Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = secondary battery cathode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 918 KiB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 (registering DOI) - 5 Aug 2025
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 3845 KiB  
Article
Graphite Separation from Lithium-Ion Battery Black Mass Using Froth Flotation and Quality Evaluation for Reuse as a Secondary Raw Material Including Non-Battery Applications
by Johannes Rieger, Stephan Stuhr, Bettina Rutrecht, Stefan Morgenbesser, Thomas Nigl, Astrid Arnberger, Hartwig Kunanz and Stefanie Lesiak
Recycling 2025, 10(2), 75; https://doi.org/10.3390/recycling10020075 - 14 Apr 2025
Viewed by 2050
Abstract
This study investigates graphite separation from Lithium-Ion Battery (LIB) black mass (which is a mixture of anode and cathode materials) via froth flotation coupled with an open-loop recycling approach for the graphite (froth) product. Black mass samples originating from different LIB types were [...] Read more.
This study investigates graphite separation from Lithium-Ion Battery (LIB) black mass (which is a mixture of anode and cathode materials) via froth flotation coupled with an open-loop recycling approach for the graphite (froth) product. Black mass samples originating from different LIB types were used to produce a carbon-poor and a carbon-enriched fractions. The optimization of the flotation parameters was carried out depending on the black mass chemistry, i.e., the number of flotation stages and the dosing of flotation agents. The carbon-enriched product (with a carbon content of 92 wt.%, corresponding to a recovery of 89%) was subsequently used as a secondary carbon source for refractory material (magnesia carbon brick). Analyses of brick chemistry, as well as thermo-mechanic properties in terms of density, porosity, cold crushing strength (CCS), hot modulus of rupture (HMOR—the maximum bending stress that can be applied to a material before it breaks), and thermal conductivity showed no negative influence on brick quality. It could be demonstrated that flotation graphite can principally be used as a secondary source for non-battery applications. This is a highly valuable example that contributes to a more complete closure of a battery’s life cycle in terms of circular economy. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

17 pages, 3834 KiB  
Article
Evaluation of the Removal of PVDF Using ToF-SIMS: Comparing Dihydrolevoglucosenone and Pyrolysis as Pretreatments for Cathode Materials of Lithium-Ion Batteries
by Marc Simon Henderson, Aliza Marie Salces, William D. A. Rickard, Denis Fougerouse, Álvaro José Rodríguez Medina, Elsayed A. Oraby, Chau Chun Beh, Martin Rudolph, Anna Vanderbruggen and Jacques Eksteen
Recycling 2025, 10(2), 56; https://doi.org/10.3390/recycling10020056 - 1 Apr 2025
Cited by 1 | Viewed by 2033
Abstract
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material [...] Read more.
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material using either a green solvent-based dissolution process or pyrolysis, analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The solvent pretreatment involved mixing dihydrolevoglucosenone (Cyrene™) with PVDF-coated NMC811 at 100 °C, followed by hot filtration to separate the Cyrene-PVDF solution. Pyrolysis was conducted at 800 °C under an argon atmosphere. Positive ToF-SIMS spectra for Cyrene showed characteristic peaks at ketene (42 m/z) and 1,3-dioxole (86 m/z), along with intense C2H3O+, C3H3O+, C4H7+, and C3H5O+ peaks. The characteristic peaks used to identify PVDF were C3H2F5+ (133 m/z), C3H2F3+ (95 m/z), and C3HF4+ (113 m/z). Both processes resulted in PVDF removal, with pyrolysis demonstrating higher effectiveness. Particle agglomeration was observed in both pretreated NMC811 samples, however agglomeration was more pronounced with Cyrene pretreatment due to PVDF redeposition. Following pyrolysis, PVDF was transformed into a defluorinated carbonaceous material. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

13 pages, 6602 KiB  
Article
Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries
by Hiroto Tominaga, Junichi Tokomoto, Kenjiro Onimura and Kazuhiro Yamabuki
Electrochem 2025, 6(1), 8; https://doi.org/10.3390/electrochem6010008 - 18 Mar 2025
Viewed by 1247
Abstract
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic [...] Read more.
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic solvents, we successfully introduced sulfur-based compounds into porous carbon via vacuum impregnation using a solution, rather than conventional thermal impregnation. Charge–discharge measurements of lithium–sulfur (Li-S) secondary batteries assembled with this more uniform composite cathode, compared to those using elemental sulfur, demonstrated an increased discharge capacity in the initial cycles and at higher rates. Full article
Show Figures

Graphical abstract

28 pages, 10670 KiB  
Review
Recent Advancement of Quantum Dot-Based Nanocomposites as Electrode Materials for Secondary Batteries
by Amartya Chakrabarti, Pradip Majumdar, Emily Alessandri and Corinne Roemer
Energies 2025, 18(3), 630; https://doi.org/10.3390/en18030630 - 29 Jan 2025
Cited by 2 | Viewed by 1133
Abstract
Quantum dots (QDs) are emerging as a new class of zero-dimensional nanomaterials with semiconducting properties. Among many applications, QDs find useful employment in high-capacity electrodes in secondary batteries by virtue of their nanodimension. The recent advancements of QDs and their application as QD-based [...] Read more.
Quantum dots (QDs) are emerging as a new class of zero-dimensional nanomaterials with semiconducting properties. Among many applications, QDs find useful employment in high-capacity electrodes in secondary batteries by virtue of their nanodimension. The recent advancements of QDs and their application as QD-based nanocomposites in electrodes are published in numerous accounts. Well-dispersed QDs in conductive carbonaceous materials can lead to the formation of nanocomposites with excellent cyclic stabilities and large reversible capacities, which are suitable for applications in many batteries. Inorganic QDs are also being investigated as potential candidates to fabricate nanocomposites in different secondary batteries. However, there are not many review articles available detailing the synthetic methodologies used to fabricate such QD-based nanocomposites along with their electrochemical properties. In this article, we are documenting a comprehensive review of a variety of QD nanocomposites with their manufacturing processes and successful utilization in battery applications. We will be highlighting the application of QD-based nanocomposites as anode and cathode materials for applications in different secondary batteries and discussing the enhancement of the electrochemical performances of such batteries in terms of energy density and cyclability. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

17 pages, 1931 KiB  
Article
Lithium Tracer Diffusion in LixCoO2 and LixNi1/3Mn1/3Co1/3O2 (x = 1, 0.9, 0.65)-Sintered Bulk Cathode Materials for Lithium-Ion Batteries
by Erwin Hüger, Daniel Uxa and Harald Schmidt
Batteries 2025, 11(2), 40; https://doi.org/10.3390/batteries11020040 - 21 Jan 2025
Viewed by 1222
Abstract
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases [...] Read more.
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases during electrochemical delithiation. Such an increased Li diffusivity will be advantageous for performance if it is present already in the initial state after synthesis. In order to understand the influence of a varying initial Li content on Li diffusion, we performed Li tracer diffusion experiments on LixCoO2 (LCO) and LixNi1/3Mn1/3Co1/3O2 (NMC, x = 1, 0.9, 0.65) cathode materials. The measurements were performed on polycrystalline sintered bulk materials, free of additives and binders, in order to study the intrinsic properties. The variation of Li content was achieved using reactive solid-state synthesis using pressed Li2CO3, NiO, Co3O4 and/or MnO2 powders and high temperature sintering at 800 °C. XRD analyses showed that the resultant bulk samples exhibit the layered LCO or NMC phases with a low amount of cation intermixing. Moreover, the presence of additional NiO and Co3O4 phases was detected in NMC with a pronounced nominal Li deficiency of x = 0.65. As a tracer source, a 6Li tracer layer with the same chemical composition was deposited using ion beam sputtering. Secondary ion mass spectrometry in depth profile mode was used for isotopic analysis. The diffusivities followed the Arrhenius law with an activation enthalpy of about 0.8 eV and were nearly identical within error for all samples investigated in the temperature range up to 500 °C. For a diffusion mechanism based on structural Li vacancies, the results indicated that varying the Li content does not result in a change in the vacancy concentration. Consequently, the design and use of a cathode initially made of a Li-deficient material will not improve the kinetics of battery performance. The possible reasons for this unexpected result are discussed. Full article
Show Figures

Figure 1

23 pages, 6734 KiB  
Article
A Study on the Battery Recycling Process and Risk Estimation
by Taeho Kim, Cheolhee Yoon and Seungho Jung
Int. J. Environ. Res. Public Health 2024, 21(12), 1649; https://doi.org/10.3390/ijerph21121649 - 10 Dec 2024
Cited by 3 | Viewed by 1968
Abstract
The demand for the use of secondary batteries is increasing rapidly worldwide in order to solve global warming and achieve carbon neutrality. Major minerals used to produce cathode materials, which are key raw materials for secondary batteries, are treated as conflict minerals due [...] Read more.
The demand for the use of secondary batteries is increasing rapidly worldwide in order to solve global warming and achieve carbon neutrality. Major minerals used to produce cathode materials, which are key raw materials for secondary batteries, are treated as conflict minerals due to their limited reserves, and accordingly, research on the battery recycling industry is urgent for the sustainable secondary battery industry. There is a significant risk of accidents because there is a lack of prior research data on the battery recycling process and various chemicals are used in the entire recycling process. Therefore, for the safety management of related industries, it is necessary to clearly grasp the battery recycling process and to estimate the risk accordingly. In this study, the process was generalized using the information on the battery recycling process suggested in the preceding literature. And to estimate the relative risk of each battery recycling process, the RAC (Risk Assessment Code) matrix described in the US Department of Defense’s “MIL-STD-882E” was used. Severity was derived by using “NFPA 704”, and probability was derived by combining generalized event analysis for each process and the WEEE (Waste Electrical and Electronic Equipment) report. The results confirmed that the process using H2SO4 had the highest risk when extracting Li during the leaching process, and that dismantling and heat treatment had the lowest risk. Using the probability factor for each process calculated through the research, it is expected to be used in future battery recycling process research as basic data for quantitative risk assessment of the battery recycling process. Full article
Show Figures

Figure 1

13 pages, 3477 KiB  
Article
Facile Preparation of Three-Dimensional Cubic MnSe2/CNTs and Their Application in Aqueous Copper Ion Batteries
by Junjun Wang, Linlin Tai, Wei Zhou, Han Chen, Jingxiong Liu and Shaohua Jiang
Nanomaterials 2024, 14(20), 1621; https://doi.org/10.3390/nano14201621 - 10 Oct 2024
Cited by 2 | Viewed by 1147
Abstract
Transition metal sulfide compounds with high theoretical specific capacity and excellent electronic conductivity that can be used as cathode materials for secondary batteries attract great research interest in the field of electrochemical energy storage. Among these materials, MnSe2 garners significant interest from [...] Read more.
Transition metal sulfide compounds with high theoretical specific capacity and excellent electronic conductivity that can be used as cathode materials for secondary batteries attract great research interest in the field of electrochemical energy storage. Among these materials, MnSe2 garners significant interest from researchers due to its unique three-dimensional cubic structure and inherent stability. However, according to the relevant literature, the performance and cycle life of MnSe2 are not yet satisfactory. To address this issue, we synthesize MnSe2/CNTs composites via a straightforward hydrothermal method. MnSO4·H2O, Se, and N2H4·H2O are used as reactants, and CNTs are incorporated during the stirring process. The experimental outcomes indicate that the fabricated electrode demonstrates an initial discharge specific capacity that reaches 621 mAh g−1 at a current density of 0.1 A g−1. Moreover, it exhibits excellent rate capability, delivering a discharge specific capacity of 476 mAh g−1 at 10 A g−1. The electrode is able to maintain a high discharge specific capacity of 545 mAh g−1 after cycling for 1000 times at a current density of 2 A g−1. The exceptional electrochemical performance of the MnSe2/CNTs composites can be ascribed to their three-dimensional cubic architecture and the 3D CNT network. This research aids in the progression of aqueous Cu-ion cathode materials with significant potential, offering a viable route for their advancement. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

11 pages, 8364 KiB  
Article
Oxygen Vacancy-Rich δ-MnO2 Cathode Materials for Highly Stable Zinc-Ion Batteries
by Shilong Li and Xiang Wu
Batteries 2024, 10(8), 294; https://doi.org/10.3390/batteries10080294 - 22 Aug 2024
Cited by 2 | Viewed by 2692
Abstract
As an emerging secondary battery system, aqueous zinc-ion batteries (AZIBs) show a broad application prospect in the fields of large-scale energy storage and wearable devices. Manganese-based cathode materials have been widely investigated by many researchers due to their high natural abundance, low toxicity, [...] Read more.
As an emerging secondary battery system, aqueous zinc-ion batteries (AZIBs) show a broad application prospect in the fields of large-scale energy storage and wearable devices. Manganese-based cathode materials have been widely investigated by many researchers due to their high natural abundance, low toxicity, and multiple variable valence states. However, limited active sites, insufficient solvation, and reactivity kinetics of Mn2+ lead to the attenuation of their electrochemical performance. Herein, we introduce appropriate oxygen vacancies into the δ-MnO2 structure by modulating the annealing temperature. The obtained δ-MnO2-400 electrode provided 503 mAh/g capacity at 0.2 A/g and 99% capacity retention after 3000 times cycling at 1 A/g. Full article
Show Figures

Figure 1

13 pages, 9722 KiB  
Article
Effect of Secondary Phase on Electroless Ni Plating Behaviour of Super Duplex Stainless Steel SAF2507 for Advanced Li-Ion Battery Case
by Byung-Hyun Shin, Seongjun Kim, Jinyong Park, Jung-Woo Ok, Doo-In Kim, Dohyung Kim and Jang-Hee Yoon
Materials 2024, 17(6), 1441; https://doi.org/10.3390/ma17061441 - 21 Mar 2024
Cited by 8 | Viewed by 1566
Abstract
The development of Li-ion battery cases requires superior electrical conductivity, strength, and corrosion resistance for both cathode and anode to enhance safety and performance. Among the various battery case materials, super duplex stainless steel (SDSS), which is composed of austenite and ferrite as [...] Read more.
The development of Li-ion battery cases requires superior electrical conductivity, strength, and corrosion resistance for both cathode and anode to enhance safety and performance. Among the various battery case materials, super duplex stainless steel (SDSS), which is composed of austenite and ferrite as two-phase stainless steel, exhibits outstanding strength and corrosion resistance. However, stainless steel, which is an iron-based material, tends to have lower electrical conductivity. Nevertheless, nickel-plating SDSS can achieve excellent electrical conductivity, making it suitable for Li-ion battery cases. Therefore, this study analysed the plating behaviour of SDSS plates after nickel plating to leverage their exceptional strength and corrosion resistance. Electroless Ni plating was performed to analyse the plating behaviour, and the plating behaviour was studied with reference to different plating durations. Heat treatment was conducted at 1000 °C for one hour, followed by cooling at 50 °C/s. Post-heat treatment, the analysis of phases was executed using FE-SEM, EDS, and EPMA. Electroless Ni plating was performed at 60–300 s. The plating duration after the heat treatment was up to 300 s, and the behaviour of the materials was observed using FE-SEM. The phase analysis concerning different plating durations was conducted using XRD. Post-heat treatment, the precipitated secondary phases in SAF2507 were identified as Sigma, Chi, and CrN, approximating a 13% distribution. During the electroless Ni plating, the secondary phase exhibited a plating rate equivalent to that of ferrite, entirely plating at around 180 s. Further increments in plating time displayed growth of the plating layer from the austenite direction towards the ferrite, accompanied by a reduced influence from the substrate. Despite the differences in composition, both the secondary phase and austenite demonstrated comparable plating rates, showing that electroless Ni plating on SDSS was primarily influenced by the substrate, a finding which was primarily confirmed through phase analysis. Full article
(This article belongs to the Special Issue Heat Treatment of Metallic Materials in Modern IndustryVolume II)
Show Figures

Figure 1

14 pages, 5749 KiB  
Article
Investigating Cathode Electrolyte Interphase Formation in NMC 811 Primary Particles through Advanced 4D-STEM ACOM Analysis
by Kevyn Gallegos-Moncayo, Justine Jean, Nicolas Folastre, Arash Jamali and Arnaud Demortière
Symmetry 2024, 16(3), 301; https://doi.org/10.3390/sym16030301 - 4 Mar 2024
Cited by 2 | Viewed by 3107
Abstract
This study focuses on NMC 811 (LiNi0.8Mn0.1Co0.1O2), a promising material for high-capacity batteries, and investigates the challenges associated with its use, specifically the formation of the cathode electrolyte interphase (CEI) layer due to chemical reactions. [...] Read more.
This study focuses on NMC 811 (LiNi0.8Mn0.1Co0.1O2), a promising material for high-capacity batteries, and investigates the challenges associated with its use, specifically the formation of the cathode electrolyte interphase (CEI) layer due to chemical reactions. This layer is a consequence of the position of the Lowest Unoccupied Molecular Orbital (LUMO) energy level of NMC 811 that is close to the Highest Occupied Molecular Orbital (HOMO) level of liquid electrolytes, resulting in electrolyte oxidation and cathode surface alterations during charging. A stable CEI layer can mitigate further degradation by reducing the interaction between the reactive cathode material and the electrolyte. Our research analyzed the CEI layer on NMC 811 using advanced techniques, such as 4D-STEM ACOM (automated crystal orientation mapping) and STEM-EDX, focusing on the effects of different charging voltages (4.3 V and 4.5 V). The findings revealed varying degrees of degradation and the formation of a fluorine-rich layer on the secondary particles. Detailed analysis showed that the composition of this layer differed based on the voltage: only LiF at 4.5 V and a combination of lithium fluoride (LiF) and lithium hydroxide (LiOH) at 4.3 V. Despite LiF’s known stability as a CEI protective layer, our observations indicate that it does not effectively prevent degradation in NMC 811. The study concluded that impurities and unwanted chemical reactions leading to suboptimal CEI formation are inevitable. Therefore, future efforts should focus on developing protective strategies for NMC 811, such as the use of specific additives or coatings. Full article
(This article belongs to the Special Issue Electron Diffraction and Structural Imaging II)
Show Figures

Figure 1

27 pages, 5860 KiB  
Article
Debye Temperature Evaluation for Secondary Battery Cathode of α-SnxFe1−xOOH Nanoparticles Derived from the 57Fe- and 119Sn-Mössbauer Spectra
by Ahmed Ibrahim, Kaoru Tani, Kanae Hashi, Bofan Zhang, Zoltán Homonnay, Ernő Kuzmann, Arijeta Bafti, Luka Pavić, Stjepko Krehula, Marijan Marciuš and Shiro Kubuki
Int. J. Mol. Sci. 2024, 25(5), 2488; https://doi.org/10.3390/ijms25052488 - 20 Feb 2024
Cited by 4 | Viewed by 1540
Abstract
Debye temperatures of α-SnxFe1−xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature [...] Read more.
Debye temperatures of α-SnxFe1−xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature from 20 to 300 K. Electrical properties were studied by solid-state impedance spectroscopy (SS-IS). Together, the charge–discharge capacity of Li- and Na-ion batteries containing Sn100x NPs as a cathode were evaluated. 57Fe-Mössbauer spectra of Sn10, Sn15, and Sn20 measured at 300 K showed only one doublet due to the superparamagnetic doublet, while the doublet decomposed into a sextet due to goethite at the temperature below 50 K for Sn 10, 200 K for Sn15, and 100 K for Sn20. These results suggest that Sn10, Sn15 and Sn20 had smaller particles than Sn0. On the other hand, 20 K 119Sn-Mössbauer spectra of Sn15 were composed of a paramagnetic doublet with an isomer shift (δ) of 0.24 mm s−1 and quadrupole splitting (∆) of 3.52 mm s−1. These values were larger than those of Sn10 (δ: 0.08 mm s−1, ∆: 0.00 mm s−1) and Sn20 (δ: 0.10 mm s−1, ∆: 0.00 mm s−1), suggesting that the SnIV-O chemical bond is shorter and the distortion of octahedral SnO6 is larger in Sn15 than in Sn10 and Sn20 due to the increase in the covalency and polarization of the SnIV-O chemical bond. Debye temperatures determined from 57Fe-Mössbauer spectra measured at the low temperature were 210 K, 228 K, and 250 K for Sn10, Sn15, and Sn20, while that of α-Fe2O3 was 324 K. Similarly, the Debye temperature of 199, 251, and 269 K for Sn10, Sn15, and Sn20 were estimated from the temperature-dependent 119Sn-Mössbauer spectra, which were significantly smaller than that of BaSnO3 (=658 K) and SnO2 (=382 K). These results suggest that Fe and Sn are a weakly bound lattice in goethite NPs with low crystallinity. Modification of NPs and addition of Sn has a positive effect, resulting in an increase in DC conductivity of almost 5 orders of magnitude, from a σDC value of 9.37 × 10−7 (Ω cm)−1 for pure goethite Sn (Sn0) up to DC plateau for samples containing 0.15 and 0.20 Sn (Sn15 and Sn20) with a DC value of ~4 × 10−7 (Ω cm)−1 @423 K. This non-linear conductivity pattern and levelling at a higher Sn content suggests that structural modifications have a notable impact on electron transport, which is primarily governed by the thermally activated via three-dimensional hopping of small polarons (SPH). Measurements of SIB performance, including the Sn100x cathode under a current density of 50 mA g−1, showed initial capacities of 81 and 85 mAh g−1 for Sn0 and Sn15, which were larger than the others. The large initial capacities were measured at a current density of 5 mA g−1 found at 170 and 182 mAh g−1 for Sn15 and Sn20, respectively. It is concluded that tin-goethite NPs are an excellent material for a secondary battery cathode and that Sn15 is the best cathode among the studied Sn100x NPs. Full article
Show Figures

Figure 1

14 pages, 6264 KiB  
Article
Facile Synthesis of Hollow V2O5 Microspheres for Lithium-Ion Batteries with Improved Performance
by Hailong Fei, Peng Wu, Liqing He and Haiwen Li
Inorganics 2024, 12(2), 37; https://doi.org/10.3390/inorganics12020037 - 24 Jan 2024
Cited by 3 | Viewed by 2550
Abstract
Micro-nanostructured electrode materials are characterized by excellent performance in various secondary batteries. In this study, a facile and green hydrothermal method was developed to prepare amorphous vanadium-based microspheres on a large scale. Hollow V2O5 microspheres were achieved, with controllable size, [...] Read more.
Micro-nanostructured electrode materials are characterized by excellent performance in various secondary batteries. In this study, a facile and green hydrothermal method was developed to prepare amorphous vanadium-based microspheres on a large scale. Hollow V2O5 microspheres were achieved, with controllable size, after the calcination of amorphous vanadium-based microspheres and were used as cathode materials for lithium-ion batteries. As the quantity of V2O5 microspheres increased, the electrode performance improved, which was ascribed to the smaller charge transfer impedance. The discharge capacity of hollow V2O5 microspheres could be up to 196.4 mAhg−1 at a current density of 50 mAg−1 between 2.0 and 3.5 V voltage limits. This sheds light on the synthesis and application of spherical electrode materials for energy storage. Full article
(This article belongs to the Special Issue Novel Materials in Li–Ion Batteries)
Show Figures

Graphical abstract

18 pages, 24917 KiB  
Article
Using Hierarchically Structured, Nanoporous Particles as Building Blocks for NCM111 Cathodes
by Werner Bauer, Marcus Müller, Luca Schneider, Marcel Häringer, Nicole Bohn, Joachim R. Binder, Julian Klemens, Philip Scharfer, Wilhelm Schabel and Helmut Ehrenberg
Nanomaterials 2024, 14(2), 134; https://doi.org/10.3390/nano14020134 - 6 Jan 2024
Cited by 5 | Viewed by 2287
Abstract
Nanoparticles have many advantages as active materials, such as a short diffusion length, low charge transfer resistance, or a reduced probability of cracking. However, their low packing density makes them unsuitable for commercial battery applications. Hierarchically structured microparticles are synthesized from nanoscale primary [...] Read more.
Nanoparticles have many advantages as active materials, such as a short diffusion length, low charge transfer resistance, or a reduced probability of cracking. However, their low packing density makes them unsuitable for commercial battery applications. Hierarchically structured microparticles are synthesized from nanoscale primary particles by targeted aggregation. Due to their open accessible porosity, they retain the advantages of nanomaterials but can be packed much more densely. However, the intrinsic porosity of the secondary particles leads to limitations in processing properties and increases the overall porosity of the electrode, which must be balanced against the improved rate stability and increased lifetime. This is demonstrated for an established cathode material for lithium-ion batteries (LiNi0.33Co0.33Mn0.33O2, NCM111). For active materials with low electrical or ionic conductivity, especially post-lithium systems, hierarchically structured particles are often the only way to produce competitive electrodes. Full article
(This article belongs to the Special Issue Functionalized Nanostructures for Novel Energy Storage Systems)
Show Figures

Figure 1

14 pages, 7148 KiB  
Article
Enhanced Cycle Performance of NiCo2O4/CNTs Composites in Lithium-Air Batteries
by Dae-Seon Hong, Yeon-Ji Choi, Chang-Su Jin, Kyoung-Hee Shin, Woo-Jin Song and Sun-Hwa Yeon
Energies 2024, 17(1), 58; https://doi.org/10.3390/en17010058 - 21 Dec 2023
Cited by 1 | Viewed by 1373
Abstract
The lithium-air battery is a new type of secondary battery technology that is currently receiving a lot of attention in the field of power storage technology. These batteries are known to offer high energy densities and potentially longer driving ranges. In this study, [...] Read more.
The lithium-air battery is a new type of secondary battery technology that is currently receiving a lot of attention in the field of power storage technology. These batteries are known to offer high energy densities and potentially longer driving ranges. In this study, NiCo2O4 and CNTs were used to create a composite for use as the cathode of a Li-air battery. Improving the 3D needl-like structure that provides extensive transport channels for electrolyte infiltration and numerous sites facilitated charge transfer reactions and the synergistic effect of highly electrocatalytic NiCo2O4 with pronounced activity and high conductive CNTs, with the synthesized NiCo2O4@CNTs composites exhibiting active catalytic performance for both OER and ORR reactions. It also showed improved cycle performance at high current densities. NiCo2O4@CNTs composites were successfully fabricated using a hydrothermal method together with a sequential annealing treatment. The components of the completed composite were confirmed using TGA, XRD, and SEM, and the specific surface area was analyzed using BET. The composite was performed for over 120 cycles at a current density of 200 mA∙g−1, and 500 mA∙g−1 was achieved under the capacity limiting condition of 500 mAh∙g−1. The charging/discharging characteristics were compared under various current densities, exhibiting stable cyclability. The high catalytic activity of NiCo2O4 oxide supports its potential use as a cathode in Li-air batteries. Full article
Show Figures

Figure 1

Back to TopTop