Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = secure CPU architecture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1308 KB  
Article
From Edge Transformer to IoT Decisions: Offloaded Embeddings for Lightweight Intrusion Detection
by Frédéric Adjewa, Moez Esseghir and Leïla Merghem-Boulahia
Sensors 2026, 26(2), 356; https://doi.org/10.3390/s26020356 - 6 Jan 2026
Viewed by 289
Abstract
The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT) is enabling a new class of intelligent applications. Specifically, Large Language Models (LLMs) are emerging as powerful tools not only for natural language understanding but also for enhancing IoT security. However, [...] Read more.
The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT) is enabling a new class of intelligent applications. Specifically, Large Language Models (LLMs) are emerging as powerful tools not only for natural language understanding but also for enhancing IoT security. However, the integration of these computationally intensive models into resource-constrained IoT environments presents significant challenges. This paper provides an in-depth examination of how LLMs can be adapted to secure IoT ecosystems. We identify key application areas, discuss major challenges, and propose optimization strategies for resource-limited settings. Our primary contribution is a novel collaborative embeddings offloading mechanism for IoT intrusion detection named SEED (Semantic Embeddings for Efficient Detection). This system leverages a lightweight, fine-tuned BERT model, chosen for its proven contextual and semantic understanding of sequences, to generate rich network embeddings at the edge. A compact neural network deployed on the end-device then queries these embeddings to assess network flow normality. This architecture alleviates the computational burden of running a full transformer on the device while capitalizing on its analytical performance. Our optimized BERT model is reduced by approximately 90% from its original size, now representing approximately 41 MB, suitable for the Edge. The resulting compact neural network is a mere 137 KB, appropriate for the IoT devices. This system achieves 99.9% detection accuracy with an average inference time of under 70 ms on a standard CPU. Finally, the paper discusses the ethical implications of LLM-IoT integration and evaluates the resilience of LLMs in dynamic and adversarial environments. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

17 pages, 3250 KB  
Article
Evaluating Middleware Performance in the Transition from Monolithic to Microservices Architecture for Banking Applications
by Rizza Fauziah and Nico Surantha
Electronics 2026, 15(1), 221; https://doi.org/10.3390/electronics15010221 - 2 Jan 2026
Viewed by 412
Abstract
The swift development of digital financial services has increased transaction volumes and heightened system performance requirements. Cardless cash deposit transactions at PT Bank XYZ have significantly increased since 2022. This growth necessitates an evaluation and improvement of the existing system architecture. This study [...] Read more.
The swift development of digital financial services has increased transaction volumes and heightened system performance requirements. Cardless cash deposit transactions at PT Bank XYZ have significantly increased since 2022. This growth necessitates an evaluation and improvement of the existing system architecture. This study proposes a microservices-based architecture deployed in a middleware environment to enhance performance, scalability, and availability. Key enhancements include asynchronous service processing, dual-layer authentication, and data caching using the Terracotta Server Array. The evaluation uses metrics such as CPU usage, RAM usage, latency, throughput, error rate, success rate, and recovery time. Both the monolithic and microservice architectures were assessed through stress testing. Tools used include Red Hat OpenShift Dashboard, NMon Visualizer, and Apache JMeter. Results indicate that the microservices architecture outperforms the monolithic architecture by delivering better resource efficiency, lower latency, higher throughput, and faster recovery times. Moreover, implementing dual-layer authentication enhances security without significantly increasing system complexity. The findings confirm the long-term viability of the microservices architecture for high-demand financial applications. Full article
Show Figures

Figure 1

16 pages, 5273 KB  
Article
Fog Computing and Graph-Based Databases for Remote Health Monitoring in IoMT Settings
by Karrar A. Yousif, Jorge Calvillo-Arbizu and Agustín W. Lara-Romero
IoT 2025, 6(4), 76; https://doi.org/10.3390/iot6040076 - 3 Dec 2025
Viewed by 448
Abstract
Remote patient monitoring is a promising and transformative pillar of healthcare. However, deploying such systems at a scale—across thousands of patients and Internet of Medical Things (IoMT) devices—demands robust, low-latency, and scalable storage systems. This research examines the application of Fog Computing for [...] Read more.
Remote patient monitoring is a promising and transformative pillar of healthcare. However, deploying such systems at a scale—across thousands of patients and Internet of Medical Things (IoMT) devices—demands robust, low-latency, and scalable storage systems. This research examines the application of Fog Computing for remote patient monitoring in IoMT settings, where a large volume of data, low latency, and secure management of confidential healthcare information are essential. We propose a four-layer IoMT–Fog–Cloud architecture in which Fog nodes, equipped with graph-based databases (Neo4j), conduct local processing, filtering, and integration of heterogeneous health data before transmitting it to cloud servers. To assess the viability of our approach, we implemented a containerised Fog node and simulated multiple patient-device networks using a real-world dataset. System performance was evaluated using 11 scenarios with varying numbers of devices and data transmission frequencies. Performance metrics include CPU load, memory footprint, and query latency. The results demonstrate that Neo4j can efficiently ingest and query millions of health observations with an acceptable latency of less than 500 ms, even in extreme scenarios involving more than 12,000 devices transmitting data every 50 ms. The resource consumption remained well below the critical thresholds, highlighting the suitability of the proposed approach for Fog nodes. Combining Fog computing and Neo4j is a novel approach that meets the latency and real-time data ingestion requirements of IoMT environments. Therefore, it is suitable for supporting delay-sensitive monitoring programmes, where rapid detection of anomalies is critical (e.g., a prompt response to cardiac emergencies or early detection of respiratory deterioration in patients with chronic obstructive pulmonary disease), even at a large scale. Full article
(This article belongs to the Special Issue IoT-Based Assistive Technologies and Platforms for Healthcare)
Show Figures

Figure 1

43 pages, 6017 KB  
Article
An Efficient Framework for Automated Cyber Threat Intelligence Sharing
by Muhammad Dikko Gambo, Ayaz H. Khan, Ahmad Almulhem and Basem Almadani
Electronics 2025, 14(20), 4045; https://doi.org/10.3390/electronics14204045 - 15 Oct 2025
Viewed by 2802
Abstract
As cyberattacks grow increasingly sophisticated, the timely exchange of Cyber Threat Intelligence (CTI) has become essential to enhancing situational awareness and enabling proactive defense. Several challenges exist in CTI sharing, including the timely dissemination of threat information, the need for privacy and confidentiality, [...] Read more.
As cyberattacks grow increasingly sophisticated, the timely exchange of Cyber Threat Intelligence (CTI) has become essential to enhancing situational awareness and enabling proactive defense. Several challenges exist in CTI sharing, including the timely dissemination of threat information, the need for privacy and confidentiality, and the accessibility of data even in unstable network conditions. In addition to security and privacy, latency and throughput are critical performance metrics when selecting a suitable platform for CTI sharing. Substantial efforts have been devoted to developing effective solutions for CTI sharing. Several existing CTI sharing systems adopt either centralized or blockchain-based architectures. However, centralized models suffer from scalability bottlenecks and single points of failure, while the slow and limited transactions of blockchain make it unsuitable for real-time and reliable CTI sharing. To address these challenges, we propose a DDS-based framework that automates data sanitization, STIX-compliant structuring, and real-time dissemination of CTI. Our prototype evaluation demonstrates low latency, linear throughput scaling at configured send rates up to 125 messages per second, with 100% delivery success across all scenarios, while sustaining low CPU and memory overheads. The findings of this study highlight the unique ability of DDS to overcome the timeliness, security, automation, and reliability challenges of CTI sharing. Full article
(This article belongs to the Special Issue New Trends in Cryptography, Authentication and Information Security)
Show Figures

Figure 1

21 pages, 2365 KB  
Article
BIONIB: Blockchain-Based IoT Using Novelty Index in Bridge Health Monitoring
by Divija Swetha Gadiraju, Ryan McMaster, Saeed Eftekhar Azam and Deepak Khazanchi
Appl. Sci. 2025, 15(19), 10542; https://doi.org/10.3390/app151910542 - 29 Sep 2025
Viewed by 708
Abstract
Bridge health monitoring is critical for infrastructure safety, especially with the growing deployment of IoT sensors. This work addresses the challenge of securely storing large volumes of sensor data and extracting actionable insights for timely damage detection. We propose BIONIB, a novel framework [...] Read more.
Bridge health monitoring is critical for infrastructure safety, especially with the growing deployment of IoT sensors. This work addresses the challenge of securely storing large volumes of sensor data and extracting actionable insights for timely damage detection. We propose BIONIB, a novel framework that combines an unsupervised machine learning approach called the Novelty Index (NI) with a scalable blockchain platform (EOSIO) for secure, real-time monitoring of bridges. BIONIB leverages EOSIO’s smart contracts for efficient, programmable, and secure data management across distributed sensor nodes. Experiments on real-world bridge sensor data under varying loads, climatic conditions, and health states demonstrate BIONIB’s practical effectiveness. Key findings include CPU utilization below 40% across scenarios, a twofold increase in storage efficiency, and acceptable latency degradation, which is not critical in this domain. Our comparative analysis suggests that BIONIB fills a unique niche by coupling NI-based detection with a decentralized architecture, offering real-time alerts and transparent, verifiable records across sensor nodes. Full article
(This article belongs to the Special Issue Vibration Monitoring and Control of the Built Environment)
Show Figures

Figure 1

29 pages, 1386 KB  
Article
A Hybrid Zero Trust Deployment Model for Securing O-RAN Architecture in 6G Networks
by Max Hashem Eiza, Brian Akwirry, Alessandro Raschella, Michael Mackay and Mukesh Kumar Maheshwari
Future Internet 2025, 17(8), 372; https://doi.org/10.3390/fi17080372 - 18 Aug 2025
Viewed by 1503
Abstract
The evolution toward sixth generation (6G) wireless networks promises higher performance, greater flexibility, and enhanced intelligence. However, it also introduces a substantially enlarged attack surface driven by open, disaggregated, and multi-vendor Open RAN (O-RAN) architectures that will be utilised in 6G networks. This [...] Read more.
The evolution toward sixth generation (6G) wireless networks promises higher performance, greater flexibility, and enhanced intelligence. However, it also introduces a substantially enlarged attack surface driven by open, disaggregated, and multi-vendor Open RAN (O-RAN) architectures that will be utilised in 6G networks. This paper addresses the urgent need for a practical Zero Trust (ZT) deployment model tailored to O-RAN specification. To do so, we introduce a novel hybrid ZT deployment model that establishes the trusted foundation for AI/ML-driven security in O-RAN, integrating macro-level enclave segmentation with micro-level application sandboxing for xApps/rApps. In our model, the Policy Decision Point (PDP) centrally manages dynamic policies, while distributed Policy Enforcement Points (PEPs) reside in logical enclaves, agents, and gateways to enable per-session, least-privilege access control across all O-RAN interfaces. We demonstrate feasibility via a Proof of Concept (PoC) implemented with Kubernetes and Istio and based on the NIST Policy Machine (PM). The PoC illustrates how pods can represent enclaves and sidecar proxies can embody combined agent/gateway functions. Performance discussion indicates that enclave-based deployment adds 1–10 ms of additional per-connection latency while CPU/memory overhead from running a sidecar proxy per enclave is approximately 5–10% extra utilisation, with each proxy consuming roughly 100–200 MB of RAM. Full article
(This article belongs to the Special Issue Secure and Trustworthy Next Generation O-RAN Optimisation)
Show Figures

Figure 1

25 pages, 2908 KB  
Article
Secure and Scalable File Encryption for Cloud Systems via Distributed Integration of Quantum and Classical Cryptography
by Changjong Kim, Seunghwan Kim, Kiwook Sohn, Yongseok Son, Manish Kumar and Sunggon Kim
Appl. Sci. 2025, 15(14), 7782; https://doi.org/10.3390/app15147782 - 11 Jul 2025
Cited by 1 | Viewed by 2193
Abstract
We propose a secure and scalable file-encryption scheme for cloud systems by integrating Post-Quantum Cryptography (PQC), Quantum Key Distribution (QKD), and Advanced Encryption Standard (AES) within a distributed architecture. While prior studies have primarily focused on secure key exchange or authentication protocols (e.g., [...] Read more.
We propose a secure and scalable file-encryption scheme for cloud systems by integrating Post-Quantum Cryptography (PQC), Quantum Key Distribution (QKD), and Advanced Encryption Standard (AES) within a distributed architecture. While prior studies have primarily focused on secure key exchange or authentication protocols (e.g., layered PQC-QKD key distribution), our scheme extends beyond key management by implementing a distributed encryption architecture that protects large-scale files through integrated PQC, QKD, and AES. To support high-throughput encryption, our proposed scheme partitions the target file into fixed-size subsets and distributes them across slave nodes, each performing parallel AES encryption using a locally reconstructed key from a PQC ciphertext. Each slave node receives a PQC ciphertext that encapsulates the AES key, along with a PQC secret key masked using QKD based on the BB84 protocol, both of which are centrally generated and managed by the master node for secure coordination. In addition, an encryption and transmission pipeline is designed to overlap I/O, encryption, and communication, thereby reducing idle time and improving resource utilization. The master node performs centralized decryption by collecting encrypted subsets, recovering the AES key, and executing decryption in parallel. Our evaluation using a real-world medical dataset shows that the proposed scheme achieves up to 2.37× speedup in end-to-end runtime and up to 8.11× speedup in encryption time over AES (Original). In addition to performance gains, our proposed scheme maintains low communication cost, stable CPU utilization across distributed nodes, and negligible overhead from quantum key management. Full article
(This article belongs to the Special Issue AI-Enabled Next-Generation Computing and Its Applications)
Show Figures

Figure 1

26 pages, 1929 KB  
Article
PASS: A Flexible Programmable Framework for Building Integrated Security Stack in Public Cloud
by Wenwen Fu, Jinli Yan, Jian Zhang, Yinhan Sun, Yong Wang, Ziwen Zhang, Qianming Yang and Yongwen Wang
Electronics 2025, 14(13), 2650; https://doi.org/10.3390/electronics14132650 - 30 Jun 2025
Viewed by 885
Abstract
Integrated security stacks, which offer diverse security function chains in a single device, hold substantial potential to satisfy the security requirements of multiple tenants on a public cloud. However, it is difficult for the software-only or hardware-customized security stack to establish a good [...] Read more.
Integrated security stacks, which offer diverse security function chains in a single device, hold substantial potential to satisfy the security requirements of multiple tenants on a public cloud. However, it is difficult for the software-only or hardware-customized security stack to establish a good tradeoff between performance and flexibility. SmartNIC overcomes these limitations by providing a programmable platform for implementing these functions with hardware acceleration. Significantly, without a professional CPU/SmartNIC co-design, developing security function chains from scratch with low-level APIs is challenging and tedious for network operators. This paper presents PASS, a flexible programmable framework for the fast development of high-performance security stacks with SmartNIC acceleration. In the data plane, PASS provides modular abstractions to extract the shared security logic and eliminate redundant operations by reusing the intermediate results with the customized metadata. In the control plane, PASS offloads the tedious security policy conversion to the proposed security auxiliary plane. With well-defined APIs, developers only need to focus on the core logic instead of labor-intensive shared logic. We built a PASS prototype based on a CPU-FPGA platform and developed three typical security components. Compared to implementation from scratch, PASS reduces the code by 65% on average. Additionally, PASS improves security processing performance by 76% compared to software-only implementations and optimizes the latency of policy translation and distribution by 90% versus the architecture without offloading. Full article
Show Figures

Figure 1

22 pages, 2535 KB  
Article
Research on a Secure and Reliable Runtime Patching Method for Cyber–Physical Systems and Internet of Things Devices
by Zesheng Xi, Bo Zhang, Aniruddha Bhattacharjya, Yunfan Wang and Chuan He
Symmetry 2025, 17(7), 983; https://doi.org/10.3390/sym17070983 - 21 Jun 2025
Viewed by 1509
Abstract
Recent advances in technologies such as blockchain, the Internet of Things (IoT), Cyber–Physical Systems (CPSs), and the Industrial Internet of Things (IIoT) have driven the digitalization and intelligent transformation of modern industries. However, embedded control devices within power system communication infrastructures have become [...] Read more.
Recent advances in technologies such as blockchain, the Internet of Things (IoT), Cyber–Physical Systems (CPSs), and the Industrial Internet of Things (IIoT) have driven the digitalization and intelligent transformation of modern industries. However, embedded control devices within power system communication infrastructures have become increasingly susceptible to cyber threats due to escalating software complexity and extensive network exposure. We have seen that symmetric conventional patching techniques—both static and dynamic—often fail to satisfy the stringent requirements of real-time responsiveness and computational efficiency in resource-constrained environments of all kinds of power grids. To address this limitation, we have proposed a hardware-assisted runtime patching framework tailored for embedded systems in critical power system networks. Our method has integrated binary-level vulnerability modeling, execution-trace-driven fault localization, and lightweight patch synthesis, enabling dynamic, in-place code redirection without disrupting ongoing operations. By constructing a system-level instruction flow model, the framework has leveraged on-chip debug registers to deploy patches at runtime, ensuring minimal operational impact. Experimental evaluations within a simulated substation communication architecture have revealed that the proposed approach has reduced patch latency by 92% over static techniques, which are symmetrical in a working way, while incurring less than 3% CPU overhead. This work has offered a scalable and real-time model-driven defense strategy that has enhanced the cyber–physical resilience of embedded systems in modern power systems, contributing new insights into the intersection of runtime security and grid infrastructure reliability. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 3864 KB  
Article
Raspberry Pi-Based Face Recognition Door Lock System
by Seifeldin Sherif Fathy Ali Elnozahy, Senthill C. Pari and Lee Chu Liang
IoT 2025, 6(2), 31; https://doi.org/10.3390/iot6020031 - 20 May 2025
Cited by 2 | Viewed by 6306
Abstract
Access control systems protect homes and businesses in the continually evolving security industry. This paper designs and implements a Raspberry Pi-based facial recognition door lock system using artificial intelligence and computer vision for reliability, efficiency, and usability. With the Raspberry Pi as its [...] Read more.
Access control systems protect homes and businesses in the continually evolving security industry. This paper designs and implements a Raspberry Pi-based facial recognition door lock system using artificial intelligence and computer vision for reliability, efficiency, and usability. With the Raspberry Pi as its CPU, the system uses facial recognition for authentication. A camera module for real-time image capturing, a relay module for solenoid lock control, and OpenCV for image processing are essential. The system uses the DeepFace library to detect user emotions and adaptive learning to improve recognition accuracy for approved users. The device also adapts to poor lighting and distances, and it sends real-time remote monitoring messages. Some of the most important things that have been achieved include adaptive facial recognition, ensuring that the system changes as it is used, and integrating real-time notifications and emotion detection without any problems. Face recognition worked well in many settings. Modular architecture facilitated hardware–software integration and scalability for various applications. In conclusion, this study created an intelligent facial recognition door lock system using Raspberry Pi hardware and open-source software libraries. The system addresses traditional access control limits and is practical, scalable, and inexpensive, demonstrating biometric technology’s potential in modern security systems. Full article
Show Figures

Figure 1

15 pages, 783 KB  
Article
On Microservice-Based Architecture for Digital Forensics Applications: A Competition Policy Perspective
by Fragkiskos Ninos, Konstantinos Karalas, Dimitrios Dechouniotis and Michael Polemis
Future Internet 2025, 17(4), 137; https://doi.org/10.3390/fi17040137 - 23 Mar 2025
Viewed by 1226
Abstract
Digital forensics systems are complex applications consisting of numerous individual components that demand substantial computing resources. By adopting the concept of microservices, forensics applications can be divided into smaller, independently managed services. In this context, cloud resource orchestration platforms like Kubernetes provide augmented [...] Read more.
Digital forensics systems are complex applications consisting of numerous individual components that demand substantial computing resources. By adopting the concept of microservices, forensics applications can be divided into smaller, independently managed services. In this context, cloud resource orchestration platforms like Kubernetes provide augmented functionalities, such as resource scaling, load balancing, and monitoring, supporting every stage of the application’s lifecycle. This article explores the deployment of digital forensics applications over a microservice-based architecture. Leveraging resource scaling and persistent storage mechanisms, we introduce a vertical scaling mechanism for compute-intensive forensics applications. A practical evaluation of digital forensics applications in competition investigations was performed using datasets from the private cloud of the Hellenic Competition Commission. The numerical results illustrate that the processing time of CPU-intensive tasks is reduced significantly using dynamic resource scaling, while data integrity and security requirements are fulfilled. Full article
Show Figures

Figure 1

25 pages, 1063 KB  
Article
Enhancing Monitoring Performance: A Microservices Approach to Monitoring with Spyware Techniques and Prediction Models
by Anubis Graciela de Moraes Rossetto, Darlan Noetzold, Luis Augusto Silva and Valderi Reis Quietinho Leithardt
Sensors 2024, 24(13), 4212; https://doi.org/10.3390/s24134212 - 28 Jun 2024
Cited by 1 | Viewed by 3422
Abstract
In today’s digital landscape, organizations face significant challenges, including sensitive data leaks and the proliferation of hate speech, both of which can lead to severe consequences such as financial losses, reputational damage, and psychological impacts on employees. This work considers a comprehensive solution [...] Read more.
In today’s digital landscape, organizations face significant challenges, including sensitive data leaks and the proliferation of hate speech, both of which can lead to severe consequences such as financial losses, reputational damage, and psychological impacts on employees. This work considers a comprehensive solution using a microservices architecture to monitor computer usage within organizations effectively. The approach incorporates spyware techniques to capture data from employee computers and a web application for alert management. The system detects data leaks, suspicious behaviors, and hate speech through efficient data capture and predictive modeling. Therefore, this paper presents a comparative performance analysis between Spring Boot and Quarkus, focusing on objective metrics and quantitative statistics. By utilizing recognized tools and benchmarks in the computer science community, the study provides an in-depth understanding of the performance differences between these two platforms. The implementation of Quarkus over Spring Boot demonstrated substantial improvements: memory usage was reduced by up to 80% and CPU usage by 95%, and system uptime decreased by 119%. This solution offers a robust framework for enhancing organizational security and mitigating potential threats through proactive monitoring and predictive analysis while also guiding developers and software architects in making informed technological choices. Full article
Show Figures

Figure 1

26 pages, 3341 KB  
Article
A Comprehensive Architecture for Federated Learning-Based Smart Advertising
by Rasool Seyghaly, Jordi Garcia and Xavi Masip-Bruin
Sensors 2024, 24(12), 3765; https://doi.org/10.3390/s24123765 - 9 Jun 2024
Cited by 1 | Viewed by 3823
Abstract
This paper introduces a cutting-edge data architecture designed for a smart advertising context, prioritizing efficient data flow and performance, robust security, while guaranteeing data privacy and integrity. At the core of this study lies the application of federated learning (FL) as the primary [...] Read more.
This paper introduces a cutting-edge data architecture designed for a smart advertising context, prioritizing efficient data flow and performance, robust security, while guaranteeing data privacy and integrity. At the core of this study lies the application of federated learning (FL) as the primary methodology, which emphasizes the authenticity and privacy of data while promptly discarding irrelevant or fraudulent information. Our innovative data model employs a semi-random role assignment strategy based on a variety of criteria to efficiently collect and amalgamate data. The architecture is composed of model nodes, data nodes, and validator nodes, where the role of each node is determined by factors such as computational capability, interconnection quality, and historical performance records. A key feature of our proposed system is the selective engagement of a subset of nodes for modeling and validation, optimizing resource use and minimizing data loss. The AROUND social network platform serves as a real-world case study, illustrating the efficacy of our data architecture in a practical setting. Both simulated and real implementations of our architecture showcase its potential to dramatically curtail network traffic and average CPU usage, while preserving the accuracy of the FL model. Remarkably, the system is capable of achieving over a 50% reduction in both network traffic and average CPU usage even when the user count escalates by twenty-fold. The click rate, user engagement, and other parameters have also been evaluated, proving that the proposed architecture’s advantages do not affect the smart advertising accuracy. These findings highlight the proposed architecture’s capacity to scale efficiently and maintain high performance in smart advertising environments, making it a valuable contribution to the evolving landscape of digital marketing and FL. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

13 pages, 1011 KB  
Article
Edge HPC Architectures for AI-Based Video Surveillance Applications
by Federico Rossi and Sergio Saponara
Electronics 2024, 13(9), 1757; https://doi.org/10.3390/electronics13091757 - 2 May 2024
Cited by 3 | Viewed by 3428
Abstract
The introduction of artificial intelligence (AI) in video surveillance systems has significantly transformed security practices, allowing for autonomous monitoring and real-time detection of threats. However, the effectiveness and efficiency of AI-powered surveillance rely heavily on the hardware infrastructure, specifically high-performance computing (HPC) architectures. [...] Read more.
The introduction of artificial intelligence (AI) in video surveillance systems has significantly transformed security practices, allowing for autonomous monitoring and real-time detection of threats. However, the effectiveness and efficiency of AI-powered surveillance rely heavily on the hardware infrastructure, specifically high-performance computing (HPC) architectures. This article examines the impact of different platforms for HPC edge servers, including x86 and ARM CPU-based systems and Graphics Processing Units (GPUs), on the speed and accuracy of video processing tasks. By using advanced deep learning frameworks, a video surveillance system based on YOLO object detection and DeepSort tracking algorithms is developed and evaluated. This study thoroughly assesses the strengths, limitations, and suitability of different hardware architectures for various AI-based surveillance scenarios. Full article
Show Figures

Figure 1

21 pages, 1201 KB  
Article
Parallel Implementation of Lightweight Secure Hash Algorithm on CPU and GPU Environments
by Hojin Choi, SeongJun Choi and SeogChung Seo
Electronics 2024, 13(5), 896; https://doi.org/10.3390/electronics13050896 - 26 Feb 2024
Cited by 3 | Viewed by 4799
Abstract
Currently, cryptographic hash functions are widely used in various applications, including message authentication codes, cryptographic random generators, digital signatures, key derivation functions, and post-quantum algorithms. Notably, they play a vital role in establishing secure communication between servers and clients. Specifically, servers often need [...] Read more.
Currently, cryptographic hash functions are widely used in various applications, including message authentication codes, cryptographic random generators, digital signatures, key derivation functions, and post-quantum algorithms. Notably, they play a vital role in establishing secure communication between servers and clients. Specifically, servers often need to compute a large number of hash functions simultaneously to provide smooth services to connected clients. In this paper, we present highly optimized parallel implementations of Lightweight Secure Hash (LSH), a hash algorithm developed in Korea, on server sides. To optimize LSH performance, we leverage two parallel architectures: AVX-512 on high-end CPUs and NVIDIA GPUs. In essence, we introduce a word-level parallel processing design suitable for AVX-512 instruction sets and a data parallel processing design appropriate for the NVIDIA CUDA platform. In the former approach, we parallelize the core functions of LSH using AVX-512 registers and instructions. As a result, our first implementation achieves a performance improvement of up to 50.37% compared to the latest LSH AVX-2 implementation. In the latter approach, we optimize the core operation of LSH with CUDA PTX assembly and apply a coalesced memory access pattern. Furthermore, we determine the optimal number of blocks/threads configuration and CUDA streams for RTX 2080Ti and RTX 3090. Consequently, in the RTX 3090 architecture, our optimized CUDA implementation achieves about a 180.62% performance improvement compared with the initially ported LSH implementation to the CUDA platform. As far as we know, this is the first work on optimizing LSH with AVX-512 and NVIDIA GPU. The proposed implementation methodologies can be used alone or together in a server environment to achieve the maximum throughput of LSH computation. Full article
(This article belongs to the Special Issue Big Data and Cyber Security: Emerging Approaches and Applications)
Show Figures

Figure 1

Back to TopTop