
Citation: Choi, H.; Choi, S.; Seo, S.

Parallel Implementation of

Lightweight Secure Hash Algorithm

on CPU and GPU Environments.

Electronics 2024, 13, 896. https://

doi.org/10.3390/electronics13050896

Academic Editors: Nitin Sukhija

and Kuan-Ching Li

Received: 31 October 2023

Revised: 13 February 2024

Accepted: 19 February 2024

Published: 26 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Parallel Implementation of Lightweight Secure Hash Algorithm
on CPU and GPU Environments
Hojin Choi 1 , SeongJun Choi 2 and SeogChung Seo 1,*

1 Department of Financial Information Security, Kookmin University, Seoul 02707, Republic of Korea;
ondoli0312@kookmin.ac.kr

2 Department of Information Security, Cryptology, and Mathematics, Kookmin University,
Seoul 02707, Republic of Korea; sodidakfdl@kookmin.ac.kr

* Correspondence: scseo@kookmin.ac.kr; Tel.: +82-2-910-4742

Abstract: Currently, cryptographic hash functions are widely used in various applications, including
message authentication codes, cryptographic random generators, digital signatures, key derivation
functions, and post-quantum algorithms. Notably, they play a vital role in establishing secure com-
munication between servers and clients. Specifically, servers often need to compute a large number
of hash functions simultaneously to provide smooth services to connected clients. In this paper,
we present highly optimized parallel implementations of Lightweight Secure Hash (LSH), a hash
algorithm developed in Korea, on server sides. To optimize LSH performance, we leverage two
parallel architectures: AVX-512 on high-end CPUs and NVIDIA GPUs. In essence, we introduce a
word-level parallel processing design suitable for AVX-512 instruction sets and a data parallel process-
ing design appropriate for the NVIDIA CUDA platform. In the former approach, we parallelize the
core functions of LSH using AVX-512 registers and instructions. As a result, our first implementation
achieves a performance improvement of up to 50.37% compared to the latest LSH AVX-2 implemen-
tation. In the latter approach, we optimize the core operation of LSH with CUDA PTX assembly
and apply a coalesced memory access pattern. Furthermore, we determine the optimal number of
blocks/threads configuration and CUDA streams for RTX 2080Ti and RTX 3090. Consequently, in the
RTX 3090 architecture, our optimized CUDA implementation achieves about a 180.62% performance
improvement compared with the initially ported LSH implementation to the CUDA platform. As far
as we know, this is the first work on optimizing LSH with AVX-512 and NVIDIA GPU. The proposed
implementation methodologies can be used alone or together in a server environment to achieve the
maximum throughput of LSH computation.

Keywords: AVX-512; CUDA; GPU; hash function; parallel processing; SIMD

1. Introduction

Cryptographic hash functions play a crucial role in ensuring data integrity, facilitating
message authentication codes, serving as key derivation functions, enabling digital signa-
tures, functioning as deterministic random bit generators, and acting as pseudo-random
number generators [1–4]. Moreover, these cryptographic hash functions find application in
the National Institute of Standards and Technology (NIST) Post Quantum Cryptography
(PQC) algorithm for the generation of pseudo-random values [5–7]. Various digital signa-
ture methods based on cryptographic hash functions exist, including Lamport signature,
Winternitz One Time Signature (WOTS), the Merkle hash tree signature scheme, SPHINCS,
and SPHINCS+ [8–12].

The Lightweight Secure Hash (LSH) is a cryptographic hash function characterized by
a wide-pipe Merkle–Damgard structure [13]. Notably, LSH serves as a cryptographic algo-
rithm integrated within the Korea Cryptographic Module Validation Program (KCMVP)
framework [14]. Furthermore, LSH exhibits ease of implementation and achieves enhanced
performance through the utilization of parallel processing instructions, such as SSE, AVX2,

Electronics 2024, 13, 896. https://doi.org/10.3390/electronics13050896 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050896
https://doi.org/10.3390/electronics13050896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7298-3689
https://orcid.org/0009-0009-6778-6929
https://orcid.org/0000-0001-8016-2808
https://doi.org/10.3390/electronics13050896
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050896?type=check_update&version=1

Electronics 2024, 13, 896 2 of 21

and NEON. Recent research has notably explored the design of SPHINCS+ digital signa-
tures based on LSH [15].

Parallel computing represents a computational approach employing multiple proces-
sors or computing resources concurrently to address complex problems, thereby delivering
heightened performance and processing speeds compared to single-processor systems [16].
Particularly advantageous for managing substantial datasets or computationally intricate
tasks, parallel computing finds applications across diverse domains, encompassing scien-
tific research, engineering applications, artificial intelligence, and graphics processing [17].
This paradigm is categorized into two principal types: Word-Level Parallelism, where mul-
tiple processors handle distinct tasks independently, minimizing dependencies between
tasks; and Data Parallelism, wherein multiple processors collectively execute the same task
to partition and process data [16]. This accelerates overall operations by subdividing data
into smaller blocks and processing each block on a separate processor. Key concepts and
technologies integral to parallel computing include multi-core processors, which embed
multiple processor cores on a single chip to facilitate parallel processing; GPU (Graphics Pro-
cessor Unit), originally designed for graphics processing but widely employed for scientific
calculations and deep learning due to its robust parallel processing capabilities; and clus-
ters and parallel computers, which interconnect independent computers to collaboratively
tackle computational challenges. The parallel computing model encompasses the parallel
programming model, a programming paradigm encompassing threading, interprocess
communication, and message passing. Frameworks such as NVIDIA’s CUDA and Khronos
Group’s OpenCL are instrumental tools and libraries facilitating the implementation of
parallel computing on GPUs [18] While parallel computing offers substantial performance
gains and efficiencies, a nuanced understanding of task dependencies is crucial. Employing
appropriate tools and algorithms is essential for effective parallelization.

In the realm of network communication, servers interact with multiple clients, employ-
ing a variety of cryptographic algorithms for security protocols, including authentication,
message integrity verification, and key exchange. The process of server/client authentication
utilizes cryptographic-hash-function-based algorithms for message integrity verification
and authentication, leading to a considerable number of hash function calls. As the server
manages an increasing client load and handles numerous hash function calls, performance
delays and heightened latency may become evident. To mitigate these challenges, this paper
proposes the use of parallel computing with CPU SIMD and GPUs to reduce computational
latency. This approach allows the server to parallelize authentication and message integrity
verification processes, thereby optimizing performance. Furthermore, this paper introduces
a design methodology for parallelizing LSH-512 operations using Intel CPU SIMD instruc-
tion set AVX-512. Additionally, parallel implementation methods for LSH-512/512 using
NVIDIA CUDA C are suggested. The working process of LSH is analyzed, relevant AVX-512
instructions are identified, and a method to minimize memory access performance load in
massively parallel message processing using GPU architecture is proposed.

The results of optimization research using AVX for various cryptographic algorithms
(hash function, block cipher, Elliptic Curve Cryptography, PQC, etc.) have been pub-
lished [19–23]. The study by Kim et al. is an optimal LSH implementation method using
AVX-2 [19]. Kim et al. analyzed the SIMD instruction set and the LSH permutation process,
and proposed efficient application methods [19]. In this way, various permutation types for
LSH and SIMD were defined, enabling flexible implementation of LSH with new SIMD
instruction sets for various register sizes or platforms [19]. However, the approach showed
a relatively modest performance improvement of 5%.

Similar to AVX, research on cryptographic algorithm optimization using GPU archi-
tecture has been published. In the case of NIST PQC optimization research using GPU,
various approaches were proposed, including a PQC internal function parallel method
and a PQC internal function acceleration method using GPU Tensor Core [24–30]. In ad-
dition, research on ECC using GPU architecture is continuously being conducted [31–33].
Research on block cipher algorithms and hash functions in GPU architectures has also been

Electronics 2024, 13, 896 3 of 21

published [34–41]. However, there are no studies of hash functions using AVX-512 and LSH
optimization research implementation using GPUs. Therefore, an optimization study of the
cryptographic hash function LSH is required.

The remainder of this article is organized as follows. Section 2 contains this article’s
contributions. Section 3 defines the notation, LSH structure, and target platform used in
the study. Section 4 includes our LSH-512 implementation methods using AVX-512, and
Section 5 includes our LSH-512 parallel implementation using CUDA. Section 6 includes
performance evaluations and analysis, and Section 7 contains the conclusions and discusses
future work.

2. Contributions

In this section, we describe the contributions of our article. Our article’s contributions
are as follows:

• Word-level parallel implementation methods of LSH-512 using AVX-512
We executed LSH internal processes in parallel processing logic via AVX-512 instruc-
tions. We analyzed the 64-bit bitrate repetitive operations that occur in the LSH core
function and, for the first time, designed AVX-512 processing logic to process them
in parallel. We analyzed LSH compression process and proposed the first AVX-512-
instruction-based implementation methods applicable to the compression process. To
the best of our knowledge, this method has not previously been used or presented in the
literature. Our implementation parallelizes the processing of message blocks and hash-
chaining values during the compression process. Four AVX-512 registers are employed
for parallelizing message block operations, while two AVX-512 registers are utilized for
handling hash-chaining values. We further analyzed applicable AVX-512 instructions
for internal operations, including permutation, and assessed the clock cost incurred
during these internal operations. As a result, our LSH-512/512 implementation achieves
a performance of 1.62 Clock Per Byte (CPB) for a 16 MB message. Notably, our first
implementation demonstrates a performance improvement of up to 50.37% compared
to other AVX-2-based LSH-512/512 implementations on the Intel Rocket Lake CPU
device [42];

• Data parallel implementation methods of LSH-512 using CUDA
We designed logic to process LSH hash operations for multiple messages in parallel,
leveraging GPU architecture resources. In other words, we leveraged CUDA to design
the LSH data parallel processing logic. Additionally, we proposed a method to acceler-
ate the LSH operation performed by each thread and efficiently handled performance
bottlenecks that may occur in GPU architecture. In more detail, we proposed efficient
memory handling methods for memory access in NVIDIA GPU architecture. We ana-
lyzed CUDA’s memory area and suggested several approaches to minimize memory
load/store times. Specifically, we introduced a method to reduce the time of global
memory accesses during command processing in CUDA warp units. Additionally, our
implementation utilizes CUDA streams to minimize the performance overhead asso-
ciated with memory access on GPU architectures through asynchronous operations.
Finally, our LSH implementation is designed using PTX, a CUDA inline assembly. To
the best of our knowledge, this method has not previously been used or presented in
the literature. In our LSH-512/512 implementation performance experiments using
CUDA, we found the optimal CUDA block/thread performance. Furthermore, we
examined the optimal usage of CUDA streams through performance experiments by
varying the number of CUDA streams. Our first LSH-512/512 implementation on
the RTX 3090 architecture achieves a performance of up to 171.35 MH/s. This first
implementation demonstrates up to a 180.62% performance improvement over the
benchmark version of the LSH-512 implementation.

Electronics 2024, 13, 896 4 of 21

3. Preliminary

In this section, we define the notation we will use in our article. Furthermore, our
article provides an overview of the operation process of the target hash function LSH, and
the AVX and GPU architecture. Finally, we conclude this part by presenting a summary of
related works.

3.1. Notation

In this section, we specify the symbols for the operators. The operation unit for LSH-
256 is 232. Thus, The LSH-256 hash function uses 32-bit-based eXclusive OR (XOR), AND,
OR, bit shift, modular addition, and bit rotation operations. LSH-512 handles operations in
units of 264 and bitwise operators and modular addition are processed in 64-bit. Table 1
specifies the symbols of the bit operators used in this paper.

Table 1. Notations.

Symbol Operation

X & Y Bitwise AND operation of X and Y
X | Y Bitwise OR operation of X and Y

X ⊕ Y Bitwise XOR operation of X and Y
X ⊞ Y Modular addition of X and Y in 2n

X ∥ Y Concatenation of X and Y
X≪ n n-bit left shift operation on X
X≫ n n-bit right shift operation on X
X≪n n-bit left rotation operation on X
X≫n n-bit right rotation operation on X

3.2. Lightweight Secure Hash

Lightweight Secure Hash (LSH) is a cryptographic hash function included in the
Korea Cryptographic Module Validation Program (KCMVP) [13,14]. LSH is designed with
a wide-pipe Merkle–Damgard structure and exhibits effective performance in software
utilizing SSE and AVX-2 instructions [13]. Figure 1 illustrates the structure of the LSH
function. It constitutes a hash function family, including LSH-8word-n, which operates in
units of 32/64-bit words and produces an output of n bits. The LSH process involves three
stages: Initialization, Compression, and Finalization. During the Initialization process, the
initial vector is set, and padding is applied. In the Compression (CF) process, the message
undergoes compression to update the value. Finally, in the Finalization (FIN) process, the
last hash value is obtained. The detailed process is as follows.

32𝑤 32𝑤 32𝑤

𝑀𝑒𝑠𝑠𝑎𝑔𝑒

𝑃𝑎𝑑𝑑𝑖𝑛𝑔

𝐻𝑎𝑠ℎ
𝑉𝑎𝑙𝑢𝑒

𝑀0

𝑪𝑭 𝑪𝑭

𝑀1

……
𝑪𝑭

𝑀𝑖−1

16𝑤
𝑭𝑰𝑵 𝐻𝑎𝑠ℎ

Figure 1. LSH process.

In the initialization process, one-zero padding is performed on a given input message.
After that, the padded input message is split into 32-word array messages. Finally, the hash
chaining variables are assigned as an initialization vector. In the compression process, hash

Electronics 2024, 13, 896 5 of 21

chaining variables are updated using the input message blocks and compression function.
The compression function consists of MsgExp, MsgAdd, Mix, and WordPerm functions.
Message Expansion function (MsgExp) creates Ns + 1 arrays using the i-th message block
(Mi = (Mi[0], . . . , Mi[31])). The created array has a total size of 16 words. The Message
Expansion function process is as follows:

Mi
0 ← (M(i)[0], M(i)[1], M(i)[2], . . . , M(i)[15])

Mi
1 ← (M(i)[16], M(i)[17], M(i)[18], . . . , M(i)[31])

M[I]
j = (M(i)

j−1[I]⊞ M(i)
j−2[τ[I]]) where (0 ≤ I ≤ 15, 2 ≤ j ≤ 15)

Table 2 presents the τ values utilized in the MsgExp function. The Message Addition
function (MsgAdd) is responsible for updating two 16-word arrays, X = (X[0], . . . , X[15])
and Y = (Y[0], . . . , Y[15]), through XOR operations. The Message Addition process is as
follows:

MsgADD(X, Y)← (X[0]⊕Y[0], . . . , X[15]⊕Y[15])

Table 2. LSH Message Expansion τ value.

I 0 1 2 3 4 5 6 7

τ[I] 3 2 1 0 7 4 5 6

I 8 9 10 11 12 13 14 15

τ[I] 11 10 8 9 15 12 13 14

The Mix (Mix) function updates the 16-word array T = (T[0], . . . , T[15]). In the Mix
function, the 16-word array is divided into the upper eight words and lower eight words.
The Mix function’s operation consists of operations of modular addition, XOR, and left
rotation. Algorithm 1 is a pseudo-code of the Mix process of LSH. The SC value is a round
constant value used by LSH. LSH uses different α and β values for even and odd rounds.

Algorithm 1 j-round LSH Mix function

Require: T = (T[0], . . . , T[15])
Ensure: Mixj(T)

1: for I = 0 to 7 do
2: T[I]← T[I]⊞ T[I + 8];
3: T[I]← T[I]≪αj ;
4: T[I]← T[I]⊕ SCj[I];
5: T[I + 8]← T[I]⊞ T[I + 8];
6: T[I + 8]← T[I + 8]≪β j ;
7: T[I]← T[I]⊞ T[I + 8];
8: T[I + 8]← T[I + 8]≪γI ;
9: end for

The Word Permutation (WordPerm) function is the final step in the compression
process. The WordPerm function reorders the 16-word array. The permutation variables
used in WordPerm are presented in Table 3.

Table 3. LSH Word Permutation value.

I 0 1 2 3 4 5 6 7

σ[I] 6 4 5 7 12 15 14 13

I 8 9 10 11 12 13 14 15

σ[I] 2 0 1 3 8 11 10 9

Electronics 2024, 13, 896 6 of 21

The messages, which have been sequentially updated through the compression process
outlined earlier, are processed up to the final message block. Following this, in the finaliza-
tion process executed within the Fin function, an n-bit hash value is generated utilizing the
last chaining variable. Consider the final chaining variable as CVt = (CVt[0], . . . , CVt[15]),
and let h = (h[0], . . . , h[w− 1]) represent a w-byte array. The FIN function operates accord-
ing to the following steps.{

h← (CV(t)[0]⊕ CV(t)[8], CV(t)[1]⊕ CV(t)[9], . . . , CV(t)[7]⊕ CV(t)[15])
h← (h[0] || · · · || h[w− 1])[0:n−1]

(1)

Our LSH-512 implementation is capable of generating hash digests with varying
lengths—specifically, 224, 256, 384, and 512 bits—depending on the configuration of the
finalization process.

3.3. Advanced-Extension Vector-512

Single Instruction Multiple Data (SIMD) refers to parallel instruction sets that process
multiple data simultaneously with a single instruction. SIMD instruction sets encompass
MultiMedia eXtension (MMX), Streaming SIMD Extensions (SSE), SSE 2 (version 2), SSE 3,
SSE 4, and Advanced Vector eXtension-2, among others. In the AMD CPU family, SIMD
instruction sets like 3DNow, F16C, and XOP are included, alongside support for SSE and
AVX instructions. ARM devices feature NEON and Thumb SIMD instruction sets. AVX-512
is a notable SIMD instruction set, initially integrated into the Xeon Scalable Processor
family and Intel Skylake-X family. AVX-512 boasts twice the register length of AVX-2, with
an expansion to 32 AVX registers (xmm0 to xmm31) and the addition of eight new mask
registers (Opmask) [43]. In this article, we propose an LSH-512 implementation utilizing
the AVX-512 SIMD Intel instruction sets. The specific AVX-512 Intel instruction sets used in
our implementation are detailed in Table 4.

Table 4. AVX-512 instruction sets.

Operation Unit AVX-512 Instruction

XOR
32-bit _mm512_xor_epi32(x, y)
64-bit _mm512_xor_epi64(x, y)
512-bit _mm512_xor_si512(x, y)

OR
32-bit _mm512_or_epi32(x, y)
64-bit _mm512_or_epi64(x, y)
512-bit _mm512_or_si512(x, y)

AND
32-bit _mm512_and_epi32(x, y)
64-bit _mm512_and_epi64(x, y)
512-bit _mm512_and_si512(x, y)

Left Shift 32-bit _mm512_slli_epi32(x, y)
64-bit _mm512_slli_epi64(x, y)

Modular Addition
16-bit _mm512_add_epi16(x, y)
32-bit _mm512_add_epi32(x, y)
64-bit _mm512_add_epi64(x, y)

Rotation 32-bit _mm512_rol_epi32(x, imm)
64-bit _mm512_ror_epi64(x, imm)

3.4. Graphics Processing Units and Compute Unified Device Architecture

GPUs were initially developed as computational aids for CPUs, equipped with nu-
merous cores to handle graphics processing tasks for CPUs and other devices. Over time,
the improvement in the number of GPU cores, L1/L2 memory size, and GPU core spec-
ifications has led to the utilization of GPUs in general-purpose computing technology.
General-Purpose computing on GPU (GPGPU) refers to the use of GPUs for common
computing tasks. While GPUs were traditionally focused on graphics operations, GPGPU
harnesses their parallel processing capabilities as general-purpose processors in various

Electronics 2024, 13, 896 7 of 21

application fields, including scientific and engineering calculations, data analysis, machine
learning, deep learning, and high-performance computing. Numerous studies showcase the
utilization of GPUs in, for instance, blockchain for healthcare, embedded/hardware devices
and communication research, container-based Jupiter Lab, cryptographic algorithms, SOTA
hashing tables, etc. [44–53]. NVIDIA CUDA and OpenCL are technologies that empower
developers to design parallel processing schemes for GPU architectures using high-level
computing languages [54,55]. NVIDIA CUDA supports high-level computing languages
such as C/C++ and Python.

CUDA enables the design of a computational parallelism mechanism using a large
number of threads. Each thread is associated with a CUDA block and CUDA grid, providing
developers with the ability to distinguish between various parallel computing schemes.
CUDA organizes 32 threads into one warp, where all threads within the same warp execute
the same instruction. GPU memory in CUDA is categorized into global memory, shared
memory, and constant memory. Global memory offers a large storage space but comes
with a slower memory access speed. Conversely, shared memory and constant memory
have smaller storage spaces with relatively faster memory access speeds. Shared memory
is accessible only to threads within the same CUDA block, while constant memory can be
read by all threads in the CUDA process. It is crucial to note that GPU architecture faces
more performance bottlenecks in memory access, storage, and loading compared to other
architectures. Therefore, efficient handling of memory processing in GPU architectures
is essential.

4. Proposed Implementation Methods of LSH in AVX-512

In this section, we present our implementation method for LSH-512 using AVX-512.
Our AVX-based LSH-512 implementation focuses on a word-level parallel processing
method that processes LSH internal operations in parallel. We conducted an in-depth
analysis of the internal operation process of LSH-512 and strategically applied AVX-512
instructions for optimal efficiency. Our LSH implementation differentiates between even
and odd rounds, minimizing the need for conditional statements and incorporating new
AVX-512 instructions for permutation processing. To enhance clarity, we subdivided the in-
ternal structure of LSH-512 and organized AVX-512 instructions for each specific operation.
To the best of our knowledge, our study is the first attempt to implement LSH-512 based
on AVX-512.

4.1. LSH Structure Analysis

For LSH-512, the internal hash chain length is 1024 bits, and the message block size
is 2048 bits. The primary operation in LSH involves updating data structures in units of a
16-word array. For instance, in the MsgADD process, LSH-512 operations execute modular
addition (mod 264) operations on two 16-word arrays. Moreover, the internal operation
process of the Mix process also follows a data update structure of an 8-word array. The
hash chains are updated by repeating the 64-bit word a total of eight times.

In our implementation, we store eight 64-bit words in a single 512-bit register. For
LSH-512, the internal hash chain length is 1024 bits, and the message block size is 2048
bits. We utilized two AVX-512 registers for calculating hash chain variables (cl , cr). In
our implementation, the message block utilized a total of four AVX-512 registers. The
LSH-512 message block consists of 32 words, and all internal processes of the compression
function are composed of 16-word units. Specifically, the AVX-512 registers storing the
message block consist of two even-round store registers and two odd-round store registers.
We designate the registers storing the message blocks as el , er, ol , or (el : Even round le f t
Message Block etc.).

4.2. LSH Compression Process

The LSH-512 compression process involves functions such as MsgExp, MsgAdd, Mix,
and WordPerm. It employs modular addition, bit-rotation, and XOR operations. The specific

Electronics 2024, 13, 896 8 of 21

permutations for LSH compression can be found in Tables 2 and 3. The process is conducted
in accordance with Algorithm 2. Our implementation of LSH-512 utilizes the Intel AVX-512
instruction sets.

Algorithm 2 LSH Compress Function

Require: Message block Mi
Require: Hash chaining values cl , cr
Ensure: Updated Hash Values (c′l , c′r)

1: el , er, ol , or ← Mi
2: cl , cr ← MsgAdd(cl , cr, el , er)
3: cl , cr ← MIXeven(cl , cr, SC0)
4: cl , cr ←WordPerm(cl , cr, PermuValue)
5: cl , cr ← MsgAdd(cl , cr, ol , or)
6: cl , cr ← MIXodd(cl , cr, SC1)
7: cl , cr ←WordPerm(cl , cr, PermuValue)
8: for i = 1 to (Ns − 1)/2 do
9: el , er ← MsgExp(el , er, ol , or)

10: cl , cr ← MsgAdd(cl , cr, el , er)
11: cl , cr ← MIXeven(cl , cr, SCi+1)
12: cl , cr ←WordPerm(cl , cr, PermuValue)
13: ol , or ← MsgExp(el , er, ol , or)
14: cl , cr ← MsgAdd(cl , cr, ol , or)
15: cl , cr ← MIXodd(cl , cr, SCi+2)
16: cl , cr ←WordPerm(cl , cr, PermuValue)
17: end for

The Message Expansion (MsgExp) process utilizes a 2048-bit data block to create an
LSH internal message block. In our LSH implementation, we store the 1024-bit M[0]

j data

block variables in the 512-bit AVX-512 registers el and er, while the M[1]
j data block is stored

in ol and or. Subsequently, as the M[0]
j variables are not used again, in our implementation,

the message block variables for M[2]
j are stored in el and er. By following this procedure,

the message block variables utilized in even rounds are stored in el and er, while those
used in odd rounds are stored in ol and or. In other words, in our implementation, the
MsgExp process during LSH even rounds updates el and er, and the MsgExp process
during LSH odd rounds updates ol and or. Algorithm 3 provides the pseudo-code for our
MsgExp process.

In the MsgExp process, we manage both modular addition and the permutation pro-
cess specified in Table 2. Our implementation utilizes the modular addition instruction
(_mm512_add_epi64(x, y)), as detailed in Table 4, for processing modular addition. Addi-
tionally, in the τ permutation, the hash chaining values are rearranged in 64-bit units within
a single AVX-512 register. We employ the permutexvar instruction, as illustrated in Figure 2,
to manage the τ permutation. The permutexvar instruction updates el and er during even
rounds or ol and or during odd rounds. Here, va represents the permutation value. The
MsgExp process utilizes the permutation results specified in Table 2. Consequently, the
values from Table 2 are assigned to va.

L[5] L[6] L[7]

L[0] L[1]

L[3] L[2] L[0] L[1] L[7] L[6]L[5]L[4]

L[6] L[7]L[6] L[7]

L[0] L[1]

L[3] L[2] L[0] L[1] L[7] L[6]L[5]L[4]

Figure 2. AVX-512 permutexvar and permutex2var instructions.

Electronics 2024, 13, 896 9 of 21

Algorithm 3 LSH-512 MsgExp function using AVX-512 instructions

Require: Message registers (el , er) or (ol , or)
Require: Message Permutation value va
Ensure: Updated Message registers (e′l , e′r) or (o′l , o′r)

1: #define ADD(x, y) = _mm512_add_epi64(x, y)
2: #define PERM(x, y) = _mm512_permutexva_epi64(x, y)
3: EVEN Round
4: el = ADD(ol , PERM(va, el))
5: er = ADD(or, PERM(va, er))
6: ODD Round
7: ol = ADD(el , PERM(va, ol))
8: or = ADD(el , PERM(va, or))

The Message Addition (MsgAdd) process involves updating a register through XOR
operations on two AVX-512 register arrays. During even rounds, hash chain values (cl and
cr) are updated using message information stored in el and er, while in odd rounds, hash
chain values cl and cr are updated using message information from ol and or.

The Mix (Mix) process updates the 16-word register value. In the even rounds of our
LSH-512 implementation, we define the el AVX-512 register as T0 = (T[0], . . . , T[7]) and
er as T1 = (T[8], . . . , T[15]). The Mix process involves modular addition, left-rotation, and
XOR operations. In our LSH-512 implementation, α and β rotations are performed using
the rol (_mm512_rol_epi64(x, y)) instruction. For γ rotations, the number of rotations is
fixed as a multiple of eight. Therefore, in our implementation, the γ rotation utilizes the
shu f f le instruction, which shuffles data in 8-bit units. Algorithm 4 provides a pseudo-code
for our LSH Mix process implementation using AVX-512.

Algorithm 4 LSH Mix process using AVX-512 instructions

Require: Hash Value cl , cr
Require: Round Constant SC
Ensure: Updated Hash Values (c′l , c′r)

1: cl = _mm512_add_epi64(cl , cr)
2: cl = _mm512_rol_epi64(cl , alpha)
3: cl = _mm512_xor_epi64(cl , SC)
4: cr = _mm512_add_epi64(cl , cr)
5: cr = _mm512_rol_epi64(cr, beta)
6: cl = _mm512_add_epi64(cl , cr)
7: cr = _mm512_shu f f le_epi8(cr, BytePermu)

The distinction between even rounds and odd rounds in Algorithm 4 lies in the values
of α and β. Additionally, BytePermu is a pre-computed constant used for processing the
γ rotation in LSH, utilizing shu f f le instruction. BytePermu is stored in a 512-bit AVX-512
general-purpose register.

The Word Permutation (WordPerm) process involves rearranging the order of the hash
digest in 64-bit units. While the permutation process for an LSH-512 implementation using
64-bit registers can be accomplished with a straightforward memory swap, challenges arise
when dealing with registers longer than 64 bits, such as AVX. In the context of the LSH-512
WordPerm process, AVX-512 registers containing hash digests need to reorder data across
64-bit boundaries. However, the process of converting AVX-512 registers to registers with
different bit boundaries incurs a significant clock cost. Among the instructions that convert
data to AVX-512 registers, loadu has a latency of 8 and a throughput (CPI) of 0.5, while store
has a latency of 5 and a throughput (CPI) of 1 [56]. In other words, it requires a minimum
latency of 13 to execute WordPerm process. Consequently, we employed an instruction to
substitute values within AVX-512 registers for handling WordPerm process.

Electronics 2024, 13, 896 10 of 21

In our LSH-512 implementation, we update two registers, cl and cr, respectively, using
two AVX-512 instructions to handle the LSH-512 permutation operation. Figure 2 pro-
vides a summary of these two permute instructions. The permutexvar instruction shown
in Figure 2 is designed to internally shuffle 512-bit registers in 64-bit units.Conversely,
the permutex2var instruction, also depicted in Figure 2, utilizes two 512-bit registers. This
instruction allocates two registers in 64-bit units to the 512-bit dst registers. When storing a
value in the dst data, the imm argument is employed to read data of the desired region from
the two registers. Each of these instructions is utilized within the internal compression pro-
cess. Both cl and cr are involved in updating cl . Therefore, our LSH implementation utilizes
the permutex2var instruction to handle the WordPerm process. permutex2var extracts the
desired information from the two registers, and the extracted data are then stored in one
register. This process is described in Figure 2. Algorithm 5 presents the pseudo-code for
the WordPerm process, where va represents the permutation value. The WordPerm process
utilizes the permutation results outlined in Table 3. Consequently, the permutation values
specified in Table 3 are assigned to va.

Algorithm 5 LSH-512 WordPerm process using AVX-512 instructions

Require: Hash Value cl , cr
Ensure: Updated Hash Values (c′l , c′r)

1: __m512i tmp = cl
2: cl = _mm512_permutex2var_epi64(cl , va, cr)
3: cr = _mm512_permutex2var_epi64(tmp, va, cr)

4.3. Proposed Implementation Clock Cost Analysis

Table 5 provides a summary of the clock cost generated by AVX-512 instructions. In
our implementation of the MsgExp process, we utilize two AVX-512 modular addition
instructions and one AVX-512 permutexvar instruction. As a result, in our MsgExp process,
the clock cost is 5 latency and 2 throughput (CPI). Similarly, in our Mix process implementa-
tion, we use three AVX-512 modular addition instructions, two bit-rotation instructions, one
XOR instruction, and one shuffle instruction. The clock cost of the Mix process is 7 latency
and 5 throughput (CPI). For our WordPerm implementation, we employ two permutex2var
instructions, incurring a clock cost of 6 latency and 2 throughput (CPI).

Table 5. AVX-512 instruction costs [56].

Operation Latency Throughput (CPI)

add 1 0.5
xor 1 0.5
rol 1 1

shu f f le 1 1
permutexva 3 1

permutex2var 3 1
loadu 8 0.5

The permutexvar and permutex2var instructions utilize permutation values. Therefore,
the permutation values specified in Tables 2 and 3 should be assigned to AVX-512 registers.
However, assigning permutation values in each round function leads to frequent calls of
the loadu instruction, causing performance degradation. In our LSH-512 implementation,
we optimize this process by initially assigning permutation values to AVX-512 registers
and recycling them throughout the computation. By doing so, we eliminate frequent loadu
instruction calls, resulting in a clock cost of 24 + (19 × Ns) latency and 1.5 + (9.5 × Ns)
throughput (CPI) in our LSH-512 compression function implementation.

5. Proposed Implementation Methods of LSH in GPU

In this section, we present a parallel implementation of LSH-512 using CUDA. Our
CUDA-based LSH-512 implementation is structured with data parallelism as the focus. Our

Electronics 2024, 13, 896 11 of 21

approach involves leveraging CUDA streams and adopting a coalesced memory access
pattern to minimize the performance overhead associated with global memory access,
storage, and load operations in CUDA. Additionally, we introduce an implementation
method for LSH-512 using Parallel Thread Execution (PTX) inline assembly. To the best of
our knowledge, our study is the first attempt to implement LSH-512 based on a GPU. Our
CUDA-based LSH-512 implementation is designed for data parallelism, with each thread
handling LSH-512 operations on a single message. Figure 3 provides an overview of our
parallel implementation scheme on a GPU architecture.

𝑀0
0 𝑀1

0 𝑀2
0 𝑀3

0 𝑀4
0 𝑀5

0 𝑀6
0 …… 𝑀𝑡−1

0

𝑀0
1 𝑀1

1 𝑀2
1 𝑀3

1 𝑀4
1 𝑀5

1 𝑀6
1 …… 𝑀𝑡−1

1

𝑀0
𝑘−1 𝑀1

𝑘−1 𝑀2
𝑘−1 𝑀3

𝑘−1 𝑀4
𝑘−1 𝑀5

𝑘−1 𝑀6
𝑘−1 …… 𝑀𝑡−1

𝑘−1

𝑀0
2 𝑀1

2 𝑀2
2 𝑀3

2 𝑀4
2 𝑀5

2 𝑀6
2 …… 𝑀𝑡−1

2

……

𝑀0
0 𝑀1

1 𝑀0
2 𝑀0

3 𝑀0
4 𝑀0

5 𝑀0
6 …… 𝑀0

𝑘−1

𝑀1
0 𝑀1

1 𝑀1
2 𝑀1

3 𝑀1
4 𝑀1

5 𝑀1
6 …… 𝑀1

𝑘−1

𝑀𝑡−1
0 𝑀𝑡−1

1 𝑀𝑡−1
2 𝑀𝑡−1

3 𝑀𝑡−1
4 𝑀𝑡−1

5 𝑀𝑡−1
6 …… 𝑀𝑡−1

𝑘−1

……

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝐶𝑜𝑎𝑙𝑒𝑠𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠

𝐶𝑈𝐷𝐴 𝐾𝑒𝑟𝑛𝑒𝑙

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑃𝑇𝑋 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦

𝑡𝑖𝑑0 𝑡𝑖𝑑1 𝑡𝑖𝑑2 𝑡𝑖𝑑3 𝑡𝑖𝑑4 𝑡𝑖𝑑5 𝑡𝑖𝑑6 …… 𝑡𝑖𝑑𝑘−1

𝐶𝑈𝐷𝐴 𝐾𝑒𝑟𝑛𝑒𝑙

Figure 3. Proposed implementation methods of LSH in a GPU.

5.1. Coalesced Memory Access Methods

Figure 4 illustrates the comparison between coalesced and non-coalesced memory
access. In NVIDIA GPUs, instructions are executed in units of 32 threads, referred to as
a warp. Consequently, each thread within the same warp executes the same instruction.
Coalesced memory access is an optimization technique applied to memory access within a
warp. In this approach, when each thread within a warp handles memory access, the warp
collectively accesses contiguous memory addresses [57]. In such cases, memory requests are
efficiently. It is particularly effective in accessing the shared memory and global memory
areas. However, if the memory addresses accessed by the warp are non-contiguous, the
warp needs to access more memory. This results in frequent memory access and subsequent
performance degradation. Therefore, our implementation adopts a coalesced memory
access pattern to minimize the number of memory accesses within a warp.

Our LSH-512 implementation employs data parallelization, where each thread per-
forms LSH-512 operations on an individual message. The process in our CUDA-based
implementation is as follows. First, the CPU (Host) sends messages to the GPU (Device).
Next, each thread loads a single message. Subsequently, each thread executes an LSH-512
hash on the message. Finally, the resulting hash values are sent from the GPU (Device)
to the CPU (Host). In the second process, inefficient memory access can occur when each
thread loads messages. Therefore, a message storage structure is implemented to facilitate
coalesced memory access, while a common storage method for multiple messages is to or-
ganize them row by row, this leads to discontinuous memory addresses when warp threads

Electronics 2024, 13, 896 12 of 21

access messages, resulting in frequent warp memory access. To minimize this, our LSH-512
implementation adopts a column-wise input message structure. If the storage structure of
the input messages is initially organized in row units, the CPU adjusts the storage struc-
ture to column units. As a result, our LSH-512 implementation using CUDA modifies the
storage structure of the input message column-by-column. The column-by-column storage
minimizes memory access by arranging memory addresses accessed by warp threads
consecutively. Additionally, in the final process, each thread stores the hash value in a
dedicated memory area, enabling coalesced memory access during hash value storage.
Algorithm 6 provides pseudo-code illustrating the coalesced memory access pattern in the
input message and hash value storage process.

𝒕𝒊𝒅𝟎 𝒕𝒊𝒅𝟏 𝒕𝒊𝒅𝟐 𝒕𝒊𝒅𝟑 𝒕𝒊𝒅𝟒 𝒕𝒊𝒅𝟓 𝒕𝒊𝒅𝟔 𝒕𝒊𝒅𝟕 𝒕𝒊𝒅𝟖 𝒕𝒊𝒅𝟗 …… 𝒕𝒊𝒅𝟑𝟏

𝟎 𝟏𝟐𝟖 𝟐𝟓𝟔 𝟑𝟖𝟒 𝟓𝟏𝟐

𝑀𝑒𝑚𝑜𝑟𝑦 𝑀𝑒𝑚𝑜𝑟𝑦 𝑀𝑒𝑚𝑜𝑟𝑦 𝑀𝑒𝑚𝑜𝑟𝑦 …… 𝑀𝑒𝑚𝑜𝑟𝑦
𝑨𝒍𝒍 𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔

𝑵𝒐𝒏− 𝑪𝒐𝒂𝒍𝒆𝒔𝒄𝒆𝒅𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔 𝒑𝒂𝒕𝒕𝒆𝒏

𝟎 𝟏𝟐𝟖 𝟐𝟓𝟔 𝟑𝟖𝟒 𝟓𝟏𝟐

𝑾𝒂𝒓𝒑

𝒕𝒊𝒅𝟎 𝒕𝒊𝒅𝟏 𝒕𝒊𝒅𝟐 𝒕𝒊𝒅𝟑 𝒕𝒊𝒅𝟒 𝒕𝒊𝒅𝟓 𝒕𝒊𝒅𝟔 𝒕𝒊𝒅𝟕 𝒕𝒊𝒅𝟖 𝒕𝒊𝒅𝟗 …… 𝒕𝒊𝒅𝟑𝟏

𝑀𝑒𝑚𝑜𝑟𝑦 𝑀𝑒𝑚𝑜𝑟𝑦 …… 𝑀𝑒𝑚𝑜𝑟𝑦
𝒐𝒏𝒆𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔

𝑪𝒐𝒂𝒍𝒆𝒔𝒄𝒆𝒅𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔 𝒑𝒂𝒕𝒕𝒆𝒏

𝑀𝑒𝑚𝑜𝑟𝑦 𝑀𝑒𝑚𝑜𝑟𝑦

𝑾𝒂𝒓𝒑

𝑾𝒂𝒓𝒑

Figure 4. Non-Coalesced memory access pattern and coalesced memory access pattern.

Algorithm 6 LSH-512 coalesced memory access

Require: Input Message pt
Ensure: LSH-512 Hash value ct

1: tid_index← (blockDim.x * blockIdx.x) + threadIdx.x
2: memory_index← (gridDim.x * blockDim.x)
3: uint8_t bu f f er[ptlen]
4: uint8_t hash[hlen]

CUDA plaintext copy
5: for i = 0 to ptlen do
6: bu f f er[i]← pt[tid_index + i * memory_index]
7: end for

LSH-512 core
8: LSH_core(bu f f er, ptlen, hash)

CUDA hash value copy
9: for i = 0 to hlen do

10: ct[tid_index + i * memory_index]← hash[i]
11: end for

5.2. Cuda Stream

A CUDA stream is a concurrent process that performs operations on a device in
the order specified by the CPU (Host) code. In essence, a CUDA stream is an object for
asynchronous implementation in CUDA, allowing a single process to be divided into
multiple processes. Up to 32 streams can be utilized in CUDA. Figure 5 provides an
overview of CUDA streams, demonstrating their capability to run concurrently with other
streams. As depicted in Figure 5, CUDA streams are applicable to tasks such as data
transmission and kernel functions. In a CUDA process utilizing a single stream, data are

Electronics 2024, 13, 896 13 of 21

transmitted from the CPU to the GPU for processing (referred to as the H → D process).
Basically, the memory transfer between the GPU and CPU is performed through the
cudaMemcpy function. This is a synchronous data transfer function. In other words, if
the cudaMemcpy function is used, the memory copy does not start until all previously
existing CUDA calls have completed, and subsequent CUDA calls cannot begin until the
synchronous transfer has completed. Therefore, if the data are large, a lot of latency occurs
during data transfer from the CPU to the GPU. Likewise, data transfer from the GPU to the
CPU incurs substantial latency. In the context of CUDA kernel operations, the processing
time of the kernel increases proportionally with the number of tasks. CUDA streams
facilitate simultaneous data transfer and kernel function processing. Figure 5 illustrates
the transmission process of 4n-byte data and the structure for processing four tasks using
CUDA. In a scenario employing four streams, each stream incurs a n-byte data transfer
time and one task processing kernel operation time. Consequently, task processing with
multiple streams proves more efficient than a single-stream process. Therefore, our LSH-512
implementation adopts multiple CUDA streams to mitigate data transfer time and hash
function kernel operation time.

𝑇𝑖𝑚𝑒

𝐻 → 𝐷

𝑆𝑒𝑟𝑖𝑎𝑙

𝐶𝑈𝐷𝐴 𝐾𝑒𝑟𝑛𝑒𝑙 𝐷 → 𝐻

4𝑛 − 𝑏𝑦𝑡𝑒 4 𝑡𝑎𝑠𝑘𝑠 4𝑛 − 𝑏𝑦𝑡𝑒

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑆𝑡𝑟𝑒𝑎𝑚0

𝑆𝑡𝑟𝑒𝑎𝑚1

𝑆𝑡𝑟𝑒𝑎𝑚2

𝑆𝑡𝑟𝑒𝑎𝑚3

𝐻 → 𝐷

𝐻 → 𝐷

𝐻 → 𝐷

𝐻 → 𝐷

𝑘𝑒𝑟𝑛𝑎𝑙 𝐷 → 𝐻

𝑘𝑒𝑟𝑛𝑎𝑙 𝐷 → 𝐻

𝑘𝑒𝑟𝑛𝑎𝑙 𝐷 → 𝐻

𝑘𝑒𝑟𝑛𝑎𝑙 𝐷 → 𝐻

𝑛 − 𝑏𝑦𝑡𝑒 1 𝑡𝑎𝑠𝑘 𝑛 − 𝑏𝑦𝑡𝑒

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝐸𝑁𝐷

Figure 5. CUDA streams.

5.3. Ptx Inline Assembly

PTX defines a virtual machine and Instruction Set Architecture (ISA) for general
parallel thread execution [58]. Simply put, PTX offers an ISA that is independent of the
specific NVIDIA GPU architecture [58]. In comparing CUDA C with PTX, it is crucial to
note that PTX operates at a lower-level assembly language, providing developers with
greater flexibility to optimize for distinct GPU architectures. Several reasons influenced our
choice of PTX:

Architecture-specific optimizations: PTX code, being independent of a particular GPU
architecture and serving as an intermediate assembly, boasts high portability. This character-
istic enables the NVIDIA compiler to translate PTX code into machine language optimized
for the specific nuances of different GPU architectures. Consequently, PTX facilitates the
generation of optimized code that performs well across various GPU architectures;

Give developers granular control: PTX, being a lower-level assembly, unveils intricate
details of the GPU architecture to developers. This exposure empowers developers to
fine-tune their code, providing advanced control over specific hardware characteristics [36];

Optimized code generation: PTX serves as an intermediate assembly level, eventually
translated into machine language optimized for a specific GPU architecture. This multi-step
optimization process leads to improved performance [36].

In other words, PTX serves as a form of CUDA assembly, facilitating the conversion
of high-level computing language to machine code during the compilation process of

Electronics 2024, 13, 896 14 of 21

CUDA code, including nvcc. In CUDA, high-level language-based code, such as C/C++,
undergoes compilation to generate PTX instructions. Throughout this conversion process,
the PTX-based algorithm code has the capability to exclude unnecessary instructions
generated during compilation. Consequently, our LSH-512 implementation is constructed
based on PTX instructions. The PTX inline assembly instructions employed in our LSH-512
implementation are detailed in Table 6. LSH-512 operates with 64-bit words and follows
an ARX structure internally. As a result, our LSH-512 implementation using PTX utilizes a
64-bit unit instruction type. The PTX inline assembly addition (add) instruction ensures
that d = x + y mod 264. The pseudo-code outlining our LSH-512 Mix process through PTX
instructions is provided in Algorithm 7. In Algorithm 7, SC represents the round constant
of LSH-512. With a focus on minimizing memory accesses on the GPU architecture, our
LSH-512 implementation directly assigns the value of SC, avoiding the need for additional
memory storage.

Algorithm 7 LSH-512 Mix function implementation method using PTX inline assembly

Require: Hash Chaining values hash
Data Setting

1: for i = 0 to 7 do
2: asm("mov.u64 cv_l[i], hash[i];");
3: asm("mov.u64 cv_r[i], hash[i + 8];");
4: end for

add_ blk(cv_l, cv_r)
5: for i = 0 to 7 do
6: asm("add.u64 cv_l[i], cv_l[i], cv_r[i];");
7: end for

rotate_blk(cv_l, 23)
8: for i = 0 to 7 do
9: asm("shl.b64 tmp0, cv_l[i], 23;");

10: asm("shr.b64 cv_l[i], cv_l[i], 41;");
11: asm("or.b64 cv_l[i], cv_l[i], tmp0;");
12: end for

xor_with_blk
13: for i = 0 to 7 do
14: asm("xor.b64 cv_l[i], cv_l[i], SC[i];");
15: end for

add_ blk(cv_r, cv_l)
16: for i = 0 to 7 do
17: asm("add.u64 cv_r[i], cv_r[i], cv_l[i];");
18: end for

rotate_blk(cv_r, 59)
19: for i = 0 to 7 do
20: asm("shl.b64 tmp0, cv_r[i], 59;");
21: asm("shr.b64 cv_r[i], cv_r[i], 5;");
22: asm("or.b64 cv_r[i], cv_r[i], tmp0;");
23: end for

add_ blk(cv_l, cv_r)
24: for i = 0 to 7 do
25: asm("add.u64 cv_r[i], cv_r[i], cv_l[i];");
26: end for

rotate_msg_gamma(cv_r)

27: for i = 1 to 3 do
28: asm("shl.b64 tmp0, cv_r[i], 16 * i;");
29: asm("shr.b64 cv_r[i], cv_r[i], (64 −

16*i);");
30: asm("or.b64 cv_r[i], cv_r[i], tmp0;");
31: end for
32: for i = 0 to 3 do
33: asm("shl.b64 tmp0, cv_r[i + 4], 8 + 16 *

i;");
34: asm("shr.b64 cv_r[i + 4], cv_r[i + 4], (56

− 16*i);");
35: asm("or.b64 cv_r[i + 4], cv_r[i + 4],

tmp0;");
36: end for

word_perm(cv_l, cv_r)
37: asm("mov.u64 tmp0, cv_l0;");
38: asm("mov.u64 cv_l0, cv_l6;");
39: asm("mov.u64 cv_l6, cv_r6;");
40: asm("mov.u64 cv_r6, cv_r2;");
41: asm("mov.u64 cv_r2, cv_l1;");
42: asm("mov.u64 cv_l1, cv_l4;");
43: asm("mov.u64 cv_l4, cv_r4;");
44: asm("mov.u64 cv_r4, cv_r0;");
45: asm("mov.u64 cv_r0, cv_l2;");
46: asm("mov.u64 cv_l2, cv_l5;");
47: asm("mov.u64 cv_l5, cv_r7;");
48: asm("mov.u64 cv_r7, cv_r1;");
49: asm("mov.u64 cv_r1, tmp0;");
50: asm("mov.u64 tmp0, cv_l3;");
51: asm("mov.u64 cv_l3, cv_l7;");
52: asm("mov.u64 cv_l7, cv_r5;");
53: asm("mov.u64 cv_r5, cv_r3;");
54: asm("mov.u64 cv_r3, tmp0;");
55: return cv_l and cv_r

Electronics 2024, 13, 896 15 of 21

Table 6. PTX inline assembly instruction using LSH-512 implementation [58].

PTX Instruction LSH-512 Type Operation

mov.type dst, src u64 dst = src
xor.type dst, src1, src2 b64 dst = src1 ⊕ src2
or.type dst, src1, src2 b64 dst = src1 | src2
shl.type, dst, src, imm b64 dst = src≪ imm
shr.type, dst, src, imm b64 dst = src≫ imm

add.type, dst, src1, src2 u64 dst = src1 + src2

6. Performance Analysis

In this section, we present the performance measurements of LSH-512 and compare
our implementation’s performance with other implementations. For our experimental
measurements, we used an Intel Core i9-11900K (Rocket Lake) CPU, which supports both
AVX-2 and AVX-512 instructions. In the case of our CPU environment experiments, we
conducted the experiments using a single thread. In our experiments, the implementations
used are our own work, KISA [42,59], and the work of Kim et al. [19]. We used Windows
10 OS and the IDE was Visual studio 2019 version. Our compilation options used Release
Mode (x 64, - 03 option). Our AVX-512 performance measurement experiments present
average values of 100,000 LSH-512 hash function operation clocks.

Additionally, for our GPU environment experiments, we utilized NVIDIA GeForce
2080ti and NVIDIA GeForce 3090 architectures. The NVIDIA GeForce 3090 architecture
features 10,496 CUDA cores, employs a GA102 graphics processor, offers a bandwidth of
936.2 GB/s, and operates at a base clock of 1395 MHz. It boasts a compute capability of
8.6 and consumes 350 W of power. Conversely, the NVIDIA GeForce 2080ti architecture
incorporates 4352 CUDA cores, utilizes the TU102 graphics processor, provides a bandwidth
of 616.0 GB/s, and runs at a base clock of 1350 MHz. It has a compute capability of 7.5
and requires 250 W of power. For our GPU architecture experiments, we operated on
the Windows 10 OS and utilized Visual Studio 2019 as the IDE. CUDA runtime version
10.2 served as the compiler, and we employed Release (x64, -O3 option) mode. Our GPU
architecture experiments measured memory copy time and kernel function operation time,
and the performance table presents the average time for 100 operations.

When designing GPGPU technology using CUDA, parallel computing units are di-
vided into blocks and threads. In theory, calling the kernel with the maximum number
of CUDA blocks and CUDA threads can maximize parallel processing of tasks. However,
this is not possible due to GPU hardware. This is because there is a limit to the GPU
resources actually used when the CUDA kernel is executed. The configuration that reaches
the resource usage peak will vary depending on GPU architecture and workload. As a
result, we analyze the performance threshold of our LSH-512 kernel through experiments
on GPU architecture.

6.1. LSH-512 Performance Measurement Evaluation Using AVX-512

Our implementation is LSH-512 utilizing AVX-512. The reference implementation
KISA [KISA] is an AVX-2 based LSH-512 reference implementation provided by the Korea
Internet & Security Agency [42,59]. In addition, our implementation presents comparison
results with that of Kim et al. [19]. We measured the performance of three codes in our CPU
device environment. Table 7 contains our performance measurements.

Our LSH-512 implementation demonstrates performance improvments of 161.52%
(LSH-512/224), 135.09% (LSH-512/256), 159.11% (LSH-512/384), and 56.98% (LSH-512/512)
for single-block processing compared to the AVX-2-based Kim et al. implementations [19].
Furthermore, our LSH-512 implementation achieves a remarkable performance improve-
ment of 20.61% (LSH-512/224), 19.40% (LSH-512/256), 19.70% (LSH-512/384), and 20.61%
for 16 MB message processing compared to Kim et al.’s AVX-2-based LSH implementa-
tion [19].

Electronics 2024, 13, 896 16 of 21

Table 7. LSH-512 performance measurement evaluation in CPU device (i9-11900k Rocket Lake).

Function Hash Digest
(Bit)

SIMD Version
Performance (CPB)

16 MB 4 KB 64-Byte

LSH-
512/224 224

AVX-2 KISA [42,59] 1.58 1.75 8.09

Kim et al. [19] 1.62 1.81 14.07

AVX_512 Our Works 1.31 1.42 5.38

LSH-
512/256 256

AVX-2
KISA [42,59] 1.60 1.74 8.00

Kim et al. [19] 1.60 1.73 12.93

AVX_512 Our Works 1.34 1.42 5.50

LSH-
512/384 384

AVX-2
KISA [42,59] 1.58 1.76 8.25

Kim et al. [19] 1.59 1.86 14.64

AVX_512 Our Works 1.32 1.41 5.65

LSH-
512/512 512

AVX-2
KISA [42,59] 1.58 1.75 8.03

Kim et al. [19] 1.56 1.65 8.65

AVX_512 Our Works 1.31 1.42 5.51

6.2. LSH-512/512 Performance Measurement Evaluation Using CUDA

Table 8 and Figure 6 present the results of CUDA stream performance measurements
for LSH-512/512. The performance test fixes the CUDA blocks and threads to 4096 and
128, respectively. In this experiment, the number of CUDA streams gradually increases.
[Opt.] denotes a version with our proposed LSH-512/512 optimization method applied.
In the RTX 3090 architecture and RTX 2080ti architecture environments, CUDA stream
performance test measurements show that performance increases with the growing number
of CUDA streams. Consequently, our LSH-512/512 implementation achieves maximum
performance when using 32 CUDA streams.

Table 8. LSH-512/512 CUDA stream performance analysis (Fixed CUDA blocks/threads: (4096/128).

Device
Number of CUDA Streams

2 4 8 16 24 32

RTX 3090 131.49 149.73 159.18 163.65 164.89 167.44

RTX 2080ti 64.71 75.53 80.73 81.12 81.54 84.87

Figure 7 presents the performance results with a fixed number of CUDA blocks/threads.
Specifically, Figure 7a and Table 9 display the performance measurements with a fixed
number of CUDA blocks, set to 4096, while varying the number of threads. Similarly,
Figure 7b and Table 10 show the performance measurements with a fixed number of CUDA
threads, set to 128, while changing the number of blocks. The experimental unit is the
number of LSH-512/512 operations per second. The [Naive] version benchmarks the KISA
LSH-512/512 open-source code with CUDA C [42,59]. [Opt.] represents our LSH-512/512
optimization and parallelization method proposed in this paper. Both experimental results
in Figure 7a,b fully utilize the resources of the GPU architecture, achieving maximum
performance consistently by maximizing the use of the CUDA resources. In our fixed
CUDA block experiments (Figure 7a) with the RTX 3090 architecture (resp. RTX 2080ti),
our LSH-512/512 performance approaches up to 170 MH/s (resp. 85 MH/s). The LSH-
512/512 benchmark’s performance approaches up to 60 MH/s. Similarly, in fixed CUDA
threads LSH-512/512 performance experiments, our implementation on RTX 3090 (resp.
RTX 2080ti) reaches a performance of 170 MH/s (resp. 85 MH/s). Tables 9 and 10 present
the performance measurement results of our LSH-512/512 implementation (Opt.) and
benchmarking against the KISA open-source code (Naive). On the RTX 3090 (resp. RTX
2080ti) architecture, our LSH-512/512 implementation achieves up to 171.35 MH/s (resp.
85.41 MH/s), while the KISA open-source benchmarking code attains up to 61.06 MH/s

Electronics 2024, 13, 896 17 of 21

(resp. 31.26 MH/s). Comparatively, on the RTX 3090 (resp. RTX 2080ti) architecture, our
implementation demonstrates a significant performance improvement of 180.62% (resp.
173.22%) over the Naive version.

Figure 6. LSH-512/512 CUDA stream performance analysis.

(a) Fixed CUDA block performance result

(b) Fixed CUDA thread performance result

Figure 7. LSH-512 performance results on GPU Architectures (Graph).

Electronics 2024, 13, 896 18 of 21

Table 9. LSH-512/512 performance analysis on GPU Architecture (Fixed CUDA blocks: 4096,
Unit: MH/s).

Version
Number of CUDA Threads

1 2 4 8 16 32 64 128 256 384 512

Naive (3090) 13.30 21.90 34.43 49.44 59.17 61.06 57.20 56.39 55.25 54.25 53.75

Naive (2080ti) 6.11 10.87 16.23 25.14 29.05 30.04 30.04 30.28 29.72 29.74 29.72

Opt. (3090) 26.13 49.67 89.08 152.88 163.94 167.29 168.70 168.05 171.43 170.49 171.35

Opt. (2080ti) 12.02 23.35 44.02 83.27 84.65 85.30 85.08 85.21 85.41 84.61 84.55

Table 10. LSH-512/512 performance analysis on GPU Architecture (Fixed CUDA threads: 128,
Unit: MH/s).

Version
Number of CUDA Blocks

1 16 32 64 128 256 512 1024 2048 4096 8192 16,384

Naive (3090) 1.73 16.08 25.64 33.69 44.14 51.09 55.42 62.43 59.31 57.02 52.17 55.20

Naive (2080ti) 1.37 16.36 25.92 28.41 31.26 31.08 30.33 30.49 29.77 30.09 30.96 30.98

Opt. (3090) 4.20 66.50 118.24 154.46 161.54 162.12 164.95 167.28 167.87 167.44 167.27 170.43

Opt. (2080ti) 2.20 30.70 66.20 73.93 78.79 82.61 83.45 83.16 83.68 84.87 85.14 85.30

7. Discussion

In this paper, we introduced a parallel implementation technique for LSH-512 utilizing
AVX-512. The register length difference between AVX-512 and AVX-256 is twice that of
256-bit and 512-bit, suggesting a potential 100% performance improvement proportional to
the register length difference. However, our observed performance improvement rate is
up to 50.37%. It is important to note that the rate of performance improvement gradually
decreases. Our analysis suggests a bottleneck at the input message copy point. In future
work, we aim to explore solutions to address the bottleneck related to the copying of
input messages.

8. Conclusions

In this paper, we introduced parallel implementations of LSH-512 using SIMD AVX-512
instructions and CUDA. Additionally, we proposed an efficient AVX-512 implementation
scheme for LSH-512 based on an in-depth analysis of AVX-512 instructions. Our AVX-
512 implementation achieved a performance of 1.31 CPB, demonstrating a noteworthy
improvement of up to 50.37% compared to other AVX-2 implementations. For our LSH-512
implementation using NVIDIA CUDA, we addressed the memory task bottleneck in GPU
architecture. We proposed a coalesced memory access pattern, an effective memory access
method, and an asynchronous parallel processing CUDA stream application. Furthermore,
our LSH-512 implementation incorporates CUDA inline assembly PTX. On the RTX 3090
architecture, our implementation achieved a performance of up to 171.35 MH/s. To the best
of our knowledge, our research represents the first optimization of LSH-512 on GPUs and
AVX-512. In future work, we plan to explore optimization methods for hash-based high-
level algorithms, including hash-based digital signature methods, message authentication
codes, and password-based key derivation functions using LSH.

Author Contributions: H.C. and S.C.: Writing—original draft; S.S.: Writing—review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Research Foundataion of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2022R1C1C1013368, 50%) and was partly supported
by the Institute of Information and communications Technology Planning and Evaluation (IITP)
Grant by the Korean Government through Ministry of Science and ICT (MSIT) (A study on PQC

Electronics 2024, 13, 896 19 of 21

optimization and security protocol migration to neutralize advanced quantum attacks in Beyond
5G-based next-generation IoT computing environments, 50%) under Grant 2022-00207416.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We would like to express our gratitude to the anonymous reviewers who
provided valuable comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Turner, J.M. The keyed-hash message authentication code (HMAC). Fed. Inf. Process. Stand. Publ. 2008, 198, 1–13.
2. Kaliski, B. PKCS# 5: Password-Based Cryptography Specification Version 2.0; Technical Report; The Internet Society: Reston, VI,

USA, 2000.
3. Barker, E.B.; Kelsey, J.M. Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised); US

Department of Commerce, Technology Administration, National Institute of Standrads and Technology: Gaithersburg, MD,
USA, 2007.

4. Kerry, C.F.; Gallagher, P.D. FIPS PUB 186-2; Digital Signature Standard (DSS). Federal Information Processing Standards
Publications: Gaithersburg, MD, USA, 2013; pp. 186–194.

5. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-DILITHIUM—Submission to Round
3 of NIST’s Post-Quantum Cryptography Standardization Process; Rep.(NISTIR)-8413; National Institute of Standards and Technology
(NIST): Gaithersburg, MD, USA, 2020.

6. Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon:
Fast-Fourier Lattice-Based Compact Signatures over NTRU. Submiss. NIST Post-Quantum Cryptogr. Stand. Process 2018, 36, 1–75.

7. Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS
Kyber. Submission to the NIST Post-Quantum Cryptography Standardization Project; NIST National Institute of Standards and
Technology: Gaithersburg, MD, USA, 2020.

8. Lamport, L. Constructing Digital Signatures from a One Way Function; 1979. Available online: https://www.microsoft.com/en-us/
research/publication/constructing-digital-signatures-one-way-function/ (accessed on 30 October 2023).

9. Buchmann, J.; Dahmen, E.; Ereth, S.; Hülsing, A.; Rückert, M. On the security of the Winternitz one-time signature scheme. Int. J.
Appl. Cryptogr. 2013, 3, 84–96. [CrossRef]

10. Merkle, R.C. A Certified Digital Signature. In Advances in Cryptology—CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, CA, USA, 20–24 August 1989, Proceedings; Brassard, G., Ed.; Lecture Notes in Computer Science; Springer: New York,
NY, 1989; Volume 435, pp. 218–238. [CrossRef]

11. Bernstein, D.J.; Hopwood, D.; Hülsing, A.; Lange, T.; Niederhagen, R.; Papachristodoulou, L.; Schneider, M.; Schwabe, P.; Wilcox-
O’Hearn, Z. SPHINCS: Practical Stateless Hash-Based Signatures. In Advances in Cryptology—EUROCRYPT 2015—34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April 2015, Proceedings; Part I;
Oswald, E., Fischlin, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9056,
pp. 368–397. [CrossRef]

12. Bernstein, D.J.; Hülsing, A.; Kölbl, S.; Niederhagen, R.; Rijneveld, J.; Schwabe, P. The SPHINCS+ Signature Framework. In
Proceedings of the CCS ’19: 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15
November 2019; Cavallaro, L., Kinder, J., Wang, X., Katz, J., Eds.; ACM: New York, NY, USA, 2019; pp. 2129–2146. [CrossRef]

13. Kim, D.C.; Hong, D.; Lee, J.K.; Kim, W.H.; Kwon, D. LSH: A new fast secure hash function family. In Information Security
and Cryptology-ICISC 2014: 17th International Conference, Seoul, Republic of Korea, 3–5 December 2014; Revised Selected Papers 17;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 286–313.

14. ISO/IEC 19790:2012; Information Technology—Security Techniques Security Requirements for Cryptographic Modules. Korea
Standards Association: Seoul, Republic of Korea, 2012.

15. Sim, M.; Eum, S.; Song, G.; Kwon, H.; Jang, K.; Kim, H.; Kim, H.; Yang, Y.; Kim, W.; Lee, W.K.; et al. K-XMSS and K-SPHINCS+:
Hash based Signatures with Korean Cryptography Algorithms. Cryptol. Eprint Arch. 2022.

16. NVIDIA. CUDA C++ Programming Guide. 2024. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html (accessed on 8 January 2024).

17. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU computing. Proc. IEEE 2008, 96, 879–899. [CrossRef]
18. Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the future of parallel computing. IEEE Micro 2011,

31, 7–17. [CrossRef]
19. Kim, D.; Jung, Y.; Ju, Y.; Song, J. Fast implementation of LSH with SIMD. IEEE Access 2019, 7, 107016–107024. [CrossRef]
20. Park, T.; Seo, H.; Kim, H. Fast implementation of simeck family block ciphers using avx2. In Proceedings of the 2018 International

Conference on Platform Technology and Service (PlatCon), Jeju, Republic of Korea, 29–31 January 2018; pp. 1–6.
21. Cabral, R.; López, J. Implementation of the SHA-3 family using AVX512 instructions. In Proceedings of the Anais do XVIII

Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. SBC, Natal, Brazil, 25 October 2018; pp. 25–32.

https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
http://doi.org/10.1504/IJACT.2013.053435
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1145/3319535.3363229
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/MM.2011.89
http://dx.doi.org/10.1109/ACCESS.2019.2932129

Electronics 2024, 13, 896 20 of 21

22. Cheng, H.; Großschädl, J.; Tian, J.; Rønne, P.B.; Ryan, P.Y. High-throughput elliptic curve cryptography using AVX2 vector
instructions. In Selected Areas in Cryptography: 27th International Conference, Halifax, NS, Canada, 21–23 October 2020; Revised
Selected Papers 27; Springer: Cham, Switzerland, 2021; pp. 698–719.

23. Alter, D.M.; Schwabe, P.; Daemen, J. Optimizing the NIST Post Quantum Candidate SPHINCS+ Using AVX-512. 2021. Available
online: https://www.cs.ru.nl/bachelors-theses/2021/Dor_Mariel_Alter___1027021 (accessed on 25 August 2021).

24. Duong-Ngoc, P.; Tan, T.N.; Lee, H. Efficient NewHope cryptography based facial security system on a GPU. IEEE Access 2020,
8, 108158–108168. [CrossRef]

25. Lee, W.K.; Seo, H.; Zhang, Z.; Hwang, S.O. Tensorcrypto: High throughput acceleration of lattice-based cryptography using
tensor core on gpu. IEEE Access 2022, 10, 20616–20632. [CrossRef]

26. Lee, K.; Gowanlock, M.; Cambou, B. SABER-GPU: A Response-Based Cryptography Algorithm for SABER on the GPU. In
Proceedings of the 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC), Perth, Australia,
1–4 December 2021; pp. 123–132.

27. Gupta, N.; Jati, A.; Chauhan, A.K.; Chattopadhyay, A. Pqc acceleration using gpus: Frodokem, newhope, and kyber. IEEE Trans.
Parallel Distrib. Syst. 2020, 32, 575–586. [CrossRef]

28. Seo, S.C. SIKE on GPU: Accelerating supersingular isogeny-based key encapsulation mechanism on graphic processing units.
IEEE Access 2021, 9, 116731–116744. [CrossRef]

29. An, S.; Seo, S.C. Efficient parallel implementations of LWE-based post-quantum cryptosystems on graphics processing units.
Mathematics 2020, 8, 1781. [CrossRef]

30. Ji, X.; Dong, J.; Zhang, P.; Tonggui, D.; Jiafeng, H.; Xiao, F. HI-Kyber: A Novel High-Performance Implementation Scheme of
Kyber Based on GPU. Cryptology ePrint Archive, Paper 2023/1194. 2023. Available online: https://eprint.iacr.org/2023/1194
(accessed on 7 August 2023).

31. Pan, W.; Zheng, F.; Zhao, Y.; Zhu, W.T.; Jing, J. An efficient elliptic curve cryptography signature server with GPU acceleration.
IEEE Trans. Inf. Forensics Secur. 2016, 12, 111–122. [CrossRef]

32. Dong, J.; Zheng, F.; Lin, J.; Liu, Z.; Xiao, F.; Fan, G. EC-ECC: Accelerating elliptic curve cryptography for edge computing on
embedded GPU TX2. ACM Trans. Embed. Comput. Syst. (TECS) 2022, 21, 1–25. [CrossRef]

33. Gao, L.; Zheng, F.; Emmart, N.; Dong, J.; Lin, J.; Weems, C. DPF-ECC: Accelerating elliptic curve cryptography with floating-point
computing power of gpus. In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
New Orleans, LA, USA, 18–22 May 2020; pp. 494–504.

34. Chugh, G.; Saji, S.A.; Singh Bhati, N. Fast Implementation of AES Modes Based on Turing Architecture. In Advancements in
Interdisciplinary Research: First International Conference, AIR 2022, Prayagraj, India, 6–7 May 2022; Revised Selected Papers; Springer:
Cham, Switzerland, 2023; pp. 479–489.

35. An, S.; Seo, S.C. Designing a new XTS-AES parallel optimization implementation technique for fast file encryption. IEEE Access
2022, 10, 25349–25357. [CrossRef]

36. An, S.; Seo, S.C. Highly Efficient Implementation of Block Ciphers on Graphic Processing Units for Massively Large Data. Appl.
Sci. 2020, 10, 3711. [CrossRef]

37. Choi, H.; Seo, S.C. Fast implementation of SHA-3 in GPU environment. IEEE Access 2021, 9, 144574–144586. [CrossRef]
38. Wang, C.; Chu, X. GPU accelerated Keccak (SHA3) algorithm. arXiv 2019, arXiv:1902.05320.
39. Dat, T.N.; Iwai, K.; Matsubara, T.; Kurokawa, T. Implementation of high speed hash function Keccak on GPU. Int. J. Netw. Comput.

2019, 9, 370–389. [CrossRef]
40. Kuznetsov, A.; Shekhanin, K.; Kolhatin, A.; Kovalchuk, D.; Babenko, V.; Perevozova, I. Performance of Hash Algorithms on Gpus

for Use in Blockchain. In Proceedings of the 2019 IEEE international conference on advanced trends in information theory (ATIT),
Kyiv, Ukraine, 18-20 December 2019; pp. 166–170.

41. Iuorio, A.F.; Visconti, A. Understanding optimizations and measuring performances of PBKDF2. In 2nd International Conference
on Wireless Intelligent and Distributed Environment for Communication: WIDECOM 2019; Springer: Cham, Switzerland, 2019;
pp. 101–114.

42. Kisa, K. Lightweight Secure Hash Function Open Source Code. 2023. Available online: https://seed.kisa.or.kr/kisa/Board/22
/detailView.do (accessed on 31 January 2019).

43. Kusswurm, D. Modern Parallel Programming with C++ and Assembly; Apress: Berkeley, CA, USA, 2022. [CrossRef]
44. Verma, R.; Vishnu, V.; Kataoka, K. Verifiable and Robust Monitoring and Alerting System for Road Safety by AI based Consensus

Development on Blockchain. In Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 4–7
June 2023; pp. 1–8.

45. Qureshi, R.; Irfan, M.; Ali, H.; Khan, A.; Nittala, A.S.; Ali, S.; Shah, A.; Gondal, T.M.; Sadak, F.; Shah, Z.; et al. Artificial Intelligence
and Biosensors in Healthcare and its Clinical Relevance: A Review. IEEE Access 2023, 11, 61600–61620. [CrossRef]

46. Seng, K.P.; Ang, L.M. Embedded intelligence: State-of-the-art and research challenges. IEEE Access 2022, 10, 59236–59258.
[CrossRef]

47. Kumar, M.; Kaur, G. Containerized AI Framework on Secure Shared Multi-GPU Systems. In Proceedings of the 2022 Seventh
International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 25–27 November
2022; pp. 243–247.

https://www.cs.ru.nl/bachelors-theses/2021/Dor_Mariel_Alter___1027021
http://dx.doi.org/10.1109/ACCESS.2020.3000316
http://dx.doi.org/10.1109/ACCESS.2022.3152217
http://dx.doi.org/10.1109/TPDS.2020.3025691
http://dx.doi.org/10.1109/ACCESS.2021.3106551
http://dx.doi.org/10.3390/math8101781
https://eprint.iacr.org/2023/1194
http://dx.doi.org/10.1109/TIFS.2016.2603974
http://dx.doi.org/10.1145/3492734
http://dx.doi.org/10.1109/ACCESS.2022.3155810
http://dx.doi.org/10.3390/app10113711
http://dx.doi.org/10.1109/ACCESS.2021.3122466
http://dx.doi.org/10.15803/ijnc.9.2_370
https://seed.kisa.or.kr/kisa/Board/22/detailView.do
https://seed.kisa.or.kr/kisa/Board/22/detailView.do
http://dx.doi.org/10.1007/978-1-4842-7918-2
http://dx.doi.org/10.1109/ACCESS.2023.3285596
http://dx.doi.org/10.1109/ACCESS.2022.3175574

Electronics 2024, 13, 896 21 of 21

48. Kumar, M.; Kaur, G. Study of container-based JupyterLab and AI Framework on HPC with GPU usage. In Proceedings of the 2022
International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Bangalore,
India, 23–25 December 2022; pp. 1–5.

49. Li, H.; Ng, J.K.; Abdelzaher, T. Enabling Real-time AI Inference on Mobile Devices via GPU-CPU Collaborative Execution. In
Proceedings of the 2022 IEEE 28th International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Taipei, Taiwan, 23–25 August 2022; pp. 195–204.

50. Bataineh, M.R.; Mardini, W.; Khamayseh, Y.M.; Yassein, M.M.B. Novel and secure blockchain framework for health applications
in IoT. IEEE Access 2022, 10, 14914–14926. [CrossRef]

51. Pandya, S.B.; Sanghvi, H.A.; Patel, R.H.; Pandya, A.S. GPU and FPGA Based Deployment of Blockchain for Cryptocurrency—A
Systematic Review. In Proceedings of the 2022 International Conference on Computational Intelligence and Sustainable Engineer-
ing Solutions (CISES), Greater Noida, India, 20–21 May 2022; pp. 18–25.

52. Morishima, S.; Matsutani, H. Accelerating blockchain search of full nodes using GPUs. In Proceedings of the 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing (PDP), Cambridge, UK, 21–23 March 2018;
pp. 244–248.

53. Lessley, B.; Childs, H. Data-parallel hashing techniques for GPU architectures. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 237–250.
[CrossRef]

54. CUDA NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming Guide. 2007. Available online:
https://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf (accessed on
30 October 2023).

55. Munshi, A. The opencl specification. In Proceedings of the 2009 IEEE Hot Chips 21 Symposium (HCS), Stanford, CA, USA, 23–25
August 2009; pp. 1–314.

56. Intel. Intel Advanced Vector Extensions 512 Instructions. 2017. Available online: https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-avx-512-instructions.html?wapkw=AVX-512 (accessed on 20 June 2017).

57. NVIDIA. CUDA C++ Best Practices Guide. 2023. Available online: https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
index.html (accessed on 14 November 2023).

58. NVIDIA. CUDA Toolkit v12.0.1 PTX ISA. 2023. Available online: https://docs.nvidia.com/cuda/parallel-thread-execution/
index.html (accessed on 14 November 2023).

59. Lightweight Secure Hash Function Source Codes. 2023. Available online: https://github.com/sjnst217/KISA_LSH (accessed on
27 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2022.3147795
http://dx.doi.org/10.1109/TPDS.2019.2929768
https://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html?wapkw=AVX-512
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html?wapkw=AVX-512
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://github.com/sjnst217/KISA_LSH

	Introduction
	Contributions
	Preliminary
	Notation
	Lightweight Secure Hash
	Advanced-Extension Vector-512
	Graphics Processing Units and Compute Unified Device Architecture

	Proposed Implementation Methods of LSH in AVX-512
	LSH Structure Analysis
	LSH Compression Process
	Proposed Implementation Clock Cost Analysis

	Proposed Implementation Methods of LSH in GPU
	Coalesced Memory Access Methods
	Cuda Stream
	Ptx Inline Assembly

	Performance Analysis
	LSH-512 Performance Measurement Evaluation Using AVX-512
	LSH-512/512 Performance Measurement Evaluation Using CUDA

	Discussion
	Conclusions
	References

