Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,043)

Search Parameters:
Keywords = seabed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 49
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 3145 KiB  
Article
Probabilistic Prediction of Spudcan Bearing Capacity in Stiff-over-Soft Clay Based on Bayes’ Theorem
by Zhaoyu Sun, Pan Gao, Yanling Gao, Jianze Bi and Qiang Gao
J. Mar. Sci. Eng. 2025, 13(7), 1344; https://doi.org/10.3390/jmse13071344 - 14 Jul 2025
Viewed by 106
Abstract
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit [...] Read more.
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit limited accuracy as they fail to account for uncertainties in seabed stratigraphy and soil properties. To address this limitation, based on a database of centrifuge model tests, a probabilistic prediction framework for the peak resistance and corresponding depth is developed by integrating empirical prediction formulas based on Bayes’ theorem. The proposed Bayesian methodology effectively refines prediction accuracy by quantifying uncertainties in soil parameters, spudcan geometry, and computational models. Specifically, it establishes prior probability distributions of peak resistance and depth through Monte Carlo simulations, then updates these distributions in real time using field monitoring data during spudcan penetration. The results demonstrate that both the recommended method specified in ISO 19905-1 and an existing deterministic model tend to yield conservative estimates. This approach can significantly improve the predicted accuracy of the peak resistance compared with deterministic methods. Additionally, it shows that the most probable failure zone converges toward the actual punch-through point as more monitoring data is incorporated. The enhanced prediction capability provides critical decision support for mitigating punch-through potential during offshore jack-up operations, thereby advancing the safety and reliability of marine engineering practices. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 2603 KiB  
Article
Determining Non-Dimensional Group of Parameters Governing the Prediction of Penetration Depth and Holding Capacity of Drag Embedment Anchors Using Linear Regression
by Mojtaba Olyasani, Hamed Azimi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1332; https://doi.org/10.3390/jmse13071332 - 11 Jul 2025
Viewed by 186
Abstract
Drag embedment anchors (DEAs) provide reliable and cost-effective mooring solutions for floating structures, e.g., platforms, ships, offshore wind turbines, etc., in offshore engineering. Structural stability and operational safety require accurate predictions of their penetration depths and holding capacities across various seabed conditions. In [...] Read more.
Drag embedment anchors (DEAs) provide reliable and cost-effective mooring solutions for floating structures, e.g., platforms, ships, offshore wind turbines, etc., in offshore engineering. Structural stability and operational safety require accurate predictions of their penetration depths and holding capacities across various seabed conditions. In this study, explicit linear regression (LR) models were developed for the first time to predict the penetration depth and holding capacity of DEAs on clay and sand seabed. Buckingham’s theorem was also applied to identify dimensionless groups of parameters that influence DEA behavior, e.g., the penetration depth and holding capacity of the DEAs. LR models were developed and validated against experimental data from the literature for both clay and sand seabed. To evaluate model performance and identify the most accurate LR models to predict DEA behavior, comprehensive sensitivity, error, and uncertainty analyses were performed. Additionally, LR analysis revealed the most influential input parameters impacting penetration depth and holding capacity. Regarding offshore mooring design and geotechnical engineering applications, the proposed LR models offered a practical and efficient approach to estimating DEA performance across various seabed conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2226 KiB  
Article
Dynamic Stochastic Model Optimization for Underwater Acoustic Navigation via Singular Value Decomposition
by Jialu Li, Junting Wang, Tianhe Xu, Jianxu Shu, Yangfan Liu, Yueyuan Ma and Yangyin Xu
J. Mar. Sci. Eng. 2025, 13(7), 1329; https://doi.org/10.3390/jmse13071329 - 11 Jul 2025
Viewed by 162
Abstract
The geometric distribution of seabed beacons significantly impacts the positioning accuracy of underwater acoustic navigation systems. To address this challenge, we propose a depth-constrained adaptive stochastic model optimization method based on singular value decomposition (SVD). The method quantifies the contribution weights of each [...] Read more.
The geometric distribution of seabed beacons significantly impacts the positioning accuracy of underwater acoustic navigation systems. To address this challenge, we propose a depth-constrained adaptive stochastic model optimization method based on singular value decomposition (SVD). The method quantifies the contribution weights of each beacon to the dominant navigation direction by performing SVD on the acoustic observation matrix. The acoustic ranging covariance matrix can be dynamically adjusted based on these weights to suppress error propagation. At the same time, the prior depth with centimeter-level accuracy provided by the pressure sensor is used to establish strong constraints in the vertical direction. The experimental results demonstrate that the depth-constrained adaptive stochastic model optimization method reduces three-dimensional RMS errors by 66.65% (300 m depth) and 77.25% (2000 m depth) compared to conventional equal-weight models. Notably, the depth constraint alone achieves 95% vertical error suppression, while combined SVD optimization further enhances horizontal accuracy by 34.2–53.5%. These findings validate that coupling depth constraints with stochastic optimization effectively improves navigation accuracy in complex underwater environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 1526 KiB  
Article
Factor Correction Analysis of Nodal Tides in Taiwan Waters
by Hsien-Kuo Chang, Peter Tian-Yuan Shih and Wei-Wei Chen
Oceans 2025, 6(3), 41; https://doi.org/10.3390/oceans6030041 - 7 Jul 2025
Viewed by 263
Abstract
Nodal tides, which follow an 18.6-year cycle, influence tidal variations at any given location in the ocean. Conventional nodal tide theory neglects land effects and topological change. Due to the complex seabed topography around Taiwan waters, the purpose of this paper is to [...] Read more.
Nodal tides, which follow an 18.6-year cycle, influence tidal variations at any given location in the ocean. Conventional nodal tide theory neglects land effects and topological change. Due to the complex seabed topography around Taiwan waters, the purpose of this paper is to use the long-term tidal data of six stations to discuss the effects of perigean and nodal tides on 20 constituents and to compare the results with previous theories. A modulation method is employed to fit the annual amplitude estimated by harmonic analysis (HA). The top four constituents of the fitted and theoretical values of nodal amplitude factor (AF) and phase factor (PF) are O1, K1, K2, and Q1. We find that perigean tides or second-order nodal tides considered in the fitting contribute to almost identical performance. The linear time change considered in the AF fitting has better fitting than the mean water level involved. Full article
Show Figures

Figure 1

26 pages, 7033 KiB  
Article
Numerical Investigation into the Response of a Laterally Loaded Pile in Coastal and Offshore Slopes Considering Scour Effect
by Hao Zhang, Abubakarr Barrie, Fayun Liang and Chen Wang
Water 2025, 17(13), 2032; https://doi.org/10.3390/w17132032 - 7 Jul 2025
Viewed by 248
Abstract
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused [...] Read more.
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused on scour-affected pile performance in horizontal beds, this research expands the scope by incorporating sloped beds and corresponding scour effect, which are common in coastal and offshore environments. A three-dimensional finite element model was established to evaluate the pile foundation’s lateral load-bearing capacity under different slope and scour conditions, according to preceding flume tests on the mechanism of local scour around a pile in sloping bed. The results indicate that the lateral response of the pile is significantly influenced by the seabed slope and scour depth. A negatively inclined seabed weakens the interaction between the pile and the surrounding sediment, thereby reducing the lateral bearing capacity and bending moment. As the scour depth increases, the support provided by the soil further weakens, intensifying the reduction in lateral resistance. This effect is particularly pronounced for steep negative slopes, where the combined impact of slope and scour has a more significant detrimental effect. Full article
Show Figures

Figure 1

20 pages, 13331 KiB  
Article
Numerical Simulation of Seabed Response Around Monopile Under Wave–Vibration
by Hongyi Du, Dunge Wang, Jiankang Hou, Ziqin Yu, Ze Liu and Yongzhou Cheng
J. Mar. Sci. Eng. 2025, 13(7), 1309; https://doi.org/10.3390/jmse13071309 - 6 Jul 2025
Viewed by 230
Abstract
Monopile foundation is an important foundation form for offshore wind turbines, and the stability of the seabed around it is affected by the combined effects of wave and pile vibration. Based on the Biot consolidation theory and elastoplastic constitutive model, a multi-physical field [...] Read more.
Monopile foundation is an important foundation form for offshore wind turbines, and the stability of the seabed around it is affected by the combined effects of wave and pile vibration. Based on the Biot consolidation theory and elastoplastic constitutive model, a multi-physical field coupling model of wave–vibration–seabed–monopile is constructed, and the dynamic characteristics of seabed pore pressure around the monopile under the joint action of wave–vibration are systematically investigated, and the influences of waves, vibrations, and seabed parameters on the distribution of pore pressure amplitude are analysed in depth. The results show that the increase in wave incident energy will increase the seabed wave pressure, and the suction and pressure generated by pile vibration will change the soil force state; the coupling of waves and vibrations results in pile displacement difference, causing the seabed pore pressure dissipation depth dissimilarity, and the peak relative amplitude of pore pressure and the peak of vibration displacement are in a linear relationship; the wave parameters and seabed characteristics have a significant effect on the change in pore pressure amplitude distribution. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 4718 KiB  
Article
Wind Energy Development on Lake Huron: An Offshore Foundation Design Perspective
by Clare Burnley and Shunde Yin
Processes 2025, 13(7), 2118; https://doi.org/10.3390/pr13072118 - 3 Jul 2025
Viewed by 279
Abstract
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high [...] Read more.
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high shear forces from waves. Extensive site characterization is necessary to effectively design detailed offshore wind turbine structures. High cost and time commitments, along with policy and societal considerations, have limited present research on offshore wind feasibility in the Great Lakes. This study focuses on wave impacts, assessing popular offshore wind farms and identifying monopile foundations as the optimal design for a hypothetical offshore wind farm in the lime bedrock of Lake Huron. RSPile is used to assess the stability of the proposed foundation design against deflection, bending, and rotation under average wave forces and extreme storm events. Ultimately, preliminary analysis recommends an 8 m diameter pipe embedded 30 m into the seabed to satisfy industry standards for offshore wind turbine foundation design. Full article
Show Figures

Figure 1

30 pages, 8445 KiB  
Article
Critical Environmental Factors in Offshore Wind–Hydrogen Projects: Uruguay’s Exclusive Economic Zone
by Luisa Rivas, Alice Elizabeth González and Alejandro Gutiérrez
Sustainability 2025, 17(13), 6096; https://doi.org/10.3390/su17136096 - 3 Jul 2025
Viewed by 429
Abstract
Green hydrogen is a promising solution for decarbonizing emission-intensive sectors, with its production through offshore wind energy offering viable opportunities. This study presents a preliminary assessment of the main environmental factors potentially affected by offshore wind and green hydrogen projects in Uruguay’s Exclusive [...] Read more.
Green hydrogen is a promising solution for decarbonizing emission-intensive sectors, with its production through offshore wind energy offering viable opportunities. This study presents a preliminary assessment of the main environmental factors potentially affected by offshore wind and green hydrogen projects in Uruguay’s Exclusive Economic Zone (EEZ), where such developments pose environmental challenges that require evaluation, particularly given the limited prior research in Uruguay and Latin America. Through a comprehensive review of international literature and national technical data, the study identifies key interactions between project activities and the physical, biotic, and anthropic environmental components during the development, construction, and operational phases. Using cross-reference matrices and impact categorization, the analysis highlights that activities such as foundation installation, submarine cable deployment, and offshore electrolysis could significantly affect the seabed, underwater noise levels, water quality, and marine biodiversity. The biotic and physical environment were found to be the most frequently impacted. To contextualize these findings, technical information specific to Uruguay’s EEZ was reviewed to identify the most vulnerable regional environmental factors. The results offer a science-based foundation to support early-stage environmental assessments and guide sustainable offshore energy development in the region. Full article
Show Figures

Figure 1

17 pages, 6884 KiB  
Article
A Study of the Global Buckling Response and Control Measures for Snake-Laid Pipelines Under Uneven Soil Resistances
by Runnan Miao, Xiang Sun, Chengfeng Li, Run Liu, Xiangning Du and Yinuo Liu
J. Mar. Sci. Eng. 2025, 13(7), 1258; https://doi.org/10.3390/jmse13071258 - 28 Jun 2025
Viewed by 248
Abstract
The snake-laying method is widely employed as an effective strategy for global buckling mitigation in submarine pipelines. The uneven distribution of soil resistance along pipeline routes significantly amplifies the complexity of global buckling responses in snake-laid pipelines and challenges their control mechanisms. This [...] Read more.
The snake-laying method is widely employed as an effective strategy for global buckling mitigation in submarine pipelines. The uneven distribution of soil resistance along pipeline routes significantly amplifies the complexity of global buckling responses in snake-laid pipelines and challenges their control mechanisms. This study establishes a finite element computational model to investigate the effects of soil resistance distribution gradients and patterns along pipeline routes, alongside their coupling with critical snake-laying parameters (spacing, offset, curvature). The research revealed that an uneven distribution of soil resistance can induce the global buckling submersion phenomenon in snake-laid pipelines. Among the critical snake-laying parameters, curvature enhancement proves to be the most effective mitigation strategy against the global buckling submersion phenomenon. Additionally, an improvement in the conventional uniform-laying scheme is proposed for uneven soil resistance distribution: the originally planned snake-laid section can be replaced by a straight pipeline section in the high-resistance zone. This study provides enhanced technical solutions for global buckling prevention in pipelines traversing uneven seabeds. Full article
(This article belongs to the Special Issue Safety Evaluation and Protection in Deep-Sea Resource Exploitation)
Show Figures

Figure 1

17 pages, 1650 KiB  
Article
Direct Forward-Looking Sonar Odometry: A Two-Stage Odometry for Underwater Robot Localization
by Wenhao Xu, Jianmin Yang, Jinghang Mao, Haining Lu, Changyu Lu and Xinran Liu
Remote Sens. 2025, 17(13), 2166; https://doi.org/10.3390/rs17132166 - 24 Jun 2025
Viewed by 235
Abstract
Underwater robots require fast and accurate localization results during challenging near-bottom operations. However, commonly used methods such as acoustic baseline localization, dead reckoning, and sensor fusion have limited accuracy. The use of forward-looking sonar (FLS) images to observe the seabed environment for pose [...] Read more.
Underwater robots require fast and accurate localization results during challenging near-bottom operations. However, commonly used methods such as acoustic baseline localization, dead reckoning, and sensor fusion have limited accuracy. The use of forward-looking sonar (FLS) images to observe the seabed environment for pose estimation has gained significant traction in recent years. This paper proposes a lightweight front-end FLS odometry to provide consistent and accurate localization for underwater robots. The proposed direct FLS odometry (DFLSO) includes several key innovations that realize the extraction of point clouds from FLS images and both image-to-image and image-to-map matching. First, an image processing method is designed to rapidly generate a 3-D point cloud of the seabed using FLS image, enabling pose estimation through point cloud matching. Second, a lightweight keyframe system is designed to construct point cloud submaps, which utilize historical information to enhance global pose consistency and reduce the accumulation of image-matching errors. The proposed odometry algorithm is validated by both simulation experiments and field data from sea trials. Full article
Show Figures

Figure 1

16 pages, 8474 KiB  
Article
Multiproxy Petrological Analysis for Provenance Determination of Two Granitic Stone Anchors in the Western Mediterranean
by Javier Martínez-Martínez, Hugo Corbí, Nicoletta Fusi, Jaime Molina Vidal, José A. Moya-Montoya, Alberto J. Lorrio, Felio Lozano Quijada and José Manuel Pérez Burgos
Minerals 2025, 15(7), 675; https://doi.org/10.3390/min15070675 - 24 Jun 2025
Viewed by 386
Abstract
A multiproxy methodology has been employed to characterise two granite anchors discovered on the seabed near the island of Nueva Tabarca (Alicante, Southeast Spain). According to the significant archaeological context where they were found, the studied anchors can be dated from the Roman [...] Read more.
A multiproxy methodology has been employed to characterise two granite anchors discovered on the seabed near the island of Nueva Tabarca (Alicante, Southeast Spain). According to the significant archaeological context where they were found, the studied anchors can be dated from the Roman ages (late Republican period). One of the most interesting aspects is the absence of regional geological outcrops with rocks compatible with the granite used in the production of the anchor, which shows a foreign origin consistent with the connection of the anchor to maritime transport across the Mediterranean Sea. The lack of precise information about the artifact’s origin underscores the interest and need for the application of petrological techniques to determine its provenance. The methodology utilised encompasses five distinct techniques: (1) non-destructive textural analysis using X-ray microcomputed tomography; (2) K–Ar dating; (3) petrological characterisation through optical microscopy; (4) geochemical characterisation using X-ray fluorescence and atomic absorption spectrometry. The results allow for a comparison of the anchor rock’s characteristics with various granite outcrops along the Mediterranean coasts (Eastern, Central, and Western sectors), suggesting potential source areas based on petrological compatibility with the material under study. The findings point to the origin of the Nueva Tabarca granite anchor being granite outcrops in Southern Italy (Calabria), reinforcing the connection between the Spanish southeastern coasts and Southern Italy. These results highlight the utility and significance of multiproxy petrological methodologies in the geoarchaeological study of decontextualised artifacts. Full article
Show Figures

Graphical abstract

14 pages, 1685 KiB  
Article
Benthic Infauna in the Shallow-Water Hydrothermal System of Banderas Bay, Mexico: A Two-Period Comparison
by María Carolina Rodríguez-Uribe, Rosa María Chávez-Dagostino, Patricia Salazar-Silva, Jani Jarquín-González, Alma Rosa Raymundo-Huizar and Fátima Maciel Carrillo-González
Diversity 2025, 17(7), 440; https://doi.org/10.3390/d17070440 - 20 Jun 2025
Viewed by 681
Abstract
At a depth of approximately 9 m off the coast of Banderas Bay, hydrothermal activity occurs through various seabed vents, discharging liquids and gases that reach temperatures of up to 89 °C and pH values lower than the surrounding seawater. This study examines [...] Read more.
At a depth of approximately 9 m off the coast of Banderas Bay, hydrothermal activity occurs through various seabed vents, discharging liquids and gases that reach temperatures of up to 89 °C and pH values lower than the surrounding seawater. This study examines the composition of the benthic infauna inhabiting the sediments of this hydrothermal system in two time periods: November 2017 (previously reported) and September 2023 (recorded for this study). In total, for both samplings, we identified 17 benthic infaunal groups—amphipods, isopods, cumaceans, tanaidaceans, crabs, shrimps, copepods, snails, limpets, caecids, chitons, bivalves, scaphopods, polychaetes, amphioxus, ophiuroids, and bryozoans—belonging to these ten taxonomic classes: Malacostraca, Maxillopoda, Gastropoda, Polyplacophora, Bivalvia, Scaphopoda, Polychaeta, Leptocardii, Ophiuroidea, and Stenolaemata. Additionally, we identified galleries of polychaetes, vermetids, and peracarids. Despite the stressful hydrothermal conditions, statistical analyses of both sampling campaigns revealed no significant differences in abundance, highlighting the potential persistence and adaptability of benthic communities in hydrothermally influenced habitats. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

34 pages, 2086 KiB  
Review
Local Scour Around Marine Structures: A Comprehensive Review of Influencing Factors, Prediction Methods, and Future Directions
by Bingchuan Duan, Duoyin Wang, Chenxi Qin and Lunliang Duan
Buildings 2025, 15(12), 2125; https://doi.org/10.3390/buildings15122125 - 19 Jun 2025
Viewed by 467
Abstract
Local scour is a phenomenon of sediment erosion and transport caused by the dynamic interaction between water flow and seabed sediment, posing a serious threat to the safety of marine engineering structures such as cross-sea bridges and offshore wind turbines. To improve scour [...] Read more.
Local scour is a phenomenon of sediment erosion and transport caused by the dynamic interaction between water flow and seabed sediment, posing a serious threat to the safety of marine engineering structures such as cross-sea bridges and offshore wind turbines. To improve scour prediction and prevention capabilities, this review systematically analyzes the influence mechanisms of factors such as hydrodynamic conditions, sediment characteristics, and structural geometry, and discusses scour protection measures. Based on this, a comprehensive evaluation of the applicability of different prediction methods, including traditional empirical formulas, numerical simulations, probabilistic prediction models, and machine learning (ML) methods, was conducted. The study focuses on analyzing the limitations of existing methods: empirical formulas lack adaptability under complex field conditions, numerical simulation still faces challenges in validating real marine environments, and data-driven models suffer from “black box” issues and insufficient generalization capabilities. Based on the current research progress, this review presents prospects for future development, emphasizing the need to deepen the study of scouring mechanisms in complex real marine environments, develop efficient numerical models for engineering applications, and explore intelligent prediction methods that integrate data-driven approaches with physical mechanisms. This aims to provide more reliable theoretical support for the safe design, risk prevention, and scouring mitigation measures in marine engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 3288 KiB  
Review
Recent Developments on Biomineralization for Erosion Control
by Shan Liu, Changrui Dong, Yongqiang Zhu, Zichun Wang, Yujie Li and Guohui Feng
Appl. Sci. 2025, 15(12), 6591; https://doi.org/10.3390/app15126591 - 11 Jun 2025
Viewed by 491
Abstract
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing [...] Read more.
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing biomineralization efficiency, multi-scale erosion control, and field-scale MICP implementations in marine dynamic conditions. Key findings include the following: (1) Kinetic analysis of Ca2+ conversion confirmed complete ion utilization within 24 h under optimized PA concentration (3%), resulting in a compressive strength of 2.76 MPa after five treatment cycles in ISO-standard sand. (2) Field validations in Ahoskie and Sanya demonstrated the efficacy of MICP in coastal erosion control through tailored delivery systems and environmental adaptations. Sanya’s studies highlighted seawater-compatible MICP solutions, achieving maximum 1743 kPa penetration resistance in the atmospheric zone and layered “M-shaped” CaCO3 precipitation in tidal regions. (3) Experimental studies revealed that MICP treatments (2–4 cycles) reduced maximum scour depth by 84–100% under unidirectional currents (0.3 m/s) with the maximum surface CaCO3 content reaching 3.8%. (4) Numerical simulations revealed MICP enhanced seabed stability by increasing vertical effective stress and reducing pore pressure. Comparative analysis demonstrates that while the destabilization depth of untreated seabed exhibits a linear correlation with wave height increments, MICP-treated seabed formations maintain exceptional stability through cohesion-enhancing properties, even when subjected to progressively intensified wave forces. This review supports the use of biomineralization as a sustainable alternative for shoreline protection, seabed stabilization, and offshore foundation integrity. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop