most acceptable substitution range, which was then subjected to detailed physicochemical, sensory, textural, colorimetric, and microbiological analyses. Incorporation of HF significantly increased protein (up to +44%), fiber (up to +172%), and ash (up to +76%) contents, while decreasing moisture (−39%). Both WF and WWF muffins darkened with HF incorporation, with a greater lightness reduction in WF. Texture changes (increased firmness and gumminess) were more pronounced in WF muffins. Sensory analysis revealed that WF muffins were best accepted at 10–15% HF, whereas WWF muffins maintained good acceptability up to 20% HF, indicating better integration of HF in the whole grain matrix. All samples complied with microbiological safety requirements. Overall, the optimal substitution level was 10–15% HF in WF muffins and 20% HF in WWF muffins, demonstrating that HF can enhance the nutritional profile of muffins while maintaining acceptable technological and sensory properties in a matrix-dependent manner. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

15 pages, 4584 KB  
Article
Effect of Cutting Age on Seed Production of Flemingia Macrophylla for the Optimisation of Cropping Systems, Cotopaxi-Ecuador
by Ricardo Luna-Murillo, Joselyne Solórzano, Idalia Pacheco-Tigselema, Jairo Dueñas-Tovar, Lady Bravo-Montero and María Jaya-Montalvo
Agriculture 2025, 15(16), 1781; https://doi.org/10.3390/agriculture15161781 - 20 Aug 2025
Viewed by 1115
Abstract
The tropical shrub legume Flemingia macrophylla is a specie that influences higher forage production, increases protein content, and reduces nitrogen fertiliser and animal protein supplement use. However, there is little scientific literature on the influence of the cutting age of Flemingia macrophylla on [...] Read more.
The tropical shrub legume Flemingia macrophylla is a specie that influences higher forage production, increases protein content, and reduces nitrogen fertiliser and animal protein supplement use. However, there is little scientific literature on the influence of the cutting age of Flemingia macrophylla on the nutritional-productive behaviour of the plant and soil microbiology. Therefore, this study addresses the interaction between high-value forages and coffee cropping systems under agroecological management. The study aims to evaluate the seed production of Flemingia macrophylla and its association with the crops of “Geisha Coffee” and “Sarchimor Coffee” at the Sacha Wiwa Experimental Centre (Cotopaxi-Ecuador) through the analysis of growth and bromatology of the seeds at cutting ages of 30, 45, 60, and 75 days for their potential use in the local agro-industry. The methodology was composed of three phases: (i) crop experimental design, (ii) crop sampling, and (iii) agroecological management strategies. The results suggest that Flemingia macrophylla can be integrated into agroforestry systems with coffee, reducing dependence on chemical fertilisers and improving seed productivity. Seed production peaked at 60 days, with the highest levels of protein (31.44%), nitrogen (5.03%), potassium (1.17%), and calcium (0.78%), making it an excellent forage source. Fibre content, however, was highest at 75 days (11.20%), making this cycle preferable when higher fibre is required. Notably, soil organic matter depletion in plots associated with Sarchimor coffee suggested higher nutrient demands. This study demonstrated the potential of Flemingia macrophylla to diversify agroecological systems with improved productivity and nutritional quality. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

19 pages, 1124 KB  
Article
Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage
by María R. Yagüe, José A. González-Pérez, Gonzalo Almendros and M. Carmen Lobo
Sustainability 2025, 17(16), 7335; https://doi.org/10.3390/su17167335 - 14 Aug 2025
Viewed by 1764
Abstract
The EU’s Circular Economy Action Plan promotes the use of organic waste as fertilizer, thus allowing the recycling of nutrients in the agricultural system. Research on the agronomic reuse of composted substrates previously employed for mushroom cultivation remains limited, despite their rich content [...] Read more.
The EU’s Circular Economy Action Plan promotes the use of organic waste as fertilizer, thus allowing the recycling of nutrients in the agricultural system. Research on the agronomic reuse of composted substrates previously employed for mushroom cultivation remains limited, despite their rich content of plant residues and fungal biomass, which could be repurposed as soil amendments under suitable conditions. This study evaluated the agronomic potential of spent mushroom substrates from Agaricus bisporus and Pleurotus ostreatus, including recomposted A. bisporus residues. A range of analytical procedures was employed to assess their suitability for soil improvement and the formation of humic-like substances, including physical, chemical, microbiological, phytotoxicity, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analyses. The spent Pleurotus substrate exhibited low nutrient content (1.1% N, negligible P, 0.9% K), but high water retention (820 kg water Mg−1) and 48% organic carbon (OC), indicating its potential as a soil amendment or seedling substrate. In contrast, spent and composted Agaricus substrates showed moderate nutrient content (1.8–2.7% N; 0.8–0.7% P and 1.3–1.8% K), appropriate C/N ratios (10–15), and sufficient OC levels (24–30%), supporting their use as fertilizers. However, elevated salinity levels (18–23 dS m−1) may restrict their application for salt-sensitive crops. No significant phytotoxic effects on seed germination were observed, and microbiological analyses confirmed the absence of Salmonella spp. in the three substrates. Py-GC/MS revealed a humic acid-like fraction comprising altered lignin structures enriched with lipid and nitrogen compounds. Overall, the studied materials demonstrate promising agronomic value and the capacity to contribute to long-term soil carbon storage. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

18 pages, 903 KB  
Article
Effect of Allyl-Isothiocyanate Release from Black Mustard (Brassica nigra) Seeds During Refrigerated Storage to Preserve Fresh Tench (Tinca tinca) Fillets
by María José Rodríguez Gómez, María Alejo Martínez, Raquel Manzano Durán, Daniel Martín-Vertedor and Patricia Calvo Magro
Fishes 2025, 10(8), 381; https://doi.org/10.3390/fishes10080381 - 5 Aug 2025
Viewed by 1804
Abstract
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts [...] Read more.
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts of defatted mustard seed (300, 400 and 500 mg) were added to hermetic polypropylene trays. Microbiological, sensory, and gas chromatography with MS detection analysis were done. AITC release increased progressively until the third day of storage, significantly delaying the development of microorganisms in samples with higher mustard seed content. The tasting panel detected positive aromas at the beginning of the study, but these decreased and negative aromas appeared. The mustard seed treatment resulted in a higher positive aroma at the end of the storage, reducing rotting and ammonia odours. A total of 31 volatile compounds were detected and grouped into hydrocarbon, alcohol, benzenoid, isothiocyanate, ketone, acetate, aldehyde, and others. Butylated hydroxytoluene, an indicator of bacterial contamination, was the major aromatic compound found during storage. The release of AITC resulted in fewer organic compounds with negative aromas appearing during storage. PCA analysis allowed us to classify the assays during storage according to their volatile profiles, confirming the differences observed between treatments. Thus, adding mustard seed to fish packaging could be a viable alternative to extending the product’s shelf life and ensuring food safety. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

14 pages, 4892 KB  
Article
Comparison of Susceptibility to Microbiological Contamination in FAMEs Synthesized from Residual and Refined Lard During Simulated Storage
by Samuel Lepe-de-Alba, Conrado Garcia-Gonzalez, Fernando A. Solis-Dominguez, Rafael Martínez-Miranda, Mónica Carrillo-Beltrán, José L. Arcos-Vega, Carlos A. Sagaste-Bernal, Armando Pérez-Sánchez, Marcos A. Coronado-Ortega and José R. Ayala-Bautista
Appl. Biosci. 2025, 4(3), 39; https://doi.org/10.3390/applbiosci4030039 - 4 Aug 2025
Viewed by 1102
Abstract
The present research features an experimental comparative design and the objective of this work was to determine the susceptibility to microbiological contamination in fatty acid methyl esters (FAMEs) and the FAME–water interface of residual and refined lard, large volume simulating storage conditions as [...] Read more.
The present research features an experimental comparative design and the objective of this work was to determine the susceptibility to microbiological contamination in fatty acid methyl esters (FAMEs) and the FAME–water interface of residual and refined lard, large volume simulating storage conditions as fuel supply chain, and to identify the microorganisms developed. The plates were seeded according to ASTM E-1259 and the instructions provided by the manufacturer of the Bushnell Haas agar. Microbiological growth was observed at the FAME–water interface of FAME obtained from residual lard. Using the MALDI-TOF mass spectrometry technique, Pseudomonas aeruginosa and Streptomyces violaceoruber bacteria were identified in the residual lard FAMEs, with the latter being previously reported in FAMEs. The implications of microorganism development on the physicochemical quality of FAMEs are significant, as it leads to an increase in the acid index, which may negatively impact metals by inducing corrosion. The refined lard FAMEs did not show any development of microorganisms. The present research concluded that residual lard tends to be more prone to microbiological attack if the conditions of water and temperature affect microbial growth. The findings will contribute to the knowledge base for a safer introduction of FAMEs into the biofuel matrix. Full article
Show Figures

Figure 1

24 pages, 18761 KB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 1772
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

20 pages, 1056 KB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 1184
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

16 pages, 1665 KB  
Article
Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil
by Brenda Rivas-Aratoma, Wendy E. Pérez, Luis Felipe Ortiz-Dongo, Yuri Arévalo-Aranda and Richard Solórzano-Acosta
Appl. Sci. 2025, 15(14), 8041; https://doi.org/10.3390/app15148041 - 19 Jul 2025
Cited by 1 | Viewed by 1653
Abstract
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative [...] Read more.
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative effects of two organic amendments—vermicompost leachate and biochar—on the performance of popcorn maize (Zea mays L. var. everta) cultivated in saline soil conditions. Four treatments were evaluated: T0 (Control), T1 (Vermicompost leachate), T2 (Biochar), and T3 (Vermicompost leachate + Biochar), each with 10 replicates arranged in a Completely Randomized Design (CRD). Although various soil physicochemical, microbiological, and agronomic parameters displayed no significant differences compared to the control, the application of biochar resulted in considerable improvements in soil total organic carbon, the microbial community (mesophilic aerobic bacteria, molds, and yeasts), and increased seed length and diameter. In contrast, vermicompost leachate alone negatively impacted plant growth, leading to decreases in leaf area, stem thickness, and grain yield. Specifically, grain yield declined by 46% with leachate alone and by 31% when combined with biochar, compared to the control. These findings emphasize the superior effectiveness of biochar over vermicompost leachate as a soil amendment under saline conditions and highlight the potential risks of widely applying compost teas in stressed soils. It is recommended to conduct site-specific assessments and screenings for phytotoxins and phytopathogens prior to use. Additionally, the combined application of leachate and biochar may not be advisable given the tested soil characteristics. Full article
Show Figures

Figure 1

Back to TopTop