Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = second order generalized integrator (SOGI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4904 KB  
Article
Development of a Diagnostic Method for Open/Short Circuit Faults in a Vienna Rectifier Based on the THD Method Using SOGI FLL
by Keval Prakash Desai, José Matas and Josep M. Guerrero
Appl. Sci. 2025, 15(23), 12836; https://doi.org/10.3390/app152312836 - 4 Dec 2025
Viewed by 467
Abstract
The increasing demand for reliable DC fast-charging stations in electric vehicle (EV) infrastructure necessitates efficient fault detection mechanisms to ensure operational stability and user safety. This paper will present the development of a diagnostic method for identifying open-circuit faults and short-circuit faults in [...] Read more.
The increasing demand for reliable DC fast-charging stations in electric vehicle (EV) infrastructure necessitates efficient fault detection mechanisms to ensure operational stability and user safety. This paper will present the development of a diagnostic method for identifying open-circuit faults and short-circuit faults in DC charging stations by leveraging Total Harmonic Distortion (THD) analysis combined with a Second-Order Generalized Integrator (SOGI). The proposed approach uses the THD method to detect anomalies in the current and voltage waveforms, while the Frequency Locked Loop (FLL) serves to track the frequency of the grid and keep the SOGI tuned to it, and SOGI-FLL provides the rectifier with the capability of tracking the frequency, amplitude, voltage, and phase of the grid and monitoring these parameters of the grid. The ability to measure the THD is the kernel of the detection of faults. Detailed simulation confirms the method’s high sensitivity and robustness in detecting open/short circuit faults with minimal false positives. This technique offers a cost-effective, non-invasive diagnostic solution suitable for modern DC charging systems, contributing to improved reliability and efficiency of EV charging infrastructure. Full article
(This article belongs to the Special Issue Insulation Monitoring and Diagnosis of Electrical Equipment)
Show Figures

Figure 1

22 pages, 4143 KB  
Article
Design and Research of an Improved Phase-Locked Loop Based on Levy-AsyLnCPSO Optimization and EA-SOGI Structure
by Xiaoguang Kong, Xiaotian Xu and Guannan Ge
Processes 2025, 13(10), 3036; https://doi.org/10.3390/pr13103036 - 23 Sep 2025
Viewed by 610
Abstract
To address the challenges posed by harmonic distortion and DC offset in the power grid, this paper proposes a novel Phase-Locked Loop (PLL) architecture tailored for single-phase grid-connected systems. The design integrates an Enhanced Adaptive Second-Order Generalized Integrator (EA-SOGI) with a Quasi-Proportional Resonant [...] Read more.
To address the challenges posed by harmonic distortion and DC offset in the power grid, this paper proposes a novel Phase-Locked Loop (PLL) architecture tailored for single-phase grid-connected systems. The design integrates an Enhanced Adaptive Second-Order Generalized Integrator (EA-SOGI) with a Quasi-Proportional Resonant (QPR) controller. The proposed EA-SOGI extends the conventional SOGI by incorporating an all-pass filter and an additional integrator, which enhance the symmetry of the orthogonal signals and effectively suppress the estimation errors caused by DC offset. In addition, the conventional PI controller is replaced by a QPR controller, whose parameters are tuned using a hybrid Levy-AsyLnCPSO optimization algorithm to improve frequency locking performance and enhance system robustness under steady-state conditions. Simulation and experimental results demonstrate that the proposed PLL achieves a Total Harmonic Distortion (THD) as low as 2.8653% based on Fast Fourier Transform (FFT) analysis, indicating superior adaptability compared to conventional PLL structures and validating its effectiveness in DC offset suppression and harmonic mitigation. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 2975 KB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 - 19 Jul 2025
Viewed by 671
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 7451 KB  
Article
Research on Circulating-Current Suppression Strategy of MMC Based on Passivity-Based Integral Sliding Mode Control for Multiphase Wind Power Grid-Connected Systems
by Wei Zhang, Jianying Li, Mai Zhang, Xiuhai Yang and Dingai Zhong
Electronics 2025, 14(13), 2722; https://doi.org/10.3390/electronics14132722 - 5 Jul 2025
Cited by 2 | Viewed by 717
Abstract
To deal with the interphase circulating-current problem of modular multilevel converters (MMCs) in multiphase wind power systems, a cooperative circulating-current suppression strategy based on a second-order generalized integrator (SOGI) and passivity-based control–integral sliding mode control (PBC-ISMC) is proposed in this paper. Firstly, a [...] Read more.
To deal with the interphase circulating-current problem of modular multilevel converters (MMCs) in multiphase wind power systems, a cooperative circulating-current suppression strategy based on a second-order generalized integrator (SOGI) and passivity-based control–integral sliding mode control (PBC-ISMC) is proposed in this paper. Firstly, a multiphase permanent magnet direct-drive wind power system topology without a step-up transformer is established. On this basis, SOGI is utilized to construct a circulating current extractor, which is utilized to accurately extract the double-frequency component in the circulating current, and, at the same time, effectively filter out the DC components and high-frequency noise. Secondly, passivity-based control (PBC), with its fast energy dissipation, and integral sliding mode control (ISMC), with its strong robustness, are combined to construct the PBC-ISMC circulating-current suppressor, which realizes the nonlinear decoupling and dynamic immunity of the circulating-current model. Finally, simulation results demonstrate that the proposed strategy significantly reduces the harmonic content of the circulating current, optimizes both the bridge-arm current and output current, and achieves superior suppression performance and dynamic response compared to traditional methods, thereby effectively enhancing system power quality and operational reliability. Full article
Show Figures

Figure 1

12 pages, 5733 KB  
Article
Sensorless Compensation of DC-Link Current Pulsations in Energy Storage Systems
by Dariusz Zieliński, Maciej Rudawski and K. Gopakumar
Energies 2025, 18(12), 3153; https://doi.org/10.3390/en18123153 - 16 Jun 2025
Viewed by 719
Abstract
This study addresses the problem of DC-link current pulsations in four-wire AC/DC converters with energy storage operating under unbalanced load conditions. A sensorless compensation algorithm based on AC-side voltage and current measurements is proposed, eliminating the need for additional sensors. The algorithm incorporates [...] Read more.
This study addresses the problem of DC-link current pulsations in four-wire AC/DC converters with energy storage operating under unbalanced load conditions. A sensorless compensation algorithm based on AC-side voltage and current measurements is proposed, eliminating the need for additional sensors. The algorithm incorporates a Second Order Generalized Integrator (SOGI) filter for accurate detection and compensation of the pulsating component. Experimental validation under severe asymmetry confirmed the method’s effectiveness. In case 1, the AC component of the DC-link current was reduced from 7 A to 1.4 A and, in case 2, from 3 A to 0.5 A. Corresponding FFT analysis showed a reduction in relative amplitude from 240% to 21.5% and from 264% to 22%, respectively. In an asymmetrical charging scenario (case 3), the AC component was reduced from 2.5 A to nearly 0 A, corresponding to a decrease from 42% to 4.9% in the FFT spectrum. These results demonstrate that the proposed method enables stable converter operation even under deep phase current imbalances, significantly improving energy storage reliability and utility grid performance. Full article
Show Figures

Figure 1

15 pages, 6812 KB  
Article
Rotor Position Estimation Algorithm for Surface-Mounted Permanent Magnet Synchronous Motor Based on Improved Super-Twisting Sliding Mode Observer
by Zhuoming Liang, Lanxian Cheng, Li Cheng and Canqing Li
Electronics 2025, 14(3), 436; https://doi.org/10.3390/electronics14030436 - 22 Jan 2025
Cited by 2 | Viewed by 1458
Abstract
In response to the chattering issue inherent in sliding mode observers during rotor position estimation and to enhance the stability and robustness of sensorless control systems for surface-mounted permanent magnet synchronous motors (SPMSM), this study proposes a rotor position estimation algorithm for SPMSM [...] Read more.
In response to the chattering issue inherent in sliding mode observers during rotor position estimation and to enhance the stability and robustness of sensorless control systems for surface-mounted permanent magnet synchronous motors (SPMSM), this study proposes a rotor position estimation algorithm for SPMSM based on an improved super-twisting sliding mode observer (ISTSMO) and a second-order generalized integrator (SOGI) structure. Firstly, the super-twisting algorithm is introduced to design the observer, which effectively attenuates the sliding mode chattering by using continuous control signals. Secondly, SOGI is introduced in the filtering stage, which not only effectively addresses the time delay issues caused by traditional low-pass filters but also enables the observer to extract rotor position information by monitoring only the back electromotive force (back-EMF) signal of the α-phase, thereby simplifying the observer structure. Finally, the proposed scheme is experimentally compared with the traditional sliding mode observer on the YXMBD-TE1000 platform. The experimental results showed that during motor acceleration and deceleration tests, the average speed estimation error was reduced from 141 r/min to 40 r/min, and the maximum position estimation error was reduced from 0.74 rad to 0.29 rad. In load disturbance experiments, the speed variation decreased from 781 r/min to 451 r/min, and the steady-state speed fluctuation was significantly reduced. These results confirm that the proposed observer exhibits superior stability and robustness. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

21 pages, 7720 KB  
Article
Circulating Current Suppression Combined with APF Current Control for the Suppression of MMC Voltage Fluctuations
by Ci Huang, Yizhi Tian and Jie Chen
Electronics 2025, 14(1), 64; https://doi.org/10.3390/electronics14010064 - 27 Dec 2024
Cited by 1 | Viewed by 1362
Abstract
Modular Multilevel Converters (MMCs) are widely used in HV and MVDC transmission. However, their application causes the voltage level to increase, and the number of sub-modules also increases. Problems such as circulating currents and sub-module voltage fluctuations should not be neglected. Considering the [...] Read more.
Modular Multilevel Converters (MMCs) are widely used in HV and MVDC transmission. However, their application causes the voltage level to increase, and the number of sub-modules also increases. Problems such as circulating currents and sub-module voltage fluctuations should not be neglected. Considering the coupling relationship between the circulating current and the sub-module capacitor voltage fluctuation, the circulating current suppressing controller (CCSC) and the active power filter (APF) techniques are used to solve the two problems mentioned above simultaneously. Firstly, in order to reduce the influence of clutter on the tracking of the target components of the CCSC, a Second-Order Generalized Integrator (SOGI) is added to accurately lock the main 2nd and 4th harmonic components in the circulating current. Secondly, an APF is added on top of the circulating current suppression, and the two methods can be mutually reinforcing in their roles. The APF applies the strategy of current inner-loop dominant and voltage outer-loop bias control. It is regarded as a whole for absorbing the voltage fluctuations of the sub-module and also eliminates the error caused by the inductive voltage. Finally, the effectiveness of the above method is verified in MATLAB/Simulink, which demonstrates that the proposed method provides better suppression of both circulating current and sub-module voltage fluctuations compared to the conventional MMC that only incorporates APF. Full article
Show Figures

Figure 1

16 pages, 6635 KB  
Article
Online Mechanical Resonance Frequency Identification Method Based on an Improved Second-Order Generalized Integrator—Frequency-Locked Loop
by Kelu Wu, Yongchao Zhang, Wenqi Lu, Lei Sun, Luojun Wang and Weimin Shi
Electronics 2024, 13(16), 3310; https://doi.org/10.3390/electronics13163310 - 21 Aug 2024
Cited by 2 | Viewed by 1776
Abstract
To address the issue of mechanical resonance frequency detection in dual-inertia servo systems, this paper proposes an online identification method for mechanical resonance frequency using a low-pass filter and cascaded second-order generalized integrator—frequency-locked loop (LPF-CSOGI-FLL). Initially, the cascaded second-order generalized integrator—frequency-locked loop (CSOGI-FLL) [...] Read more.
To address the issue of mechanical resonance frequency detection in dual-inertia servo systems, this paper proposes an online identification method for mechanical resonance frequency using a low-pass filter and cascaded second-order generalized integrator—frequency-locked loop (LPF-CSOGI-FLL). Initially, the cascaded second-order generalized integrator—frequency-locked loop (CSOGI-FLL) is employed to eliminate the interference of direct current (DC) bias in resonance frequency identification. From a dual-stage structural perspective, the first second-order generalized integrator (SOGI-FLL) acts as a band-pass pre-filter to extract the mechanical resonance signal from the signal to be tested. The second SOGI-FLL generates a signal with equal amplitude and frequency to the mechanical resonance and obtains the frequency of the resonance signal through the frequency-locked loop. Subsequently, a low-pass filter (LPF) is applied to the frequency feedback loop of the second-stage SOGI-FLL, effectively reducing the oscillation of the estimated frequency. Finally, combining the CSOGI-FLL with an LPF forms a novel structure, namely, LPF-CSOGI-FLL. The results demonstrate that the proposed method significantly improves the detection accuracy of mechanical resonance frequency under various conditions. Compared to traditional offline techniques, this method overcomes the impact of resonance frequency drift and enhances system stability. Full article
Show Figures

Figure 1

18 pages, 10464 KB  
Article
Stability Control of Grid-Connected Converter Considering Phase-Locked Loop Frequency Coupling Effect
by Ye Zhang, Haibo Pen and Xiaoyu Zhang
Energies 2024, 17(14), 3438; https://doi.org/10.3390/en17143438 - 12 Jul 2024
Cited by 3 | Viewed by 2260
Abstract
Given the problems that the phase-locked loop frequency coupling effect (PLL-FCE) in a weak grid reduces the quality of the output current waveform and brings challenges to maintaining a steady running of the grid-connected converter (GCC), this paper analyzes the coupling relationship between [...] Read more.
Given the problems that the phase-locked loop frequency coupling effect (PLL-FCE) in a weak grid reduces the quality of the output current waveform and brings challenges to maintaining a steady running of the grid-connected converter (GCC), this paper analyzes the coupling relationship between the FCE of the PLL, grid impedance and the output impedance of GCCs under a weak grid. It elucidates the role of the above coupling relationships in system stability and then proposes a stability optimization control method. Firstly, this paper delves into the frequency coupling phenomenon and its coupling mechanism in GCCs operating within weak grid conditions. Through analysis using small signal disturbance, it elucidates the significance of the PLL-FCE, particularly in medium- and low-frequency ranges, by establishing the coupling admittance model. Secondly, it presents the output impedance model for a three-phase LCL-type GCC, incorporating the characteristics of PLL frequency coupling. This model elucidates the interplay between the GCC’s output impedance, the PLL-FCE and the grid impedance. It also unveils the impact of the PLL-FCE on system stability in weak grid scenarios. Building upon these insights, this paper proposes an enhanced PLL based on the Second-Order Generalized Integrator (SOGI). It provides a detailed parameter design process for implementing these improved PLL structures. Finally, the study conducts simulation and experiment verification under weak grid conditions. The findings indicate that the PLL-FCE indeed undermines the stability of GCCs in the weak grid, with this effect becoming more pronounced as the grid impedance increases. However, the implementation of the SOGI-PLL successfully mitigates the adverse impact of the PLL-FCE on the stability of the converter–weak grid interactive system, thereby enhancing the adaptability of GCCs to weak grid environments. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

22 pages, 7744 KB  
Article
An Enhanced Power Allocation Strategy for Microgrids Considering Frequency and Voltage Restoration
by Chunguang Yang, Xue Wu, Qichao Song, Haoyu Wu and Yixin Zhu
Electronics 2024, 13(10), 1966; https://doi.org/10.3390/electronics13101966 - 17 May 2024
Cited by 7 | Viewed by 1284
Abstract
In a microgrid, load power should be properly shared among multiple distributed generation (DG) units, not only for fundamental power but also for negative sequence and harmonic power. In this paper, the operation of a microgrid under imbalance and nonlinear load conditions is [...] Read more.
In a microgrid, load power should be properly shared among multiple distributed generation (DG) units, not only for fundamental power but also for negative sequence and harmonic power. In this paper, the operation of a microgrid under imbalance and nonlinear load conditions is studied, and a consensus algorithm-based distributed control strategy is proposed for the microgrid power allocation, frequency, and voltage restoration. First of all, the output current of DG unit is decomposed by second-order generalized integrator (SOGI) modules to obtain the fundamental power and harmonic power through the power calculation formula. Then, state values of DG units, such as local power, frequency, and voltage, are transmitted on a sparse communication network. Under the action of a consensus algorithm, the real power of DG units is allocated following the equal increment principle; the reactive power, imbalance, and harmonic power are allocated according to the capacities of DG units; and the frequency of the microgrid and the voltage at the point of common coupling (PCC) are rated. In the consensus-based strategy, DG units only communicate with their neighbor units; thus, the “plug and play” function is reserved. Compared with the centralized control strategy, the proposed strategy with a distributed consensus protocol can simplify the maintenance and possible expansions of the system, making the microgrid more flexible. Moreover, as the structure of the detailed network is not required, it is easy to apply in practice. Simulation and experiment results are presented to verify the proposed method. Full article
Show Figures

Figure 1

23 pages, 10170 KB  
Article
Sensorless Control of Surfaced-Mounted Permanent Magnet Synchronous Motor in a Wide-Speed Range
by Xiang Li, Yuze Cui and Xinzhang Wu
Electronics 2024, 13(6), 1131; https://doi.org/10.3390/electronics13061131 - 20 Mar 2024
Cited by 5 | Viewed by 3056
Abstract
This paper delves into a comprehensive study of a wide-speed-range sensorless control approach for surface-mounted permanent magnet synchronous motors (SPMSMs). In the low-speed range, a novel high-frequency pulse voltage injection (HFPVI) method is introduced for rotor position estimation, which does not depend on [...] Read more.
This paper delves into a comprehensive study of a wide-speed-range sensorless control approach for surface-mounted permanent magnet synchronous motors (SPMSMs). In the low-speed range, a novel high-frequency pulse voltage injection (HFPVI) method is introduced for rotor position estimation, which does not depend on motor saliency and is well-suited for SPMSMs. This method incorporates a second-order generalized integrator (SOGI) and a new modulation signal to enhance the accuracy of rotor position estimation. For medium-to-high speeds, an improved super-twisting sliding mode observer (STSMO) utilizing a continuous hyperbolic tangent function is proposed to mitigate chattering. Additionally, a new phase-locked loop (NPLL) is introduced to accurately obtain the rotor position. Furthermore, this paper designs an exponential weighted switching function to facilitate a smooth transition of the motor from the low-speed domain to the medium- and high-speed domains. The effectiveness and superiority of the proposed methods are validated through simulations and experiments conducted on an RTU-BOX platform. The rotor position estimation errors of the proposed new HFPVI method and the improved STSMO method under various operating conditions are both approximately 0.05 rad (2.8 elc·deg), and the SPMSM can switch smoothly from the low-speed range to the medium- and high-speed ranges. Full article
Show Figures

Figure 1

35 pages, 17863 KB  
Article
A Secure Dual-Layer Fault Protection Strategy for Distribution Network with DERs: Enhancing Security in the Face of Communication Challenges
by Wael Al Hanaineh, Jose Matas, Josep M. Guerrero and Mostafa Bakkar
Sensors 2024, 24(4), 1057; https://doi.org/10.3390/s24041057 - 6 Feb 2024
Cited by 2 | Viewed by 1962
Abstract
Earlier protection methods mainly focused on using communication channels to transmit trip signals between the protective devices (PDs), with no solutions provided in the case of communication failure. Therefore, this paper introduces a dual-layer protection system to ensure secure protection against fault events [...] Read more.
Earlier protection methods mainly focused on using communication channels to transmit trip signals between the protective devices (PDs), with no solutions provided in the case of communication failure. Therefore, this paper introduces a dual-layer protection system to ensure secure protection against fault events in the Distribution Systems (DSs), particularly in light of communication failures. The initial layer uses the Total Harmonic Distortion (THD), the estimates of the amplitude voltages, and the zero-sequence grid voltage components, functioning as a fault sensor, to formulate an adaptive algorithm based on a Finite State Machine (FSM) for the detection and isolation of faults within the grid. This layer primarily relies on communication protocols for effective coordination. A Second-Order Generalized Integrator (SOGI) expedites the derivation of the estimated variables, ensuring fast detection with minimal computational overhead. The second layer uses the behavior of the positive- and negative-sequence components of the grid voltages during fault events to locate and isolate these faults. In the event that the first layer exposes a communication failure, the second layer will automatically be activated to ensure secure protection as it operates, using the local information of the Protective devices (PDs), without the need for communication channels to transmit trip signals between the PDs. The proposed protection system has been assessed using simulations with MATLAB/Simulink and providing experimental results considering an IEEE 9-bus standard radial system. The obtained results confirm the capability of the system for identifying and isolating different types of faults, varying conditions, and modifications to the grid configuration. The results show good behavior of the initial THD-based layer, with fast time responses ranging from 6 to 8.5 ms in all the examined scenarios. In contrast, the sequence-based layer exhibits a protection time response of approximately 150 ms, making it a viable backup option in the event of a communication failure. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2024)
Show Figures

Figure 1

26 pages, 12113 KB  
Article
Photovoltaic-Based q-ZSI STATCOM with MDNESOGI Control Scheme for Mitigation of Harmonics
by Kanagaraj Nallaiyagounder, Vijayakumar Madhaiyan, Ramasamy Murugesan and Obaid Aldosari
Energies 2024, 17(2), 534; https://doi.org/10.3390/en17020534 - 22 Jan 2024
Cited by 13 | Viewed by 2166
Abstract
Static compensators (STATCOMs) are often used in distribution systems to enhance power quality. There is a need to enhance the performance of STATCOM to optimize its utilization and facilitate the provision of additional ancillary services. This paper employs the multilayer discrete noise-eliminating second [...] Read more.
Static compensators (STATCOMs) are often used in distribution systems to enhance power quality. There is a need to enhance the performance of STATCOM to optimize its utilization and facilitate the provision of additional ancillary services. This paper employs the multilayer discrete noise-eliminating second order generalized integrator (MDNESOGI) to regulate the quasi-impedance source inverter (qZSI)-STATCOM for power exchange with the grid. Compared to conventional second-order generalized integrator (SOGI), MDNESOGI exhibits a higher capability for rejecting DC offset. In instances of abnormal grid operation or system malfunction, the inclusion of DC rejection capability enhances the robustness and reliability of the system. The suggested control algorithm only requires two integrators, three mathematical operators, and a damping factor, making it far easier to implement than transformation-based methods. The distorted load current is broken down into its active and reactive components using this control mechanism. The reference currents are then calculated by multiplying these parts by their corresponding voltage standards. The DC offset is reduced and transient oscillations in the weight component are eliminated by adjusting the damping factor. The suggested algorithm effectively handles power quality tasks like (a) reducing harmonic distortion, (b) compensating for reactive power, (c) adjusting for power factor, and (d) balancing the load under different conditions in the distribution system. The experimental study results are used to examine the stability of the proposed control scheme in both static and dynamic scenarios. In addition, a comparison to traditional methods is provided to demonstrate the new method’s superiority. Experimentation results show that the suggested controller is superior to its contemporaries in all scenarios where power quality is a factor, meeting the IEEE standard requirements. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

29 pages, 27347 KB  
Article
Compensation Method for Current Measurement Errors in the Synchronous Reference Frame of a Small-Sized Surface Vehicle Propulsion Motor
by Haohao Guo, Tianxiang Xiang, Yancheng Liu, Qiaofen Zhang, Yi Wei and Fengkui Zhang
J. Mar. Sci. Eng. 2024, 12(1), 154; https://doi.org/10.3390/jmse12010154 - 12 Jan 2024
Cited by 4 | Viewed by 2321
Abstract
This paper proposes a new method for compensating current measurement errors in shipboard permanent magnet propulsion motors. The method utilizes cascade decoupling second-order generalized integrators (SOGIs) and adaptive linear neurons (ADALINEs) as the current harmonic extractor and the compensator, respectively. It can compensate [...] Read more.
This paper proposes a new method for compensating current measurement errors in shipboard permanent magnet propulsion motors. The method utilizes cascade decoupling second-order generalized integrators (SOGIs) and adaptive linear neurons (ADALINEs) as the current harmonic extractor and the compensator, respectively. It can compensate for the dq-axes offset and scaling errors simultaneously, improving phase current distortion while reducing the ripples of motor speed and torque. Compared to the traditional motor model-based compensation strategies, the proposed method is robust against the changes in motor parameters with the online adaptive capability of the ADALINE algorithm. Furthermore, due to the good real-time performance of SOGIs and ADALINEs, the proposed compensation strategy can effectively operate in both the steady state and transient state of the motor. Finally, the effectiveness of the proposed method is verified through the physical and hardware-in-the-loop (HIL) experiments. After compensating for the current measurement errors of a 1 kW test motor with the propeller-characteristics load, the torque ripple and speed ripple are reduced by more than 65% and 80%, respectively. At the same time, the DC component and the second-order and third-order harmonics in the phase currents are also significantly reduced. Similar test results can be also obtained on the HIL platform with a 100 kW permanent magnet motor. Full article
(This article belongs to the Special Issue New Advances on Energy and Propulsion Systems for Ship)
Show Figures

Figure 1

24 pages, 10203 KB  
Article
The Study of SRM Sensorless Control Strategy Based on SOGI-FLL and ADRC-PLL Hybrid Algorithm
by Fuyin Ni, Wenchao Zhang, Yuchun Bi and Bo Li
Electronics 2024, 13(1), 2; https://doi.org/10.3390/electronics13010002 - 19 Dec 2023
Cited by 3 | Viewed by 2101
Abstract
The inductance model used in traditional sensorless control methods for switched reluctance machines (SRMs) exhibits high-order harmonics. The precision of the motor may be impacted by the buildup of rotor estimate errors caused by these harmonics. To address this issue, this paper proposes [...] Read more.
The inductance model used in traditional sensorless control methods for switched reluctance machines (SRMs) exhibits high-order harmonics. The precision of the motor may be impacted by the buildup of rotor estimate errors caused by these harmonics. To address this issue, this paper proposes a novel method for SRMs that employs a hybrid algorithm combining an enhanced second-order generalized integrator (SOGI)-based frequency-locked loop (FLL) and an active disturbance rejection control (ADRC)-based phase-locked loop (PLL). This approach involves coordinate transformation and parameter identification to reconstruct the motor inductance model. Rotor position errors are calculated using the unsaturated inductance difference method. In order to enhance the accuracy of motor position estimation, a hybrid algorithm is employed to efficiently filter out harmonic errors and mitigate the tremor effect caused by the rotor position differential algorithm. This hybrid algorithm enables the estimate of the motor’s speed and rotor position. A sensorless control simulation model was developed using a 12/8 pole SRM to assess the motor’s performance under varying load conditions. Based on the results obtained, it is established that the application of this method can accurately estimate the rotor’s position and rotational speed and thus improve the performance of position sensorless control. Ultimately, a prototype system for a switched reluctance motor was created, and the effectiveness and feasibility of the proposed control technique were confirmed through experimental validation. This presents an innovative approach to engineering practice. Full article
Show Figures

Figure 1

Back to TopTop