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Abstract: The lithium-air battery is a new type of secondary battery technology that is currently
receiving a lot of attention in the field of power storage technology. These batteries are known to
offer high energy densities and potentially longer driving ranges. In this study, NiCo2O4 and CNTs
were used to create a composite for use as the cathode of a Li-air battery. Improving the 3D needl-like
structure that provides extensive transport channels for electrolyte infiltration and numerous sites
facilitated charge transfer reactions and the synergistic effect of highly electrocatalytic NiCo2O4 with
pronounced activity and high conductive CNTs, with the synthesized NiCo2O4@CNTs composites
exhibiting active catalytic performance for both OER and ORR reactions. It also showed improved
cycle performance at high current densities. NiCo2O4@CNTs composites were successfully fabricated
using a hydrothermal method together with a sequential annealing treatment. The components of
the completed composite were confirmed using TGA, XRD, and SEM, and the specific surface area
was analyzed using BET. The composite was performed for over 120 cycles at a current density of
200 mA·g−1, and 500 mA·g−1 was achieved under the capacity limiting condition of 500 mAh·g−1.
The charging/discharging characteristics were compared under various current densities, exhibiting
stable cyclability. The high catalytic activity of NiCo2O4 oxide supports its potential use as a cathode
in Li-air batteries.

Keywords: lithium-air battery; air cathodes; lithium; carbon nanotube; NiCo2O4

1. Introduction

Fossil fuels still account for over 80% of the worldwide energy requirements and have
a significant daily impact on global warming and environmental pollution [1,2]. Therefore,
the further development of renewable energy options is considered an important step in
the effort to address the issue of fossil fuel consumption. In particular, lithium-ion batteries
(LIBs), first commercialized by Sony in the 1990s, have been widely used in various ap-
plications such as smartphones, laptops, and electric vehicles (EVs) in our daily lives [3].
In lithium-ion batteries (LIBs), through the process of ‘intercalation chemistry’, lithium
ions move from an anode to a cathode during the discharge process, passing through the
electrolyte and releasing electricity. However, current lithium-ion battery technologies
still face various challenges such as high costs associated with limited lithium resources,
safety concerns, and unsatisfactory energy densities [4]. Notably, the limited energy storage
capacity of lithium-ion batteries (LIBs) serves as a limiting factor in extending the driving
range of current electric vehicles (EVs) [5]. Therefore, the next step to enhance the electrical
performance of the battery lies in the development of next-generation battery technologies
such as lithium-sulfur as well as metal-air batteries, including Li-air and Na-O2 batteries [6].
Lithium-air batteries are considered one of the most promising candidates to replace LIBs
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due to their low weight, safety, and remarkably high theoretical energy density (approx-
imately 3500 to 5200 Wh·kg−1), which is comparable to gasoline [7–11]. If its complete
theoretical specific energy were to be fully extracted, the lithium-air battery would be the
best substitute for fossil fuels in electric vehicles with plug-in capabilities, as it has the
potential to offer up to 10 times the energy density of any other battery. In reality, the system
yields a much lower specific energy than the theoretical value due to various shortcomings
such as high overvoltage, slow kinetics of the oxygen evolution reaction (OER) and oxygen
reduction reaction (ORR), the formation of insoluble discharge products in aprotic elec-
trolytes, and difficulties in charge transfer between the solid discharge product and solid
cathode. Therefore, researchers from various backgrounds have explored different aspects
of the lithium-air system, all with the unified goal of commercializing rechargeable aprotic
lithium-air batteries. The lithium-air battery idea was first introduced in 1976 using an
aqueous electrolyte, but it failed due to the corrosion of lithium. In 1990, Abraham and Jiang
achieved success in assembling a rechargeable lithium-air battery with excellent Coulombic
efficiency and minimal overvoltage by using a non-aqueous electrolyte and an air electrode
catalyzed by cobalt phthalocyanine [12]. Subsequently, investigations into the advancement
of rechargeable aprotic lithium-air batteries have been heightened, focusing on improving
their efficiency and cyclic stability [13,14]. To fully achieve the theoretical capacity of the
lithium-air system, various configurations of Li-air batteries are under investigation [15].
Lithium-air batteries can be classified into four different types based on the electrolyte they
use: aprotic (non-aqueous), aqueous, solid-state, and hybrid systems [16]. Among them,
the aprotic (non-aqueous) systems have attracted more attention for their potentially higher
energy density and cycle efficiency [17–19]. However, lithium-air batteries face challenges,
particularly those related to electrolyte instability in oxygen-deficient conditions, reduced
efficiency in the reversible cycling of Li metal anodes, and the degradation of catalytic
materials [20,21]. The most critical issue is that the discharge products, Li2O2 and Li2CO3,
accumulate at the cathode, leading to declining cycling performance by interfering with
the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) [22,23].
An effective approach to address the aforementioned issue is to develop efficient and
corrosion-resistant bifunctional electrocatalysts toward ORR and OER [24].

To address these issues, research has focused on investigating various catalysts. In
aprotic lithium-air batteries, well-known catalysts like noble metal catalysts, cheap metal
catalysts, and carbon-based catalysts are primarily being examined for their bifunctional
catalytic efficacy. Metal oxides have been widely researched as bifunctional electrocatalysts
due to their notable catalytic efficacy, minimal toxicity, accessibility, and cost-effectiveness.
And transition metal oxide spinel structures have demonstrated effectiveness as bifunc-
tional catalysts, which is attributed to their elevated electrochemical activity and electronic
conductivity [25]. In addition, numerous studies have demonstrated that nanostructured
architectures, along with the varied configurations of structural units, can serve as a
way to adjust the properties of materials. In these designs, the needle-like structure of
NiCo2O4-based composites can significantly enhance electrochemical performance through
diffusion reduction paths for electrolytes and electrons [26]. It provides effective pathways
for oxygen transfer and offers a substantial specific surface area along with abundant
active sites [27]. The spinel-type NiCo2O4 has attracted significant focus within the field
of electrochemistry due to its excellent activity, high stability, environmental friendliness,
and abundant resources [28–30]. One approach, particularly effective for enhancing electro-
chemical properties, involves creating oxygen vacancies on the surface through synthesis
to activate the OER [31]. The oxygen defects in these materials are important [32]. The
oxygen vacancies can significantly enhance the intrinsic conductivity, thereby improving
electrochemical performance [33].

LABs are primarily composed of a porous cathode layer, a separator, a lithium an-
ode, and an electrolyte. Frequently, porous cathode materials are combined with support
materials of high conductivity. It is important to note that ‘support material’ refers only
to a porous scaffold designed to accommodate Li2O2 (ORR), rather than decomposing
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Li2O2 (OER). Battery performance aspects such as energy efficiency, cycle retention, and
capacity of LABs are significantly influenced by the support materials, and the properties of
these support materials are crucial [34]. Specifically, the non-soluble discharge byproduct
(mainly Li2O2) is produced on the surface of the support materials. Consequently, the
design of the support materials’ structure should be thoughtfully considered to accommo-
date the discharge product and facilitate the diffusion of O2 gases and the penetration of
electrolytes [35]. Carbon nanotubes (CNTs) are commonly employed in electrodes due to
their outstanding conductivity, chemical stability, and large surface area [36,37]. However,
the capacitance of CNTs is constrained by the mechanism for storing charge at the inter-
face between the electrode and electrolyte [38]. Additionally, it is particularly difficult to
disperse CNTs when creating the electrode slurry.

In this study, CNTs were treated with nitric acid to enhance their hydrophilicity, and
the metal oxide NiCo2O4 was synthesized through a hydrothermal and an annealing
process. The process for preparing NiCo2O4@CNTs follows the same manufacturing steps
as NiCo2O4, with the additional inclusion of nitric acid-treated CNTs at the initial stage.

The purpose of this study is to develop a cathode composite with a catalyst for the
long-term operation of lithium-air batteries in air conditions. We created a composite using
a NiCo2O4 catalyst on CNTs using hydrothermal synthesis and annealing. The composite
NiCo2O4@CNTs exhibited a significantly extended cycle life with lower overpotential
compared to pristine CNTs.

We converted the conventional CNTs, which were originally used, into hydrophilic
CNTs through a hydrothermal synthesis, making dispersion considerably easier. As a
result, the synthesized final composite exhibited a longer cycle life compared to previously
reported CNTs. Furthermore, the composite was found to have lower resistance than
conventional CNTs using electrochemical impedance spectroscopy (EIS) measurements.
The outstanding characteristics of the composite are attributed to its excellent OER/ORR
reactions at the cathode. This can be considered a significant step toward achieving
commercial lithium-air batteries.

2. Materials and Methods
2.1. Fabrication of Air Cathodes

Synthesis of the MWCNTs-COOH: 1 g of MWCNTs powder was stirred with 100 mL
of HNO3 (Nitric Acid 70 wt %) at 90 ◦C for 2 h. After the reaction was completed, the
resulting mixture was filtered, washed several times with D·I water and ethanol, and then
vacuum dried at 100 ◦C for 12 h to obtain the final powder.

Synthesis of the NiCo2O4: Co(NO3)2·6H2O (1.098 g) and Ni(NO3)2·6H2O (0.549 g)
were dissolved in water in a 2:1 molar ratio, and then 1.68 g of urea was added. The solution
was stirred for one hour until a bright pink color appeared. Afterward, it was placed in a
Teflon-lined stainless steel autoclave and then heated at 120 ◦C for 12 h. The paste obtained
through the hydrothermal process was filtered and washed several times with water and
ethanol. Subsequently, it was vacuum dried overnight at 100 ◦C. Finally, the precursor
underwent 2 h annealing at 350 ◦C at a slow heating rate (2 ◦C·min−1) for the formation
of NiCo2O4.

Synthesis of the NiCo2O4@CNTs: Co(NO3)2·6H2O (1.098 g) and Ni(NO3)2·6H2O
(0.549 g) were dissolved in water at a molar ratio of 2:1, and then 1.68 g of urea, along with
0.3 g of MWCNTs-COOH, was added. Subsequently, the procedure was conducted exactly
the same way as the NiCo2O4 synthesis method.

2.2. Material Characterization

The structural phases of the samples were analyzed using X-ray diffraction (SmartLab
High Temp, Rigaku, Tokyo, Japan) with the following parameters: Cu target (λ = 1.54056
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Figure 1. TGA curves of the different samples. 
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of different samples was determined using a specific surface area and porosity analysis
system (Belsorp max, Osaka, Japan).

2.3. Electrode Fabrication and Battery Measurement

The air cathodes were prepared by mixing three types of self-made powders and
PVDF binders in a 9:1 ratio. Organic solvent NMP was used to create the slurry. Then, the
prepared slurry was coated onto the prepared Gas Diffusion Layer (GDL) and vacuum
dried at 100 ◦C for 12 h. The mass loading was calculated as the combined mass of oxide
and carbon and was set at 0.5 mg/cm2 (±0.1).

CR 2032 coin cells were assembled in a glove box using the prepared air cathode,
lithium foil as the anode, a Whatman glass fiber (GF/A) separator, and a 1 M LiTFSI
TEGDME (tetraethylene glycol dimethyl ether) electrolyte. The assembled cell was allowed
to rest for 12 h in an air atmosphere before conducting discharge-charge tests. The discharge-
charge tests (Neware BTS 8.0, Neware, Dongguan, China) were carried out in the constant
current (CC) mode under flowing air gas (60 sccm), and the cut-off voltage was set to a
range from 2.2 V to 4.5 V at 200 mA·g−1 and 500 mA·g−1.

Galvanostatic discharge-charge profiles were collected using the same battery cycler.
To gain a more comprehensive understanding of the electrochemical responses of all cath-
odes, electrochemical impedance spectroscopy (EIS) was also conducted at an amplitude of
0.01 V, and a frequency range of 1 MHz to 0.01 Hz of the LABs was also applied to evaluate
the LABs performances.

3. Results and Discussion
3.1. Characterization of Samples

Figure 1 presents the TGA measurement values of different samples. While NiCo2O4
remains relatively stable up to temperatures exceeding 800 ◦C, it can be observed that
both MWCNTs-COOH and NiCo2O4@CNTs experience a rapid combustion of carbon at
temperatures exceeding 350 ◦C, causing it to dissipate. Specifically, when calculating the
evaporation rate of NiCo2O4@CNTs, carbon was found to account for approximately 8%.
This implies that the synthesized NiCo2O4@CNTs composites contained a CNT content
of 8%.
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Figure 1. TGA curves of the different samples. Figure 1. TGA curves of the different samples.

Figure 2 shows the EDS mapping image of the NiCo2O4@CNTs composites. This was
performed to experimentally analyze the components more accurately. Table 1 presents
the mass and atomic ratios of the NiCo2O4@CNTs composites. When examining the chart,
it is clear that each element is visibly distributed. The composite contains 21.21% carbon,
37.48% oxygen, 28.93% cobalt, and 12.37% nickel. While EDS mapping does not provide
a quantitative distribution, it still confirms that the elements coexist in a granular form
through the synthesis. These results confirm that the synthesis was successfully achieved.
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Table 1. EDS mapping data of the obtained NiCo2O4@CNTs composites.

Element Wt % Atomic %

C 21.21 36.71
O 37.48 48.70
Co 28.93 10.21
Ni 12.37 4.38

Total 99.99 100

Figure 3 presents the X-ray diffraction analysis (XRD), which was conducted to analyze
the structural characteristics of the NiCo2O4@CNTs composites and other samples. The
pattern of the NiCo2O4@CNTs closely matches that of NiCo2O4, with a slight presence
of the MWCNTs pattern. In the XRD pattern of the MWCNTs-COOH, the two peaks at
25.9◦ and 43◦ correspond to the (002) and (100) planes, respectively, and the peaks at 18.90◦,
31.14◦, 36.69◦, 44.62◦, 59.09◦, and 64.98◦ are respectively identified as the (111), (220), (311),
(400), (511), and (440) planes belonging to the NiCo2O4, and the NiCo2O4@CNTs pattern
contains both samples. No additional impurities or peaks corresponding to other phases
were observed.
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Figure 4 shows an SEM image taken to examine the morphologies of the MWCNTs-
COOH, NiCo2O4, and NiCo2O4@CNTs. Figure 4a,b depict MWCNT-COOH with a smooth-
walled structure. Figure 4c,d show the images of NiCo2O4. Upon inspection of the images,
it can be observed that spherical structures resembling needles have formed. Figure 4e,f
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show the presence of CNTs alongside the nanoneedle cluster structures. While the majority
of the morphology corresponds to NiCo2O4, the content of CNTs has been previously
investigated using EDS mapping and TGA.
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N2 adsorption-desorption isotherms of the different samples are compiled in Figure 5
for the analysis of their porous structure, revealing a large surface area. The numerical
values for each sample are presented in Table 2. The surface area value of MWCNTs-COOH
is 417.53 m2·g−1 and that of NiCo2O4 is 100.83 m2·g−1. The specific surface area value
of NiCo2O4@CNTs (221.21 m2·g−1) falls between the values of the other two samples, as
observed. This once again demonstrates the successful outcome of the previous synthesis
experiment for NiCo2O4@CNTs.
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Figure 5. N2 adsorption-desorption isotherm plots of different samples.

Surface area is one of the critical factors of anode performance. If it is too large,
capacity may be limited [39–41]. This is, in part, attributed to the binder, which blocks most
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pores below ~300 Å, and which is a dominant influence on the pore-size distribution for
many high-surface-area carbons.

Table 2. N2 adsorption-desorption representing the surface area.

Sample S (m2·g−1)

MWCNTs-COOH 417.53
NiCo2O4 100.83

NiCo2O4@CNTs 221.21

3.2. Electrochemical Performance

Figure 6 illustrates the electrochemical impedance spectroscopy (EIS) data for each
assessed cathode, evaluated on LABs at an open circuit voltage (OCV) over a range of
frequencies from 1 MHz to 0.01 Hz, with an amplitude of 0.01 V. The depressed semicircle in
the middle of the frequency range represents the charge transfer resistance (Rct), which can
be evaluated using the diameter of the semicircle [42,43]. The Rct of the MWCNTs-COOH,
NiCo2O4, and NiCo2O4@CNTs cathodes were 279 Ω, 281 Ω, and 211 Ω, respectively,
indicating that the transfer resistance of the NiCo2O4@CNTs before recharging was smaller
than those of MWCNTs-COOH and NiCo2O4 cathodes. From the results, it can be inferred
that the low transfer resistance of the NiCo2O4@CNTs may contribute to the outstanding
reversibility of ORR and OER and the enhancement in electrochemical performance.
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The coin cells assembled using the prepared samples underwent discharge-charge
testing in an air atmosphere within a voltage range of 2.2 to 4.5 V. Figure 7 presents the first
galvanostatic discharge and charge profiles of the different electrodes at a current density of
400 mA·g−1 from 2.2 to 4.5 V. As a result, the discharge specific capacities of the MWCNTs-
COOH, NiCo2O4, and NiCo2O4@CNTs cathodes were 3,297, 10,180, and 17,137 mAh·g−1,
respectively. Specifically, the specific capacity of MWCNTs-COOH was measured to be
relatively lower, which is believed to be attributed to the discharge byproducts (Li2O2)
formed during the discharge-charge process, obstructing active sites and resulting in
reduced capacity.

The addition of catalysts substantially increased the discharge-specific capacity and
overall performance of the coin cells [44]. This discovery confirms that the porous and
heterostructured design of NiCo2O4 electrodes provides more space and sites for the
accumulation of Li+ ions, leading to improved energy storage performance compared to
other electrodes.

The current density testing was conducted under conditions of 200 mA·g−1 and
500 mA·g−1, and the capacity was set at 500 mAh·g−1. Both the current density and capac-
ity were determined based on the combined values of the carbon and metal oxides. The
voltage gap is the difference between the charge terminal voltage point and the discharge
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terminal voltage point after the 30th cycle. Figure 8 shows the discharge-charge process un-
der a limited capacity mode of 500 mAh·g−1 at a specific current of 200 mA·g−1. Figure 8a,b
represent the discharge-charge cycle curves of the MWCNTs-COOH. It can be observed
that approximately 55 cycles of charge and discharge occur, after which the capacity was no
longer maintained. The electrode also showed quite large voltage gaps of 1.59 V (Figure 8a)
at 30 cycles. Therefore, it is evident that in cells using only carbon, discharge-charge cycles
occur relatively briefly. The reason for this is that discharge byproducts (Li2O2) on the air
cathode do not decompose and accumulate and obstruct active sites.
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Figure 8. (a) Galvanostatic discharge-charge voltage MWCNTs-COOH and (b) voltages correspond-
ing to (a). (c) Galvanostatic discharge-charge voltage NiCo2O4 and (d) voltages corresponding to (c).
(e) Galvanostatic discharge-charge voltage NiCo2O4@CNTs and (f) voltages corresponding to (e) at a
current density of 200 mA·g−1.

Figure 8c,d depict the NiCo2O4 samples, which maintained cycling for approximately
71 cycles. The electrode showed voltage gaps of 1.49 V (Figure 8c) at 30 cycles. This indicates
that it has better performance characteristics than MWCNT-COOH. Figure 8e,f depict the
cycling characteristics of the NiCo2O4@CNTs composite. It maintained its capacity for
approximately 160 cycles, demonstrating significantly higher cycling stability compared
to other samples. The electrode showed quite low voltage gaps of 1.27 V (Figure 8e) at
30 cycles. This was the lowest voltage value among the samples.

As demonstrated in our experiments, the NiCo2O4@CNTs composite with an appro-
priate carbon content significantly enhanced electrochemical performance [45]. Notably, the
ultrahigh electrochemical performance of the NiCo2O4@CNTs composite can be attributed
to its unique three-dimensional structure [46,47]. During the formation of the nanoneedle
cluster cathode structure, more active sites were created on the surface, improving OER and
ORR performance and thereby enhancing the effective activity of the catalyst. However,
pure NiCo2O4 exhibited relatively low cycle stability due to its very low specific surface
area, resulting in a limited number of active sites. For a more thorough evaluation of
cyclability at a high specific current, the coin cells were also evaluated at a specific current
of 500 mA·g−1 (Figure 9). It was surprising that even at such an elevated discharge-charge
rate, the cell with the NiCo2O4@CNTs composite performed for 120 cycles, while the cells
containing the MWCNTs-COOH and NiCo2O4 cells operated for only 35 and 42 cycles.
This confirms that there is a distinct difference in cycle stability, particularly as the current
density increases. In particular, NiCo2O4@CNTs composites exhibited significantly higher
cycle characteristics compared to the other two samples.

The NiCo2O4@CNTs composite electrode also showed quite low voltage gaps of 1.40 V
(Figure 9e) at 30 cycles among all samples. The NiCo2O4@CNTs not only provided a
straightforward pathway for electron transport but also aided in the decomposition of
Li2CO3 and Li2O2, helping to reduce over-potentials and ultimately leading to stability.

Figure 10 presents the surface after the fifth discharge-charge cycle (500 mA·g−1,
500 mAh·g−1) for MWCNTs, NiCo2O4, and NiCo2O4@CNTs. Figure 10a represents
MWCNTs-COOH. Upon examining the images, it is evident that discharge byproducts
(Li2O2) generated during the charge-discharge process are not decomposed and remain
abundantly on the surface. Figure 10b represents the surface of NiCo2O4. It is observed
that the decomposition of discharge byproducts on the surface of NiCo2O4 occurred more
effectively than in MWCNTs-COOH. This can be interpreted as a well-supported cat-
alytic role. Finally, Figure 10c depicts the composite of NiCo2O4@CNTs. The image in
Figure 10c confirms that the decomposition of Li2O2 most effectively occurs on the surface of
NiCo2O4@CNTs. This indicates excellent cycle stability through the most reversible reaction.
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Figure 11 shows the rate performance of the NiCo2O4@CNTs composite. The cur-
rent densities progressively increased from 50 to 100, 200, 300, and 500 mA·g−1. No
notable increase in polarization was observed in the discharging processes; in contrast, the
charge polarization increased gradually, especially at current densities of 300 mA·g−1 and
500 mA g−1. This indicates a gradual decrease in cycle performance from a current density
of 300 mA·g−1. Therefore, as the current density increases, the cycle life characteristics
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decrease accordingly. The NiCo2O4@CNTs electrode displayed a great rate of performance
in lithium-air batteries. These results confirm superior performance compared to cycle life
and capacity data reported in other papers with different catalysts on CNTs [48,49].
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Figure 12 illustrates a schematic of the discharge-charge process of the NiCo2O4@CNTs.
In such a unique structure, the ultrafine NiCo2O4 phase offered high catalytic activity
for ORR and OER. However, in this document, the studied catalyst, NiCo2O4, had a
spherical shape with a reported surface area of 90 m2·g−1 [50]. In contrast, we achieved a
nanoneedle cluster structure with a surface area of 221.21 m2·g−1. This study suggests that
the NiCo2O4@CNTs we synthesized significantly expanded the active site area, resulting
in high-performance characteristics within the catalyst material itself. As a whole, these
electrochemical performance results make the NiCo2O4@CNTs composite a promising
candidate for LABs.
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4. Conclusions

In this study, MWCNTs-COOH, NiCo2O4, and NiCo2O4@CNTs were synthesized and
prepared using hydrothermal synthesis and sintering processes. Subsequently, material
analysis and electrochemical evaluations were conducted. Initially, TGA measurements
confirmed an 8% carbon content in the NiCo2O4@CNTs, and EDS mapping was utilized to
determine the composite’s composition ratio. Further structural analysis was carried out
using XRD, while morphological analysis was conducted using SEM. BET measurements
revealed that the specific surface area of the NiCo2O4@CNTs at 221.21 m2·g−1 represented
an intermediate value between the other two samples. The resulting NiCo2O4@CNTs
composites were successfully designed and applied as the air cathode for a Li-air battery,
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and an electrochemical evaluation test was conducted. First, EIS measurements revealed
a significant reduction in charge transfer resistance for the NiCo2O4@CNTs cell. The
battery utilizing the NiCo2O4@CNTs composite air cathode demonstrated stable cycling
performance for more than 100 cycles at current densities of 200 mA·g−1 and 500 mA·g−1.
The NiCo2O4@CNTs composite air electrode revealed two times longer lifespan with 1.27 V
(200 mA·g−1) and 1.40 V (500 mA·g−1) lower over-potentials. To analyze this, the surface
of the electrode was examined after 30 cycles, revealing that NiCo2O4@CNTs composites
promote the decomposition of discharge byproducts (Li2O2). The cell exhibited very great
stability after extended cycles in air, avoiding the instability issues of conventional non-
aqueous Li-air batteries. Overall, this study confirms the feasibility of enhanced designs for
air cathodes in Li-air batteries.
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