Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,388)

Search Parameters:
Keywords = sea water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4080 KB  
Article
Marine Heatwaves Enable High-Latitude Maintenance of Super Typhoons: The Role of Deep Ocean Stratification and Cold-Wake Mitigation
by Chengjie Tian, Yang Yu, Jinlin Ji, Chenhui Zhang, Jiajun Feng and Guang Li
J. Mar. Sci. Eng. 2026, 14(2), 191; https://doi.org/10.3390/jmse14020191 - 16 Jan 2026
Abstract
Tropical cyclones typically weaken rapidly during poleward propagation due to decreasing sea surface temperatures and increasing vertical wind shear. Super Typhoon Oscar (1995) deviated from this pattern by maintaining Category-5 intensity at an anomalously high latitude. This study investigates the oceanic mechanisms driving [...] Read more.
Tropical cyclones typically weaken rapidly during poleward propagation due to decreasing sea surface temperatures and increasing vertical wind shear. Super Typhoon Oscar (1995) deviated from this pattern by maintaining Category-5 intensity at an anomalously high latitude. This study investigates the oceanic mechanisms driving this resilience by integrating satellite SST data with atmospheric (ERA5) and oceanic (HYCOM) reanalysis products. Our analysis shows that the storm track intersected a persistent marine heatwave (MHW) characterized by a deep thermal anomaly extending to approximately 150 m. This elevated heat content formed a strong stratification barrier at the base of the mixed layer (~32 m) that prevented the typical entrainment of cold thermocline water. Instead, storm-induced turbulence mixed warm subsurface water upward to effectively mitigate the negative cold-wake feedback. This process sustained extreme upward enthalpy fluxes exceeding 210 W m−2 and generated a regime of thermodynamic compensation that enabled the storm to maintain its structure despite an unfavorable atmospheric environment with moderate-to-strong vertical wind shear (15–20 m s−1). These results indicate that the three-dimensional ocean structure acts as a more reliable predictor of typhoon intensity than SST alone in regions affected by MHWs. As MHWs deepen under climate warming, this cold-wake mitigation mechanism is likely to become a significant factor influencing future high-latitude cyclone hazards. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

26 pages, 7374 KB  
Article
Anticipated Compound Flooding in Miami-Dade Under Extreme Hydrometeorological Events
by Alan E. Gumbs, Alemayehu Dula Shanko, Abiodun Tosin-Orimolade and Assefa M. Melesse
Hydrology 2026, 13(1), 34; https://doi.org/10.3390/hydrology13010034 - 16 Jan 2026
Abstract
Climate change and the resulting projected rise in sea level put densely populated urban communities at risk of river flooding, storm surges, and subsurface flooding. Miami finds itself in an increasingly vulnerable position, as compound inundation seems to be a constant and unavoidable [...] Read more.
Climate change and the resulting projected rise in sea level put densely populated urban communities at risk of river flooding, storm surges, and subsurface flooding. Miami finds itself in an increasingly vulnerable position, as compound inundation seems to be a constant and unavoidable occurrence due to its low elevation and limestone geomorphology. Several recent studies on compound overflows have been conducted in Miami-Dade County. However, in-depth research has yet to be conducted on its economic epicenter. Owing to the lack of resilience to tidal surges and extreme precipitation events, Miami’s infrastructure and the well-being of its population may be at risk of flooding. This study applied HEC-RAS 2D to develop one- and two-dimensional water flow models to understand and estimate Miami’s vulnerability to extreme flood events, such as 50- and 100-year return storms. It used Hurricane Irma as a validation and calibration event for extreme event reproduction. The study also explores novel machine learning metamodels to produce a robust sensitivity analysis for the hydrologic model. This research is expected to provide insights into vulnerability thresholds and inform flood mitigation strategies, particularly in today’s unprecedented and intensified weather events. The study revealed that Miami’s inner bay coastline, particularly the downtown coastline, is severely impacted by extreme hydrometeorological events. Under extreme event circumstances, the 35.4 km2 area of Miami is at risk of flooding, with 38% of the areas classified as having medium to extreme risk by FEMA, indicating severe infrastructural and community vulnerability. Full article
Show Figures

Figure 1

23 pages, 4405 KB  
Article
Spatiotemporal Dynamics of Mesozooplankton Trophic Structure and Food Web Configuration in the Vicinity of Daya Bay Nuclear Power Plant
by Yanjiao Lai, Bingqing Liu and Mianrun Chen
Microorganisms 2026, 14(1), 203; https://doi.org/10.3390/microorganisms14010203 - 15 Jan 2026
Abstract
Mesozooplankton play a pivotal role in marine pelagic food webs, mediating energy and matter transfer between primary producers and higher trophic levels. Daya Bay, a semi-enclosed bay located in the northern South China Sea, has undergone significant environmental changes due to anthropogenic activities, [...] Read more.
Mesozooplankton play a pivotal role in marine pelagic food webs, mediating energy and matter transfer between primary producers and higher trophic levels. Daya Bay, a semi-enclosed bay located in the northern South China Sea, has undergone significant environmental changes due to anthropogenic activities, such as thermal discharge from nuclear power plants and eutrophication. This study examined the mesozooplankton community structure, feeding preferences, and food web organization through four seasonal cruises (May 2022, February 2023, August 2023, and November 2023), employing stable isotope analysis and a Bayesian Isotopic Mixing Model. Results indicate that mesozooplankton abundance and diversity were lower in regions affected by thermal discharge, suggesting a suppressive effect of elevated temperatures. Seasonal shifts in dominant species were observed: Penilia avirostris and Dolioletta gegenbauri dominated the community in spring, while Noctiluca scintillans blooms occurred in summer and winter. Isotopic analysis revealed distinct trophic strategies: copepods exhibited omnivorous habits, whereas cladocerans and tunicates showed stronger herbivorous tendencies. N. scintillans functioned as a high-trophic omnivore, preying on copepod larvae and competing for food resources. Overall, the mesozooplankton community was characterized by an omnivory-dominated trophic network, which enhanced resilience yet remains sensitive to anthropogenic disturbances. This study clarifies how human-induced environmental changes reshape trophic pathways in subtropical coastal waters, providing a valuable reference for long-term monitoring and ecosystem management in Daya Bay. Full article
(This article belongs to the Special Issue Microbial Food Webs)
Show Figures

Figure 1

21 pages, 10154 KB  
Article
Sea Ice Concentration Retrieval in the Arctic and Antarctic Using FY-3E GNSS-R Data
by Tingyu Xie, Cong Yin, Weihua Bai, Dongmei Song, Feixiong Huang, Junming Xia, Xiaochun Zhai, Yueqiang Sun, Qifei Du and Bin Wang
Remote Sens. 2026, 18(2), 285; https://doi.org/10.3390/rs18020285 - 15 Jan 2026
Abstract
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite [...] Read more.
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite Systems (GNSS) are utilized to extract characteristic parameters from Delay Doppler Maps (DDMs). By integrating regional partitioning and dynamic thresholding for sea ice detection, a Random Forest Regression (RFR) model incorporating a rolling-window training strategy is developed to estimate SIC. The retrieved SIC products are generated at the native GNSS-R observation resolution of approximately 1 × 6 km, with each SIC estimate corresponding to an individual GNSS-R observation time. Owing to the limited daily spatial coverage of GNSS-R measurements, the retrieved SIC results are further aggregated into monthly composites for spatial distribution analysis. The model is trained and validated across both polar regions, including targeted ice–water boundary zones. Retrieved SIC estimates are compared with reference data from the OSI SAF Special Sensor Microwave Imager Sounder (SSMIS), demonstrating strong agreement. Based on an extensive dataset, the average correlation coefficient (R) reaches 0.9450 in the Arctic and 0.9602 in the Antarctic for the testing set, with corresponding Root Mean Squared Error (RMSE) of 0.1262 and 0.0818, respectively. Even in the more challenging ice–water transition zones, RMSE values remain within acceptable ranges, reaching 0.1486 in the Arctic and 0.1404 in the Antarctic. This study demonstrates the feasibility and accuracy of GNSS-R-based SIC retrieval, offering a robust and effective approach for cryospheric monitoring at high latitudes in both polar regions. Full article
Show Figures

Figure 1

23 pages, 6062 KB  
Article
Experimental Analysis of Traction Performance of Tracked Mining Vehicles in Deep-Sea Sediments
by Lixin Xu, Yajiao Liu, Xiu Li, Zhichao Hong, Menghao Fan, Yanli Chen and Haonan Wei
J. Mar. Sci. Eng. 2026, 14(2), 178; https://doi.org/10.3390/jmse14020178 - 14 Jan 2026
Viewed by 18
Abstract
The complex seabed topography and mechanical properties of deep-sea sediments impose stringent requirements on the traction performance and locomotion stability of tracked mining vehicles. Experimental investigations on the coupled effects of grouser geometry and operating conditions on traction remain limited. To address this, [...] Read more.
The complex seabed topography and mechanical properties of deep-sea sediments impose stringent requirements on the traction performance and locomotion stability of tracked mining vehicles. Experimental investigations on the coupled effects of grouser geometry and operating conditions on traction remain limited. To address this, rheological tests and multi-parameter traction experiments were conducted. Deep-sea sediments were modeled as a power-law fluid to capture their non-Newtonian behavior, considering particle size distribution, water content, and compaction state. Using a self-designed traction test apparatus, the influences of grouser geometry and operating parameters on traction force were systematically analyzed. Results indicate that both grouser configuration and operating conditions significantly affect traction force magnitude and stability. Rectangular grousers, exhibiting more uniform stress distribution and pronounced shear bands, demonstrated enhanced traction efficiency and locomotion stability under high-load, low-speed conditions. When the grouser length was 30 mm and the traveling speed was maintained at 7–12 mm/s, sediment fluidization was significantly mitigated, improving traction performance. Furthermore, a spacing of at least 20 mm between adjacent grousers produced a synergistic effect, increasing sediment shear strength by approximately 30–40%. These findings provide quantitative guidance for grouser design and operational optimization of tracked deep-sea mining vehicles. Full article
(This article belongs to the Special Issue Marine Technology: Latest Advancements and Prospects)
Show Figures

Figure 1

26 pages, 5522 KB  
Article
Green Synthesis of ZnO Nanoparticles: Effect of Synthesis Conditions on Their Size and Photocatalytic Activity
by Veronika Yu. Kolotygina, Arkadiy Yu. Zhilyakov, Maria A. Bukharinova, Ekaterina I. Khamzina and Natalia Yu. Stozhko
ChemEngineering 2026, 10(1), 15; https://doi.org/10.3390/chemengineering10010015 - 14 Jan 2026
Viewed by 22
Abstract
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles [...] Read more.
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles with the desired properties. This study shows that the antioxidant activity of the plant extracts used is a key parameter influencing the properties of the resulting ZnO nanoparticles. This conclusion is based on the results of nanoparticle synthesis with the use of various plant extracts. The antioxidant activity of the extracts increases in the following order: plum–gooseberry–black currant–strawberry–sea buckthorn. The synthesized ZnO nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic properties of ZnO nanoparticles were tested under the degradation of a synthetic methylene blue dye after exposure to UV light. We found that with an increase in the AOA of plant extracts, the size of the nanoparticles decreases, while their photocatalytic activity increases. The smallest (d = 13 nm), most uniform in size (polydispersity index 0.1), and most catalytically active ZnO nanoparticles with a small band gap (2.85 eV) were obtained using the sea buckthorn extract with the highest AOA, pH 10 of the reaction mixture and 0.1 M Zn(CH3COO)2∙2H2O as a precursor salt. ZnO nanoparticles synthesized in the sea buckthorn extract demonstrated the highest dye photodegradation efficiency (96.4%) compared with other nanoparticles. The established patterns demonstrate the “antioxidant activity–size–catalytic activity” triad can be considered as a practical guide for obtaining ZnO nanoparticles of a given size and with given properties for environmental remediation applications. Full article
Show Figures

Graphical abstract

18 pages, 1090 KB  
Article
Impact of Green Extraction Methods for Algae and Aquatic Plants on Amino Acid Composition and Taste Detection Using Electronic Tongue Analysis
by Lyket Chuon, Witoon Prinyawiwatkul, Amporn Sae-Eaw and Peerapong Wongthahan
Foods 2026, 15(2), 305; https://doi.org/10.3390/foods15020305 - 14 Jan 2026
Viewed by 34
Abstract
The growing demand for sustainable protein sources has increased interest in algae and aquatic plants as alternatives to animal-derived proteins. These resources are rich in protein, amino acids, and umami compounds but require suitable extraction methods to maximize yield and quality. This study [...] Read more.
The growing demand for sustainable protein sources has increased interest in algae and aquatic plants as alternatives to animal-derived proteins. These resources are rich in protein, amino acids, and umami compounds but require suitable extraction methods to maximize yield and quality. This study compared three green extraction techniques—maceration (MAE, 80 °C, 2 h), ultrasound-assisted extraction (UAE, 750 W, 20 kHz, 50% amplitude, 35 °C, pH 12, 1 h), and enzyme-assisted extraction (EAE, 5% β-glucanase/flavourzyme, 55 °C, pH 6.5, 1 h)—on five raw materials: wakame (commercial seaweed), hair seaweed, sea lettuce, water silk algae, and Wolffia. The result revealed that both raw materials and extraction methods significantly (p < 0.05) affected protein yield, amino acid, physicochemical properties, and taste detection with e-tongue. Wolffia extracted by MAE yielded the highest protein overall, followed by UAE and EAE methods, when compared with commercial seaweed. The relationship between amino acid profiles and taste detection was investigated by principal component analysis (PCA) and hierarchical cluster analysis (HCA); the samples with higher glutamic and aspartic acids were linked with umami taste, while histidine contributed to bitter taste. Overall, the findings highlighted that extraction efficiency was influenced more by the extraction method–material compatibility than the raw material alone. Full article
Show Figures

Figure 1

25 pages, 10321 KB  
Article
Improving the Accuracy of Optical Satellite-Derived Bathymetry Through High Spatial, Spectral, and Temporal Resolutions
by Giovanni Andrea Nocera, Valeria Lo Presti, Attilio Sulli and Antonino Maltese
Remote Sens. 2026, 18(2), 270; https://doi.org/10.3390/rs18020270 - 14 Jan 2026
Viewed by 33
Abstract
Accurate nearshore bathymetry is essential for various marine applications, including navigation, resource management, and the protection of coastal ecosystems and the services they provide. This study presents an approach to enhance the accuracy of bathymetric estimates derived from high-spatial- and high-temporal-resolution optical satellite [...] Read more.
Accurate nearshore bathymetry is essential for various marine applications, including navigation, resource management, and the protection of coastal ecosystems and the services they provide. This study presents an approach to enhance the accuracy of bathymetric estimates derived from high-spatial- and high-temporal-resolution optical satellite imagery. The proposed technique is particularly suited for multispectral sensors that acquire spectral bands sequentially rather than simultaneously. PlanetScope SuperDove imagery was employed and validated against bathymetric data collected using a multibeam echosounder. The study area is the Gulf of Sciacca, located along the southwestern coast of Sicily in the Mediterranean Sea. Here, multibeam data were acquired along transects that are subparallel to the shoreline, covering depths ranging from approximately 7 m to 50 m. Satellite imagery was radiometrically and atmospherically corrected and then processed using a simplified radiative transfer transformation to generate a continuous bathymetric map extending over the entire gulf. The resulting satellite-derived bathymetry achieved reliable accuracy between approximately 5 m and 25 m depth. Beyond these limits, excessive signal attenuation for higher depths and increased water turbidity close to shore introduced significant uncertainties. The innovative aspect of this approach lies in the combined use of spectral averaging among the most water-penetrating bands, temporal averaging across multiple acquisitions, and a liquid-facets noise reduction technique. The integration of these multi-layer inputs led to improved accuracy compared to using single-date or single-band imagery alone. Results show a strong correlation between the satellite-derived bathymetry and multibeam measurements over sandy substrates, with an estimated error of ±6% at a 95% confidence interval. Some discrepancies, however, were observed in the presence of mixed pixels (e.g., submerged vegetation or rocky substrates) or surface artifacts. Full article
Show Figures

Figure 1

30 pages, 7793 KB  
Article
A New Sea Ice Concentration (SIC) Retrieval Algorithm for Spaceborne L-Band Brightness Temperature (TB) Data
by Yin Hu, Shaoning Lv, Zhijin Li, Yijian Zeng, Xiehui Li, Yijun Zhang and Jun Wen
Remote Sens. 2026, 18(2), 265; https://doi.org/10.3390/rs18020265 - 14 Jan 2026
Viewed by 36
Abstract
Sea ice concentration (SIC) is crucial to the global climate. In this study, a new single-channel SIC retrieval algorithm utilizing spaceborne L-band brightness temperature (TB) measurements is developed based on a microwave radiative transfer model. Additionally, its four uncertainties are quantified [...] Read more.
Sea ice concentration (SIC) is crucial to the global climate. In this study, a new single-channel SIC retrieval algorithm utilizing spaceborne L-band brightness temperature (TB) measurements is developed based on a microwave radiative transfer model. Additionally, its four uncertainties are quantified and constrained: (1) variations in seawater reference TB under warm water conditions, (2) variations in sea ice reference TB under extremely low-temperature conditions, (3) the freeze–thaw dynamics of sea ice captured by Diurnal Amplitude Variation (DAV) signals, and (4) Land mask imperfections. It is found that DAV has the most pronounced effect: eliminating its influence reduces RMSE from 10.51% to 8.43%, increases R from 0.92 to 0.94, and minimizes Bias from -0.68 to 0.13. Suppressing all four uncertainties lowers RMSE to 7.42% (a 3% improvement). Furthermore, the algorithm exhibits robust agreement with the seasonal variability of SSM/I SIC, with R mostly exceeding 0.9, RMSE mostly below 10%, and Biases mostly within 5% throughout the year. Compared to ship-based and SAR SIC data, the new L-band algorithm’s Bias and RMSE are only 2% and 2% (ship-based)/2% and 1% (SAR) higher, respectively, than those of the SSM/I product. Future algorithms can integrate the DAV signal more effectively to better understand sea ice freeze–thaw processes and ice-atmosphere interactions. Full article
Show Figures

Figure 1

20 pages, 5395 KB  
Article
Concurrent Decadal Trend Transitions of Sea Ice Concentration and Sea Surface pCO2 in the Beaufort Sea
by Shangbin Chi and Meibing Jin
Remote Sens. 2026, 18(2), 257; https://doi.org/10.3390/rs18020257 - 13 Jan 2026
Viewed by 63
Abstract
Interannual climate changes and increasing atmospheric CO2 (AtmCO2) have significantly altered sea surface partial pressure of CO2 (pCO2) in the Beaufort Sea (BS). Yet, their decadal variability and underlying mechanisms remain inadequately understood. Using observational [...] Read more.
Interannual climate changes and increasing atmospheric CO2 (AtmCO2) have significantly altered sea surface partial pressure of CO2 (pCO2) in the Beaufort Sea (BS). Yet, their decadal variability and underlying mechanisms remain inadequately understood. Using observational data and the Regional Arctic System Model (RASM), a decreasing trend transition of the BS summer surface pCO2 was identified at around 2010–2012. Sensitivity cases reveal that the decadal trend transition in surface pCO2 (early: 4.12 ± 0.80 μatm/yr, p < 0.05 and late: 1.23 ± 2.22 μatm/yr, p > 0.05) is driven by interannual climate changes. While the long-term increase in AtmCO2 does not directly drive surface pCO2 trend transition, it reduces its magnitude. The sensitivity experiment with no interannual AtmCO2 changes from 1990 reveals that the statistically significant contributor of the decadal trend transition in surface pCO2 is the concurrent transition in sea ice concentration (SIC, early: −0.0120 ± 0.0037/yr, p < 0.05 and late: 0.0101 ± 0.0063/yr, p > 0.05). The decadal trend transitions in the subsurface and deep layer pCO2 are negligible compared to that in the sea surface pCO2 due to the insignificant influence of interannual climate changes on subsurface and deep layer pCO2. The surface pCO2 decadal trend transition is significantly correlated with a trend transition of CO2 sink. On seasonal timescales, the effects of SIC on the decadal trend transition of pCO2 occur primarily within the duration of open-water (DOW), and align with the decadal trend transitions in the open-water start day, end day, and DOW. The magnitude of sea surface pCO2 trend transition increases as the magnitude of the DOW trend transition increases. Full article
(This article belongs to the Special Issue Remote Sensing for Monitoring Water and Carbon Cycles)
Show Figures

Figure 1

19 pages, 3478 KB  
Article
Quantitative Assessment of Wave Reflection from Oscillating Water Column Devices and Empirical Prediction of Reflection Coefficients
by Su-Young Lee and Kwang-Ho Lee
J. Mar. Sci. Eng. 2026, 14(2), 174; https://doi.org/10.3390/jmse14020174 - 13 Jan 2026
Viewed by 64
Abstract
This study experimentally investigated the wave reflection characteristics of a vertical-type OWC installed by partially removing a section of an existing rubble mound breakwater under irregular wave conditions. Hydraulic model experiments were carried out for multiple water depths and irregular wave conditions representative [...] Read more.
This study experimentally investigated the wave reflection characteristics of a vertical-type OWC installed by partially removing a section of an existing rubble mound breakwater under irregular wave conditions. Hydraulic model experiments were carried out for multiple water depths and irregular wave conditions representative of OWC operation. The results demonstrated that the OWC structure generally exhibited lower reflection coefficients compared with conventional vertical breakwaters, indicating a low-reflection behavior even in random seas. The influence of the non-dimensional amplitude of free-surface oscillations inside the chamber on the reflection coefficient was examined. In addition, an empirical formula for predicting the reflection coefficient under irregular waves was proposed based on key dimensionless parameters, and its accuracy was validated against experimental data. The findings of this study are expected to contribute to the design and performance evaluation of OWC devices and to provide useful input for harbor tranquility assessments in coastal and port engineering practice. Full article
(This article belongs to the Special Issue New Developments of Ocean Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 51754 KB  
Article
Underwater Acoustic Data Transmission in the Presence of Challenging Multipath Conditions and Shadow Zones: Sea Trial Analysis and Lessons Learned
by Jacopo Lazzarin, Antonio Montanari, Diego Spinosa, Davide Cosimo, Riccardo Costanzi, Filippo Campagnaro and Michele Zorzi
Electronics 2026, 15(2), 358; https://doi.org/10.3390/electronics15020358 - 13 Jan 2026
Viewed by 88
Abstract
In comparison to traditional wired and wireless communication scenarios, the underwater channel is peculiar, being significantly more difficult for communication and presenting a unique set of features and impairments, thus necessitating special care in selecting ad hoc encoding and modulation technologies to achieve [...] Read more.
In comparison to traditional wired and wireless communication scenarios, the underwater channel is peculiar, being significantly more difficult for communication and presenting a unique set of features and impairments, thus necessitating special care in selecting ad hoc encoding and modulation technologies to achieve successful transmissions. This process can be aided by simulations, which can be effectively carried out only using a good, detailed channel model validated through sea measurements. This study presents the results of a sea measurement campaign run in May 2024 off the Gulf of La Spezia, Italy, characterized by challenging shallow water conditions and the presence of shadow zones. The collected data is then used to model a simulated channel as faithful as possible to the one experienced during the sea trial. The obtained channel is then used to carry out a comparison of different forward error correction (FEC) codes, highlighting each scheme’s performance in our working context. Conclusive results show that a satisfactory simulated channel was obtained and that a different choice of FEC schemes could have improved the performance of the underwater acoustic communication. Full article
Show Figures

Figure 1

14 pages, 1715 KB  
Article
Using Phytoplankton as Bioindicators of Tourism Impact and Seasonal Eutrophication in the Andaman Sea (Koh Yaa, Thailand)
by Tassnapa Wongsnansilp, Manoch Khamcharoen, Jaran Boonrong and Wipawee Dejtisakdi
Appl. Microbiol. 2026, 6(1), 15; https://doi.org/10.3390/applmicrobiol6010015 - 13 Jan 2026
Viewed by 50
Abstract
This study focuses on the diversity of phytoplankton in the Koh Yaa region of Thailand and their relationship with environmental variables, aiming to assess whether human activities (primarily tourism) pose potential threats to the marine ecosystem and provide scientific support for eco-sustainable tourism [...] Read more.
This study focuses on the diversity of phytoplankton in the Koh Yaa region of Thailand and their relationship with environmental variables, aiming to assess whether human activities (primarily tourism) pose potential threats to the marine ecosystem and provide scientific support for eco-sustainable tourism management decisions in the region. In April, August, and December 2024, corresponding to peak season, off-season, and shoulder season, a total of 156 discrete samples were collected from four coastal sites to analyze water quality parameters such as temperature, pH, total nitrogen (TN), and total phosphorus (TP), along with plankton diversity and abundance. Statistical analyses including two-way ANOVA with Duncan’s Multiple Range Test (DMRT), Pearson correlation analysis, and principal component analysis (PCA) were applied. The results showed a declining trend in plankton abundance over time, peaking at 1009 × 106 cells/m3 in April and dropping to 281 × 106 cells/m3 by December. A total of 15 types of phytoplankton were identified across four phyla: Bacillariophyta, Cyanobacteria, Dinoflagellata, and Chlorophyta. Notably, Chaetoceros from Bacillariophyta accounted for 47% of phytoplankton, while Oscillatoria from Cyanobacteria made up 29.6%. The diversity index and evenness index improved from 1.34 and 0.46 in April to 1.88 and 0.64 in December, respectively. Environmental factors like pH, temperature, and TP significantly affected phytoplankton abundance (p < 0.01), with TP levels ranging from 0.27 to 0.69 mg/L. These results indicate possible pollution in this region, and changes in phytoplankton abundance were linked to seasonal climate variations—especially during peak tourist seasons—which may exacerbate eutrophication affecting community structures. Full article
(This article belongs to the Topic Environmental Bioengineering and Geomicrobiology)
Show Figures

Figure 1

21 pages, 4305 KB  
Article
Scalable Production of Low-Molecular-Weight Chitosan: Comparative Study of Conventional, Microwave, and Autoclave-Assisted Methods
by Mithat Çelebi, Abdullah Tav, Mehmet Arif Kaya and Zafer Ömer Özdemir
Polymers 2026, 18(2), 213; https://doi.org/10.3390/polym18020213 - 13 Jan 2026
Viewed by 146
Abstract
The valorization of shrimp shell waste is crucial for promoting sustainability and a circular economy. This study aimed to extract chitin from the exoskeletal residues of deep-water rose shrimp (Parapenaeus longirostris) sourced from the Marmara Sea and synthesize low-molecular-weight chitosan (LMWC) [...] Read more.
The valorization of shrimp shell waste is crucial for promoting sustainability and a circular economy. This study aimed to extract chitin from the exoskeletal residues of deep-water rose shrimp (Parapenaeus longirostris) sourced from the Marmara Sea and synthesize low-molecular-weight chitosan (LMWC) via conventional, microwave-, and autoclave-assisted deacetylation pathways. The shell biomass was subjected to sequential demineralization (1 M HCl) and deproteinization (1 M NaOH), yielding 14.42% chitin. The extracted chitin was then converted to LMWC using the three methods, and the products were characterized using FT-IR spectroscopy, titration, viscometry, SEM, and TGA. The results demonstrated that the autoclave-assisted method achieved the highest degree of deacetylation (DD) at 95%, significantly outperforming the conventional method (81%) and the microwave-assisted method (67%). The autoclave-synthesized chitosan also exhibited the lowest viscosity (33 cP), confirming its low molecular weight. Morphological analysis showed that chitin exhibited a well-defined fibrous structure. After deacetylation, this structure transformed into a rough and porous surface morphology. Thermal analysis further demonstrated that the laboratory-synthesized chitosan exhibited higher thermal stability than the commercial chitosan sample. In conclusion, the autoclave-assisted method proved to be highly efficient for producing low-molecular-weight chitosan with a high degree of deacetylation. However, the conventional method remains the most practical option for scalable industrial production due to its simplicity and well-established infrastructure. Moreover, the laboratory-synthesized chitosan exhibited higher thermal stability, increased porosity, and a higher degree of deacetylation compared to commercially available chitosan, which may offer functional advantages in applications requiring enhanced reactivity, solubility, or thermal resistance. Overall, the findings provide valuable insights into selecting appropriate deacetylation strategies for producing low-molecular-weight chitosan with tailored properties, thereby bridging the gap between laboratory-scale synthesis and potential industrial applications. Full article
Show Figures

Graphical abstract

24 pages, 13796 KB  
Article
Study on Hydrodynamics and Water Exchange Capacity in the Changhai Sea Area Based on the FVCOM Model
by Minghao Yang, Jun Song, Congcong Bi, Dawei Jiang, Ming Li, Yuan Zhang, Junru Guo, Jie Tian and Qian Sun
J. Mar. Sci. Eng. 2026, 14(2), 162; https://doi.org/10.3390/jmse14020162 - 12 Jan 2026
Viewed by 164
Abstract
Water exchange capacity is critical for maintaining marine environmental quality and supporting the sustainable development of aquaculture. This study applies a high-resolution three-dimensional FVCOM hydrodynamic model coupled with the DYE-RELEASE module. The model was validated against tidal, current, and thermohaline observations. Water residence [...] Read more.
Water exchange capacity is critical for maintaining marine environmental quality and supporting the sustainable development of aquaculture. This study applies a high-resolution three-dimensional FVCOM hydrodynamic model coupled with the DYE-RELEASE module. The model was validated against tidal, current, and thermohaline observations. Water residence time (Tre) was used as the primary evaluation metric, supplemented by analyses of residual circulation, material diffusion, and regional variability, to systematically quantify the water exchange mechanisms and seasonal variations in the coastal waters of Changhai County under the combined influence of tides, wind forcing, and thermohaline conditions. Results show that overall residual currents in Changhai County are weak (average velocity: 0.032 m s−1). However, local circulations and stagnation zones frequently develop near islands and channels, strongly influencing material diffusion. In summer, water exchange is primarily controlled by thermohaline effects, which strengthen density stratification, suppress vertical mixing, and modify circulation patterns, thereby reducing the efficiency of tide-driven exchange. Water exchange is weakest near Guanglu Island (46.6–48.6 d) and strongest near Haiyang Island (13–14 d). In winter, wind forcing dominates, enhancing vertical mixing and accelerating water renewal. Residence time in the Changshan Archipelago–Guanglu Island region decreases by 30–50% compared with summer. Overall, winter water renewal is 15–25% more efficient than in summer. This study demonstrates that water exchange in Changhai County is regulated by the combined effects of tides, wind forcing, and thermohaline dynamics. The identified spatial heterogeneity and seasonal characteristics provide a scientific basis for optimizing aquaculture planning and mitigating marine environmental risks. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop