Enhanced Cycle Performance of NiCo2O4/CNTs Composites in Lithium-Air Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Air Cathodes
2.2. Material Characterization
2.3. Electrode Fabrication and Battery Measurement
3. Results and Discussion
3.1. Characterization of Samples
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Vivek, J.P.; Zhao, E.W.; Lei, J.; Garcia-Araez, N.; Grey, C.P. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. Chem. Rev. 2020, 120, 6558–6625. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.S.; Jung, J.W.; Youn, D.Y.; Cho, S.H.; Cheong, J.Y.; Kim, M.S.; Song, S.W.; Kim, S.J.; Kim, I.D. Free-Standing Carbon Nanofibers Protected by a Thin Metallic Iridium Layer for Extended Life-Cycle Li-Oxygen Batteries. ACS Appl. Mater. Interfaces 2020, 12, 55756–55765. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; He, P.; Zhou, H.S. Rechargeable Solid-State Li-Air and Li-S Batteries: Materials, Construction, and Challenges. Adv. Energy Mater. 2018, 8, 1701602. [Google Scholar] [CrossRef]
- Li, J.L.; Daniel, C.; Wood, D. Materials processing for lithium-ion batteries. J. Power Sources 2011, 196, 2452–2460. [Google Scholar] [CrossRef]
- Schmuch, R.; Wagner, R.; Horpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- Yadegari, H.; Sun, Q.; Sun, X.L. Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective. Adv. Mater. 2016, 28, 7065–7093. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.Y.; Park, S.; Xiao, J.; Zhang, J.G.; Wang, Y.; Liu, J. Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status, Challenges, and Perspective. Acs Catal. 2012, 2, 844–857. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J.G.; Wang, Y.; Liu, J. Making Li-Air Batteries Rechargeable: Material Challenges. Adv. Funct. Mater. 2013, 23, 987–1004. [Google Scholar] [CrossRef]
- Grande, L.; Paillard, E.; Hassoun, J.; Park, J.B.; Lee, Y.J.; Sun, Y.K.; Passerini, S.; Scrosati, B. The Lithium/Air Battery: Still an Emerging System or a Practical Reality? Adv. Mater. 2015, 27, 784–800. [Google Scholar] [CrossRef]
- Aurbach, D.; McCloskey, B.D.; Nazar, L.F.; Bruce, P.G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128. [Google Scholar] [CrossRef]
- Sennu, P.; Park, H.S.; Park, K.U.; Aravindan, V.; Nahm, K.S.; Lee, Y.S. Formation of NiCo2O4 rods over Co3O4 nanosheets as efficient catalyst for Li-O-2 batteries and water splitting. J. Catal. 2017, 349, 175–182. [Google Scholar] [CrossRef]
- Abraham, K.M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1. [Google Scholar] [CrossRef]
- Débart, A.; Paterson, A.J.; Bao, J.; Bruce, P.G. α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem.-Int. Ed. 2008, 47, 4521–4524. [Google Scholar] [CrossRef] [PubMed]
- Laoire, C.O.; Mukerjee, S.; Abraham, K.M.; Plichta, E.J.; Hendrickson, M.A. Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications. J. Phys. Chem. C 2009, 113, 20127–20134. [Google Scholar] [CrossRef]
- Li, F.J.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H.S. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous LiO2 batteries. Chem. Commun. 2013, 49, 1175–1177. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yuan, X.X.; Li, L.; Ma, Z.F.; Wilkinson, D.P.; Zhang, L.; Zhang, J.J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198. [Google Scholar] [CrossRef]
- Li, Y.; Zou, L.L.; Li, J.; Guo, K.; Dong, X.W.; Li, X.W.; Xue, X.Z.; Zhang, H.F.; Yang, H. Synthesis of ordered mesoporous NiCo2O4 via hard template and its application as bifunctional electrocatalyst for LiO2 batteries. Electrochim. Acta 2014, 129, 14–20. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, F.F.; Huang, G.; Wang, J.W.; Du, X.C.; Qin, L.; Wang, L.M. Freestanding MnO2@carbon papers air electrodes for rechargeable LiO2 batteries. J. Power Sources 2014, 261, 311–316. [Google Scholar] [CrossRef]
- Hu, X.F.; Wang, J.B.; Li, T.F.; Wang, J.Q.; Gregory, D.H.; Chen, J. MCNTs@MnO2 Nanocomposite Cathode Integrated with Soluble O-2-Carrier Co-salen in Electrolyte for High-Performance Li-Air Batteries. Nano Lett. 2017, 17, 2073–2078. [Google Scholar] [CrossRef]
- Girishkumar, G.; McCloskey, B.; Luntz, A.C.; Swanson, S.; Wilcke, W. Lithium—Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203. [Google Scholar] [CrossRef]
- Tan, P.; Jiang, H.R.; Zhu, X.B.; An, L.; Jung, C.Y.; Wu, M.C.; Shi, L.; Shyy, W.; Zhao, T.S. Advances and challenges in lithium-air batteries. Appl. Energy 2017, 204, 780–806. [Google Scholar] [CrossRef]
- Lee, J.H.; Black, R.; Popov, G.; Pomerantseva, E.; Nan, F.H.; Botton, G.A.; Nazar, L.F. The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium-oxygen batteries. Energy Environ. Sci. 2012, 5, 9558–9565. [Google Scholar] [CrossRef]
- Lu, Y.C.; Gallant, B.M.; Kwabi, D.G.; Harding, J.R.; Mitchell, R.R.; Whittingham, M.S.; Shao-Horn, Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768. [Google Scholar] [CrossRef]
- Ban, J.J.; Xu, H.J.; Cao, G.Q.; Fan, Y.M.; Pang, W.K.; Shao, G.S.; Hu, J.H. Synergistic Effects of Phase Transition and Electron-Spin Regulation on the Electrocatalysis Performance of Ternary Nitride. Adv. Funct. Mater. 2023, 33, 2300623. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.J.; Cao, C.W.; Wang, M.; Leung, K.L.; Zeng, S.S.; Hung, T.F.; Chung, C.Y.; Lu, Z.G. Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries. Chem. Commun. 2014, 50, 14635–14638. [Google Scholar] [CrossRef] [PubMed]
- Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G.R. Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater. Chem. Phys. 2015, 165, 235–244. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Rajeshkhanna, G.; Rao, G.R. Urchin and sheaf-like NiCo2O4 nanostructures: Synthesis and electrochemical energy storage application. Int. J. Hydrogen Energy 2014, 39, 15627–15638. [Google Scholar] [CrossRef]
- Yuan, C.Z.; Li, J.Y.; Hou, L.R.; Zhang, X.G.; Shen, L.F.; Lou, X.W. Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597. [Google Scholar] [CrossRef]
- Shi, H.J.; Zhao, G.H. Water Oxidation on Spinel NiCo2O4 Nanoneedles Anode: Microstructures, Specific Surface Character, and the Enhanced Electrocatalytic Performance. J. Phys. Chem. C 2014, 118, 25939–25946. [Google Scholar] [CrossRef]
- Chen, R.; Wang, H.Y.; Miao, J.W.; Yang, H.B.; Liu, B. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy 2015, 11, 333–340. [Google Scholar] [CrossRef]
- Shi, X.; Bernasek, S.L.; Selloni, A. Oxygen Deficiency and Reactivity of Spinel NiCo2O4 (001) Surfaces. J. Phys. Chem. C 2017, 121, 3929–3937. [Google Scholar] [CrossRef]
- Yatoo, M.A.; Seymour, I.D.; Skinner, S.J. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden-Popper phase materials. Rsc Adv. 2023, 13, 13786–13797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.W.; Zhang, L.L.; Zhang, J.W.; Zhang, Z.J.; Wu, Z.S. Effect of surface/bulk oxygen vacancies on the structure and electrochemical performance of TiO2 nanoparticles. J. Alloys Compd. 2015, 642, 28–33. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Shen, C.; Lu, Y. Air Electrode for the Lithium-Air Batteries: Materials and Structure Designs. Chempluschem 2015, 80, 270–287. [Google Scholar] [CrossRef]
- Jin, S.; Jiang, Y.; Ji, H.X.; Yu, Y. Advanced 3D Current Collectors for Lithium-Based Batteries. Adv. Mater. 2018, 30, 1802014. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.J.; Lin, Z.Q.; Chen, W.J.; Liang, B.H.; Du, H.W.; Yang, R.L.; He, X.F.; Tang, Z.K.; Gui, X.C. Flexible, sandwich-like CNTs/NiCo2O4 hybrid paper electrodes for all-solid state supercapacitors. J. Mater. Chem. A 2017, 5, 5886–5894. [Google Scholar] [CrossRef]
- Gao, S.W.; Sui, Y.W.; Wei, F.X.; Qi, J.Q.; Meng, Q.K.; He, Y.Z. Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. J. Mater. Sci. 2018, 53, 6807–6818. [Google Scholar] [CrossRef]
- Kumar, N.; Yu, Y.C.; Lu, Y.H.; Tseng, T.Y. Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J. Mater. Sci. 2016, 51, 2320–2329. [Google Scholar] [CrossRef]
- Younesi, R.; Singh, N.; Urbonaite, S.; Edström, K. The Effect of Pore Size on the Performance of the LiO2 Battery. In Proceedings of the Symposium on Battery/Energy Technology Joint General Session Held During the 216th Meeting of the Electrochemical-Society (ECS), Vienna, Austria, 4–9 October 2009; pp. 121–127. [Google Scholar]
- Ma, S.B.; Lee, D.J.; Roev, V.; Im, D.; Doo, S.G. Effect of porosity on electrochemical properties of carbon materials as cathode for lithium-oxygen battery. J. Power Sources 2013, 244, 494–498. [Google Scholar] [CrossRef]
- Jung, C.Y.; Zhao, T.S.; An, L.; Zeng, L.; Wei, Z.H. Screen printed cathode for non-aqueous lithium-oxygen batteries. J. Power Sources 2015, 297, 174–180. [Google Scholar] [CrossRef]
- Chen, J.F.; Zhang, Y.R.; Tan, L.; Zhang, Y. A Simple Method for Preparing the Highly Dispersed Supported Co3O4 on Silica Support. Ind. Eng. Chem. Res. 2011, 50, 4212–4215. [Google Scholar] [CrossRef]
- Wang, L.X.; Ara, M.; Wadumesthrige, K.; Salley, S.; Ng, K.Y.S. Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries. J. Power Sources 2013, 234, 8–15. [Google Scholar] [CrossRef]
- Awan, Z.; Ghouri, Z.K.; Hashmi, S. Influence of Ag nanoparticles on state of the art MnO2 nanorods performance as an electrocatalyst for lithium air batteries. Int. J. Hydrogen Energy 2018, 43, 2930–2942. [Google Scholar] [CrossRef]
- Xu, Z.J.; Yang, L.; Jin, Q.R.; Hu, Z.H. Improved capacitance of NiCo2O4/carbon composite resulted from carbon matrix with multilayered graphene. Electrochim. Acta 2019, 295, 376–383. [Google Scholar] [CrossRef]
- Devaguptapu, S.V.; Hwang, S.; Karakalos, S.; Zhao, S.; Gupta, S.; Su, D.; Xu, H.; Wu, G. Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS Appl. Mater. Interfaces 2017, 9, 44567–44578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.G.; Xu, J.L.; Wang, H.Z.; Yao, S.W. CNT anchored by NiCo2O4 nanoparticles with hybrid structure for ultrahigh-performance supercapacitor. J. Mater. Sci.-Mater. Electron. 2020, 31, 5948–5957. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.J.; Kim, M.; Kim, H.; Cho, Y.S.; Kwon, H.J.; Lee, H.C.; Park, C.R.; Im, D. High-Energy Density LiO2 Battery with a Polymer Electrolyte-Coated CNT Electrode via the Layer-by-Layer Method. ACS Appl. Mater. Interfaces 2020, 12, 17385–17395. [Google Scholar] [CrossRef]
- Lee, J.H.; Jung, H.W.; Kim, I.S.; Park, M.; Kim, H.S. Electrochemical Evaluation of Surface Modified Free-Standing CNT Electrode for LiO2 Battery Cathode. Energies 2021, 14, 4196. [Google Scholar] [CrossRef]
- Xiao, X.; Li, X.H.; Wang, J.X.; Yan, G.C.; Wang, Z.X.; Guo, H.J.; Liu, Y. Robust assembly of urchin-like NiCo2O4/CNTs architecture as bifunctional electrocatalyst in Zn-Air batteries. Ceram. Int. 2020, 46, 6262–6269. [Google Scholar] [CrossRef]
Element | Wt % | Atomic % |
---|---|---|
C | 21.21 | 36.71 |
O | 37.48 | 48.70 |
Co | 28.93 | 10.21 |
Ni | 12.37 | 4.38 |
Total | 99.99 | 100 |
Sample | S (m2∙g−1) |
---|---|
MWCNTs-COOH | 417.53 |
NiCo2O4 | 100.83 |
NiCo2O4@CNTs | 221.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, D.-S.; Choi, Y.-J.; Jin, C.-S.; Shin, K.-H.; Song, W.-J.; Yeon, S.-H. Enhanced Cycle Performance of NiCo2O4/CNTs Composites in Lithium-Air Batteries. Energies 2024, 17, 58. https://doi.org/10.3390/en17010058
Hong D-S, Choi Y-J, Jin C-S, Shin K-H, Song W-J, Yeon S-H. Enhanced Cycle Performance of NiCo2O4/CNTs Composites in Lithium-Air Batteries. Energies. 2024; 17(1):58. https://doi.org/10.3390/en17010058
Chicago/Turabian StyleHong, Dae-Seon, Yeon-Ji Choi, Chang-Su Jin, Kyoung-Hee Shin, Woo-Jin Song, and Sun-Hwa Yeon. 2024. "Enhanced Cycle Performance of NiCo2O4/CNTs Composites in Lithium-Air Batteries" Energies 17, no. 1: 58. https://doi.org/10.3390/en17010058
APA StyleHong, D. -S., Choi, Y. -J., Jin, C. -S., Shin, K. -H., Song, W. -J., & Yeon, S. -H. (2024). Enhanced Cycle Performance of NiCo2O4/CNTs Composites in Lithium-Air Batteries. Energies, 17(1), 58. https://doi.org/10.3390/en17010058